直膨式太阳能辅助热泵实验系统仿真与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直膨式太阳能辅助热泵多功能复合机(DX-SAHPM)是在传统的空气源热泵基础上有机结合了太阳能热利用技术,是一种新型绿色环保的节能装置。它集制冷、供热及制取生活热水多功能于一体,它最大限度的发挥了太阳能及热泵的节能优势,其作为可再生能源在建筑节能方面有效利用的一种新途径,促进了可持续发展的战略的稳步推进。
     课题组于2005年11月开发了一套小型DX-SAHPM系统实验样机,并设计了一套基于PLC+触摸屏技术的监控系统,用于测试实验系统在各种工况下运行的热性能参数,以期对系统进行性能分析及进一步优化设计。
     本文以质量守恒定律、动量守恒定律及能量守恒定律三大定律为基础建立了DX-SAHPM实验系统主要部件建立数学模型,在对各个部件进行仿真的基础上,将各个部件进行耦合,完成系统的稳态仿真。用Visual Basic语言设计了稳态仿真程序,可以计算出不同工况下系统运行的状态参数及性能系数,对系统进行理论上的分析预测。
     通过专门设计开发PLC+触摸屏计算机监控系统,实现对系统运行状态的实时监控,并自动记录存储数据,将测试数据进行处理得出系统运行的各项性能指标,从而直观的了解系统运行特性。通过对DX-SAHPM实验样机冬季和春季阶段供热性能长达两个多月的实验测试,可以得出由于在系统中增设了太阳能集热器,使得系统在供热状态下可以同时吸收来自空气中的热量和太阳辐射能,系统的供热系数和供热量均有较大程度的提高,且系统在各种工况下均显示出良好的运行品质,达到了实验的预期效果。
     建立了实验系统的火用分析模型,并根据部分春季的实验测试数据计算出了系统供热模式火用损失,计算结果显示集热器与压缩机火用损失分别占了火用损失总量的45.8%和21.4%。,对其产生的主要原因进行了分析,指明了系统节能潜力,为进一步优化系统提供了依据。
     在对系统进行热力学第一律和热力学第二定律综合分析的基础上,分析指出系统存在两个突出问题:1、集热器面积与压缩机容量不匹配;2、传统节流机构毛细管不能满足流量调节需要,并讨论了相应的解决途径,明确了后续研究方向。
     通过对DX-SAHPM实验系统运行特性的理论和实验分析,为直膨式太阳能热泵的推广提供了必要的理论和技术支持,加速了其产业化进程。
Direct-expansion solar assisted heat pump multi-function machine (DX-SAHPM) is to combine organically solar heat utilization technology with the conventional air source heat pump, which is a new type of green equipment with environmental protection and energy-saving. It centralizes the refrigeration, heating and supplying domestic hot water to a system, and furthest display the energy conservation superiority of solar and heat pump. As a new method that the renewable energy effectively uses in the construction energy conservation aspect, it also promotes the steady advancement of the sustainable development strategy.
     In November, 2005, the project group designed a set of mini-type experimental prototype of DX-SAHPM and developed a set of supervisory system based on PLC+ screen touching technology, which is used to test thermal performance parameter under possible conditions of operating mode, in order to carry on performance analysis and further optimize the design.
     In this dissertation, on the basis of the three law of conservation of mass, conservation of momentum and conservation of energy, the major components' the mathematical models of DX-SAHPM experimental system have been established. After the simulation for major parts, the steady state simulation of system was accomplished by coupling of the simulation of components. The state parameters and COP under different work condition can be calculated by the steady state simulation program with Visual Basic language, and the analysis and forecasting in theory can be carried on.
     The computer monitor and control system based on the PLC + touched screen which have been designed and developed specially for the experimental system can realize the real time monitor and memorize the data automatically. Every performance index for system running can be draw after the process of the experimental data , and the running characteristic of the system can be understand directly. The experimental test to DX-SAHPM experimental system lasted two months during the spring and winter under the heating model. Some conclusions can be draw. Both the COP and heating load have a large scale enhancement for adding solar collector and the system can simultaneously absorb solar radiation energy and air heat. The experimental system shows good operating characteristic under various operating mode, and achieve estimated effect of the experiment.
     The model for exergy analysis of experimental system has been established. According to the experimental data in spring, the exergy loss was calculated under heating mode. The results show that the exergy losses of compressor and solar collectors account for 45.8% and 21.4% respectively in the whole losses. The reasons were analyzed, and the results indicate the energy-saving potential and provide the credible basis for optimizing system further.
     On the basis of the integrated analysis to the first and the Second law of thermodynamics, the two evident problems were pointed out: 1.The area of solar collector can't match the capacity of compressor; 2.the conventional throttle-capillary can't satisfy the need of fluid regulating. The related solutions were also analyzed and discussed and the further study direction was indicated.
     The theory and experiment analysis of DX-SAHPM experimental system operation characteristic provide the necessary theory and technology supply for the popularization of direct-expansion solar assisted heat pump technology and accelerate the industrialization course.
引文
1.方荣生等.太阳能应用技术[M].北京:中国农业机械出版社,1985
    2.徐邦裕,陆亚俊,马最良.热泵[M].北京:中国建筑工业出版社,1988
    3. Norman C. Harris, Cydney E. Miller, Irving E. Thomas. Solar Energy System Design. John Wiley & Sons, 1985
    4. H. P. Gang. Solar Water Heating Systems. D. Reidel Publishing Company, 1985
    5.岑幻霞.太阳能热利用[M].北京:清华大学出版社,1996
    6.蒋能照等.空调用热泵技术及应用[M].北京:机械工业出版社,1997
    7.旷玉辉,王如竹.太阳能热泵[J].太阳能.2003,3
    8.袁林、吕凤琴.我国住宅太阳能热水器的应用与发展[J].煤气与热力,2001,21(4):342-344.
    9.赵玉文.21世纪我国太阳能利用发展趋势.中国电力[J],2000,33(9):73-77.
    10.谢剑英、贾青.微型计算机控制技术.北京:国防工业出版社,2001.9
    11.张永苗.小型实时热工监控系统的开发和应用研究[D].浙江:浙江大学,2005
    12.旷玉辉.直膨式太阳能热泵空调及热水系统的研究[D].上海交通大学博士学位论文.2004.9.
    13.李申生等.太阳能热利用导论[M].高教出版社,1989
    14. Jordan R C and Therkeld J L. Design and economics of solar energy heat pump systems. ASME Journal Section, Heating, Piping, and Air Cond. 1954, 26:122-130
    15. Jordan R C and Therkeld J L. Utilization of solar energy for house heating. ASME Journal Section, Heating, Piping, and Air Cond. 1954, 26:193-201
    16. Jordan R C and Therkeld J L. Solar energy availability for heating in the United States. ASME Journal Section, Heating, Piping, and Air Cond. 1953, 25:116
    17. LOf, G O G. Possibilities of a combination solar-heat pump unit. Edison Electric Insitute Bulletin. March, 1956
    18.日本太阳能学会编,李鉴民,李安定等译.太阳能的基础和应用[M].上海:科学技术出版社,1982
    19.郁永章.热泵原理与应用[M],北京:机械工业出版社,1993.
    20. Sakai I, Takagi M, Terakawa K and Ohue J. Solar space heating and cooling with Bi-heat source heat pump and hot water supply system. Int. Sol. Energy Congr. And Expo., Extended Abstr. Sol. Use Now—A Resource for People, Univ. of Calif., Los Angeles, Jul. 28-Aug. 1,1975:415-416
    21. Reddy L and Rajasekara L. Utilization of solar energy for space heating in conjunction with heat pump. M.S. thesis. 1975. University of Nevada, Reno (0139)
    22. Bosio R C and Suryanarayana N V. Solar assisted heat pump system: a parametric study for space heating of a characteristic house in Madison, Wisconsin. American society of Mechanical Engineers (Paper) n75-WA/Sol-8 for Meet Nov. 30-Dec. 4,1975,15p
    23. Ohue J, Takagi M, Sakai I and Terakawa K. Solar space heating and cooling with bi-heat source heat pump and hot water supply system. Solar energy, 1976,18(6):525-532
    24. Suryanarayana N V and Bosio R C. Solar energy for space heating with heat pump. Mechanical Engineering, 1976, 98(10):33-37
    25. Ritter H P, Berthoud G and Weisskopf S. Heat pump with solar and ambient air heat sources for space heating. Bull. Tech. Suisse Romande, 1978,104(16-17):239-242
    26. Andrews J W, Kush E A and Metz P D. Solar-assisted heat pump system for cost-effective space heating and cooling. Brookhaven National Lab., Upton, NY. Corp. May, 1978,138p
    27. Neal W E J, Loveday D L and Pabon-Diaz M. Solar assisted heat pump and storage system for domestic space and water heating using a conventional roof as a radiation absorber. Sun2, Proc. of the Int. Sol. Energy Soc. Silver Jubilee Congr., Altanta, Ga, May, 1979, 1:822-826
    28. H Bruecher. Bivalent space heating system with solar absorber roof and heat pump. Tech. AMBAU, 1979,4:351-352
    29. Freeman T L, Mitchell J W and Audit T E. Performance of combine solar-heat pump systems. Solar energy, 1979,22:125-135
    30. Sporn P. and Ambrose, E. R. The heat pump and solar energy. Proceedings of the World Symposium on Appiled Solar Energy, Phoenix, Ariz, Nov. 1-5, 1955
    31. Morgan R. G Solar Assisted Heat Pump. Solar Energy, 1982, 28: 129-135
    32. Krakow K. L. and Lin S. A solar source heat pump with refrigerant-cooled solar collectors for cold climates. Transactions of the ASHRAE, 1982, 88: 417-439
    33. Chaturvedi S. K. and Shen J. Y. Thermal performance of a direct expansion solar-assisted heat pump. Solar Energy, 1984, 33:155-162
    34. Shinobu Y., Matsuki K. and Yoshikawa M. A prototype direct-expansion solar heat pump system. Transactions of the ASHRAE, 1987, 93: 615-625
    35. Morrison G. L. Simulation of packaged solar heat-pump water heaters. Solar Energy, 1994, 53:249-257
    36. Axaopoulos P., Panagakis P. and Kyritsis S. Experimental comparison of a solar-assisted heat pump vs. a conventional thermosyphon solar system. Int. J. Energy Res., 1998, 22: 1107-1120
    37. Torres-Reyes E. and Cervantes de Gortari J. Optimal performance of an irreversible solar-assisted heat pump. Exergy Int. J. 2001, 1(2): 107-111
    38. Huang B. J. and Chyng J. P. Performance characteristic of integral type solar-assisted heat pump. Solar Energy, 2001, 71:403-414
    39. Ito S., Miura N. and Wang K. Performance of a heat pump using direct expansion solar collectors. Solar Energy, 1999, 65(3): 189-196
    40. Hawlader M. N. A., Chou S. K. and Ullah M. Z. The performance of a solar assisted heat pump water heating system. Applied Thermal Engineering, 2001, 21: 1049-1065
    41.韩俊华,热泵机组控制系统的研究与开发[D].北京:北京工业大学,2002
    42.詹素华,王君儒.PLE在热泵自动控制系统中的应用[D]集美大学学报[J]2001.9
    43. Franklin J. L., Saaski E. W. and Yamagiwa A. A high efficiency direct expansion solar panel. Proceedings of 1977 Flat-Plate Solar Collector Conference, Orlando, Fla., Feb. 28-March 2, 1977: 187-195.
    44. Chaturvedi S. K., Roberts A. S. and Mei V. Solar collector as Heat Pump Evaporator, Proceedings of 13Th Intersociety Energy Conversion Conference, Boston, Mass, Aug. 4-9, 1979.
    45.国际能源署热泵中心.Bouma J W J.热泵技术的国际发展趋势[J].制冷技术,1998,3:19-21.
    46.徐国英,张小松.太阳能-空气复合热源热泵热水器的性能模拟分析.太阳能学报.2006,27(11):1148-1154
    47.旷玉辉,王如竹.直膨式太阳能热泵热水器的实验研究.工程热物理学报.2005,26 (3):379-381
    48.陈芝久,阙雄才,丁国良.制冷系统热动力学[M].北京:机械工业出社,1998.120-121.
    49. CEECHINIC, MARCHAL. D. A. Simulation model of refrigerating and air-conditioning equipment based on experimental data[J]. ASHRAETrans, 1991, 97(2):388-393
    50. BANSAL. P. K, PURKAYASTHA B. An NTU-E model for alternative refrigerants [J]. International Journal of Refrigeration, 1998, 21 (5):281-391
    51.周光亮.房间空调器制冷系统的计算机校核计算[J].制冷,1997,59(2):10-16.
    52.陈华,孙嗣莹,霍晓荣等.房间空调器制冷系统分相模拟研究[J].流体机械,1999(10):50-53.
    53. JIA X, TSO C P, JOLLY P, etal. Distributed steady and dynamic modeling of dry-expansion evaporators[J]. International Journal of Refrigeration, 1999, 22(2):126-136.
    54. MURPHY W E, GOLDSCHMIDT V W. Cyclic characteristics of aresidential air-conditioner-modeling of start-up transient[J]. ASHRAETrans, 1985, 91(2):427-444.
    55.周子成.房间空调器热泵运行时的瞬态仿真[J].制冷学报,1998(4):14-18.
    56.陈则韶,戚学贵,周相芝,等.压缩制冷空调装置动态仿真研究[J].低温工程,2000(6):35-39.
    57.葛云亭,彦启森.蒸发器动态参数数学模型的建立与理论计算[J].制冷学报,1995(1):9-17.
    58.葛云亭,彦启森.冷凝器动态参数数学模型的建立与理论计算[J].制冷学报,1995(3):17-26.
    59.丁国良,张春路,李灏等.制冷空调装置的智能仿真方法初探[J].制冷学报,1998(2):10-14.
    60.丁国良,张春路.制冷空调装置仿真与优化[M].北京:科学出版社,2001
    61.周子成.全封闭滚动转子式制冷压缩机性能分析[J].流体工程,1987(10):52-59
    62.丁国良,张春路.制冷空调装置智能仿真[M].北京:科学出版社,2002:8-117
    63. Chisholm D. Two-phase flowing pipelines and heat exchangers. New York, Longman Inc., 1983
    64. Churchill S W. Frictional equation spans all fluid liow regimes. Chemical Engineering, 1997, 84:91-92
    65. Yilmaz T, Unal S. General equation for the design of capillary tubes. ASME Journal of Fluids Eingineering, 1996, 118(2): 150-154
    66. McAdams W H, Wood W K, Bryan R L. Vaporization inside horizontal tubes-Ⅱ-benzene-oil mixture. Transactions of the ASME, 1942, 64:193
    67. Bittie RR, Wolf D A, Pate M B. A generalized performance prediction method for adiabatic capillary tubes. HVAC & R Research, 1998, 4(1):27-43
    68. Shan, M M. A General correlation for heat transfer during film condensation inside pipe. Int J Heat Mass Transfer, 1979, 22(4):547-556
    69.李妩,陶文铨,康海军等.整体式翅片换热器传热和阻力性能的试验研究[J].机械工程学报,1997,33(1):81-86
    70.周伟东,伍志坚,岳丹婷.蒸气压缩制冷装置仿真的发展[J].大连海事大学学报,2003,29(2):107-110
    71.谢剑英,贾青.微型计算机控制技术[M].北京国防工业出版社,2001.9
    72.DVP-PLC应用技术手册[M],上海:中达电通股份有限公司
    73.DVP-PLC模拟量模块、温度模块使用说明书[M],上海:中达电通股份有限公司
    74.DOP人机界面使用说明书[M],上海:中达电通股份有限公司
    75.吴存真,张诗针,孙志坚.热力过程火用分析基础[M].杭州:浙江大学出版社,2000,3:10—11
    76.张鹤飞,太阳能热利用原理与计算机模拟[M].西安:西北工业大学出版社,2004,3:111-112
    77.郭进军,何雅玲,陶文铨等.空气源制冷/热泵系统的火用分析[J].制冷与空调,2002,10(5):17—22
    78.李郁武,王如竹等,直膨式太阳能热泵热水器系统性能热力学分析[J].第四届全国制冷空调新技术研讨会论文集,2004,6:790-794
    79.李光元.太阳能热泵多功能复合机(SAHPM)计算机监控系统实现方法研究[D].山东科技大学硕士学位论文.2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700