数量模块的理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数量模块的理论与实验研究
     二十世纪80年代,福多在《心理模块性》中界定了认知心理模块的构成标准。二十世纪80年代末,进化心理学诞生,进化心理学家提出了“达尔文模块”的思想。“模块心理学”在上述两种模块思想的基础上得以初步建构,这使得数量模块的研究成为可能和必然。本研究旨在从理论和实证两个路径论证数量模块存在的可能性。数量模块的研究不仅能够为已有的各种数量加工方面的实证研究结果提供理论解释,也能够为理解和进一步研究人类的数量加工能力提供合理的视角。
     本研究分为两个部分,第一部分是理论研究,其研究目的是论证数量模块存在的可能性。该部分以模块的三个构成标准为主线,从已有的数量加工的研究文献入手,对数量加工的相关研究结果进行分析和综述,用数量模块假设解释已有的相关发现。模块的第一个标准是天赋性。对人类的数量加工能力的研究表明,成人、婴儿和非人灵长类动物在数的表征和简单的数推理方面具有共同性,人类的数量能力可以在进化历史中找到源头,这有力地证明了数量模块的天赋性。模块的第二个标准是领域特殊性。越来越多的证据表明,数量能力有其不依赖语言的演化基础。算术障碍儿童的研究成果以及脑损伤的研究结果同样表明,数量能力独立于其它的认知能力。脑成像研究也表明,人类的数加工具有特定的脑区,这进一步为数量加工能力的领域特殊性提供了生理基础。模块的第三个标准是信息的封闭性。目前研究者热衷的SNARC效应和数字Stroop效应都可以用数量模块的信息封闭性假设来合理解释。另外,对数量加工的无意识研究也为数量加工的信息封闭性提供了有力的证据。
     以刺激材料产生的数量感类型为标准,数量模块相应地划分为数字子模块、模拟量子模块和离散量子模块。在理论研究部分发现,虽然已有的研究结果支持数量模块假设,但是,这些研究基本局限于数字模块方面,主要是对阿拉伯数字、数词以及其它与数有关的语言材料上,其主要发现是SNARC效应、Stroop效应、距离效应以及启动效应。对模拟量模块和离散量模块的研究则非常少。因此本研究的实验研究的重点是对模拟量和离散量的加工特点进行研究。
     本研究的关键假设是,数字模块在加工数量信息时所表现出的特点(如SNARC效应、Stroop效应、距离效应以及启动效应等)可能是进化序列中更为基础的离散量模块和模拟量模块所具有的特点。从数量模块的发展角度来看,数字模块加工的上述特点在儿童接受大量的数学训练之前可能并不存在,而模拟量模块和离散量模块有可能在儿童接受大量的数学训练之前就表现出上述特点。
     本研究的第二部分是实证研究。实证研究分为五个部分,研究一用面积和亮度作为比较刺激来考察存在于数字比较中的SNARC效应是否存在于模拟量的比较任务中(如面积比较和亮度比较任务)。研究二探讨在数字的物理大小(即模拟量)的比较任务中是否存在启动效应,数字物理大小的无意识比较任务中是否存在类SNARC效应。研究三探讨数字个数和数字语义之间是否存在类Stroop效应,在个数(即离散量)比较任务中是否存在类SNARC效应。研究四以尚未接受数学技能训练的5岁左右幼儿为被试,采用数字大小比较和面积(即模拟量)比较两类任务,以SANRC效应以及距离效应为指标来测试5岁左右的幼儿是否能够对数量进行空间表征。研究五用数字个数(离散量)作为比较任务,来考察5岁幼儿在个数比较任务中能否产生个数数量的空间编码。
     实验研究的结果表明,数字加工中存在的SNARC效应、距离效应、启动效应和Stroop效应均存在于模拟量比较和离散量比较任务中。而且,尚未接受数学技能训练的5岁被试在离散量和模拟量比较任务中发现了SNARC效应,而在数字比较任务中则没有发现SNARC效应。
     在总讨论部分,用数量模块的三个特性对实验研究的结果进行了详尽合理的解释,并且在已有的解释SNARC效应模型的基础上提出了数量模块内部加工机制的新模型。
A theoretical and experimental Study on Magnitude Module
     In the 1980's,J.Fodor put forward the standards of module.In the late of 1980's,evolutionary psychology appeared and Darwinian module was proposed byevolutionary psychologists.In 2004,Module Psychology was put forward bycombining Fodorian module and Darwinian module.The idea of module psychologymade the study of magnitude module to be possible and necessary.The current studyaims at demonstrating that the hypothesis of magnitude module is possible by the wayof theoretic reasoning and experimental study.The study of magnitude module couldoffer theoretic interpretation for existing experimental findings,and throw light on theunderstanding of magnitude competence.
     The current study is divided into two parts.The first is to reason the possibilityof magnitude module resorting to the existed findings in the aspect of magnitudeprocessing.In detail,the first part of current study intend to reinterpret the existedfindings by analysing and summarizing the existed findings according to the threeingredients of module.
     The first essential ingredient of module is inherence.The study on the magnitudecompetence suggested that human infants,human adults and non-human primateshare many common characteristics,and human being's magnitude competence couldtraced back to the evolutionary origins,which argued that inherence is one of theessential ingredients of magnitude module.The second essential ingredient of moduleis domain-specific.More and more findings suggested that manitude competencepossesses of its evolutionary foundation that is independent of linguistic ability.Manyneuropsychological studies of adults with neurological damage strongly indicatc thatnumber knowledge is dissociable from semantic memory (Cappelletti,Butterworth,&Kopelman,2001),and that the semantic memory systems for numerical and non-numerical information are localised in different areas of the brain (Thioux,Seron,& Pesenti,1999).Functional neuroimaging reveals that the parietal lobes,especiallythe intraparietal sulci,are active in numerical processing and arithmetic (Dehaene,Piazza,Pinel,& Cohen,2003),and studies of brainlesioned patients (Cipolotti & vanHarskamp,2001) have identified the left lntraParietal Sulcus (IPS) and the angulargyrus as critical to normal arithmetical performance.These findings indicate thatmagnitude competence is domain-specific.The third essential ingredient of module isencapsulation.The results of number recognise researches such as SNARC effect,Stroop effect could be interpreted by the encapsulation of magnitude module.Additionally,study results about unconscious number processing provide the evidencefor the encapsulation of magnitude module.
     Magnitude module is divided into number module,analog magnitude mdule anddiscrete magnitude mdule according to the categories of number sense that the stimulicaused.In theoretic part,it is revealed that the existing findings support thehypothesis of magnitude module,however,most of existing studies focused on thenumber module,and the main findings are SNARCeffect,Stroop effect,distanceeffect and priming effect of number.Analog magnitude mdule and discrete magnitudemdule are not explored extensively.Hence,the current study is focused on analogmagnitude mdule and discrete magnitude mdule.
     The key hypothesis of current study is that the characteristics that numbrermodule manifested when processing number are originated from analog magnitudemdule and discrete magnitude mdule.From developmental perspective of magnitudemodule,the characteristics that numbrer module manifested when processing numberare not existed before children accepte extensive arithmetic training,but themagnitude process of analog magnitude mdule and discrete magnitude mdule mightpossess the characteristics above.
     The second part of current study is experimental study,which consists of fivestudies.
     Study 1 aimed at exploring whether SNARC effect exists in area comparisontask and luminance comparison task.In a binary response setting,it has been frequently observed that small numbers are responded to faster with the left hand andlarge numbers with the right hand (i.e.the SNARC effect) which reflects the spatialleft-right orientation of the mental number line (Dehaene,Bossini,& Giraux,1993).So it was worth considering whether spatial associations are exclusively numerical orwhether they could occur with continuous properties of non-numerical stimuli (e.g.area,luminance,hue of a figure;length,width and weight of an object;pitch andloudness of sound).In two experiments,the area and luminance of circle were used ascomparison stimuli to test the hypothesis that not only number comparison task butalso the comparison task of continuous properties of non-symbolic stimulus couldproduce SNARC effect.Both experiment 1 and experiment 2 used numbercomparison task as the index of producing SNARC effect,and the results proved thattwo modes of stimuli presentation were valid.
     In experiment 1,the area of circle and the semantic of number were used ascomparison stimuli to test our hypothesis.The results indicated that left handresponded faster and more accurately to relative small magnitude of stimuli (area ofcircle or semantic of number) and right hand is faster and more accurate to relativebig magnitude (area of circle or semantic of number).SNARC effect of numbercomparison task in experiment 1 conforms to the study of Dehaene etc.(1993).Inarea comparison task of our experiment 1,bigger circles were answered about 47 msfaster to the right than to the left,and smaller circles were answered about 12 msfaster to the left than to the right.
     In experiment 2,to explore whether the luminance of stimuli could produceSNARC effect that was found in number comparison task,the luminance of circle wasused as comparison stimuli to test our hypothesis.For luminance comparison weformed five circles with different luminance (from 0 to 255 in RGB -coded shades ofgray) that varied only in brightness with constant hue and saturation.The resultsproved that both number comparison task and luminance comparison task couldproduce SNARC effect.Left hand responded faster to higher luminance circle andright hand responded faster to lower luminance circle.
     Conclusively,the results of study 1 indicated that SNARC effect could be obtained in area comparison task and luminance comparison task.Furthermore,theresults suggested that (1) distance effect that was observed in number comparison taskalso existed in area comparison and luminance comparison,Stroop effect that wasobserved in number comparison task also existed in area comparison,(2) the responsespeed to area comparison and to luminance comparison was faster than to numericalcomparison.
     It is found that number comparison task and physical stimuli comparison taskshare the same process mechanism(Gallistel & Gelman,2000).Unconscionsly,Dehaene,Naccache et al.,(1998)and Naccache & Dehaene(2001) revealed that theunconscious semantic priming exists in number process.Hence,in study 2 we inferthat unconscious process might exist in the process of number physical properties.The current study aims at whether priming effect and SNARC-like effect exist in thephysical properties comparison task.Using masked priming procedure (Naccache &Dehaene,2001),in both number comparison task and number physical sizecomparison task,experiment 1 found SNARC effect,priming effect and Stroop effectin 33ms priming condition.Experiment 2 found SNARC effect,priming effect andStroop effect exist in both number comparison task and number cover areacomparison task in 33ms priming condition.
     Numerical Stroop paradigm revealed that the physical size of number and thenumber of numerals (small magnitude) could automatically activate semanticrepresentation,hence produce interference and facilitation between physical size,number of numerals and number magnitude.Based on this automatic process,weinfer in study 3 that in the task of number(i.e.,quantity of units or individuals)approximate estimation might activate automatically the spacial representation ofmagnitude of number.The current study designed two experiments to test thehypothesis.By using Stroop-like effect as index,the first one explored whether thenumbers of numeral and number magnitude could produce interference andfacilitation;the other experiment explored whether the number(i.e.,quantity ofasterisks) could represent spacially by using SNARC-like effect as index.The resultsrevealed that there exists Stroop-like effect between number of numerals and number magnitude,and there exists SNARC-like effect in the number(i.e.,quantity ofasterisks) comparison task.We also found an order effect,that is to say,when themagnitude of numerals number of standard was smaller than that of comparisonsimuli,Rts were faster,otherwise Rts were slower.
     SNARC effect can be influenced by children' growing numerical skills and taskdemands.By using number comprison task and area comparison task that are releventto magnitude,in study 4 we test whether 5 year-olds could automatically activates aspatial representation when representing magnitude of Arabic number and magnitudeof circle area.Rts data of number comprison task analysis indicated that there is noSNARC effect,however,distance effect is found.Error rate analysis indicated thatthere is no SNARC effect or distance effect.Rts data of circle area comprison taskanalysis indicated that there are SNARC effect and distance effect.Relatively largecircles are responded to faster with a right response than with a left response andrelatively small circles are responded to faster with a left response than with a rightresponse.Error rate analysis indicated that there exists SNARC effect but no distanceeffect.
     By using the task of number comprison of numerals,we test whether 5 year-oldscould automatically activate a spatial representation when representing number ofnumerals in study 5.Rts data analysis indicated that there is SNARC-like effect,however the orientation of the SNARC effect was reversed.Relatively more numeralsare responded to faster with a left response than with a right response and relativelyless numerals are responded to faster with a right response than with a left responsc.Stroop effect was not found,which means that number comprison of numerals did notactivate automatically magnitude of numerals.Error rate analysis indicated that thereis no SNARC effect or Stroop effect.
     The results of five experimental studies suggested that SNARC effect,Stroopeffect,distance effect and priming effect of number when processing number alsoexist in the process of analog magnitude comparison task and discrete magnitudccomparison task.Furthermore,SNARC effect is found in the task of analogmagnitude comparison and discrete magnitude comparison when subjects arc five-year-olds,however in the task of number comparison,five-year-olds do not showSNARC effect.The experimental results support the key hypothesis of current study.
     In general disscussion,experimental results are interpreted intensively andrationally according to the three ingredients of magnitude module.Further more,anew model about the mechanism of magnitude module is proposed on the basis ofexisted model that explains SNARC effect.
引文
巴斯.进化心理学.(熊哲宏译).上海:华尔师范大学出版社,2007.
    陈鼓应.老子注释及评介.北京:中华书局,1984.
    傅海伦.论《周易》对传统数学机械化思想的影响.周易研究,1999,40(2):82-93.
    高觉敷.西方近代心理学史.北京:人民教育山版社,1982.
    郭秀艳.实验心理学.北京:人民教育出版社,2004.
    胡林成,刘萍.社会信息加工理论研究新进展——社会认知理论介评.社会心理科学,2001.4:11-15.
    胡林成,熊哲宏.数能力的模块性——Dehaene的“神经元复用”理论述评.华东师范大学学报(教育科学版),2008,26(1):74-78.
    胡林成,熊哲宏.算术模块的行为与神经机制研究.心理科学,2008,4:1002-1004.
    胡林成.社会情境中态度改变的理论综述.西北成人教育学报,2003,4:102-106.
    柯学,白学军,隋南.数字概念的视知觉无意识语义启动效应.心理学报,2002,34(4):357-361.
    李如齐,胡林成.心理学视野下的教学整体性特征及操作要求.教育理论与实践,2005,3:44-46.
    刘超,傅小兰.不同注意条件下大数与小数的加工差异.心理学报,2004,36(3):307-314.
    刘超,买晓琴,傅小兰.不同注意条件下的空间-数字反应编码联合效应.心理学报,2004,36(6):671--680.
    刘魁.当代心脑同一论批判.自然辩证法研究,1998,14(5):6-10.
    罗琳琳,周晓林.执行功能与数量加工:回顾与展望.心理科学进展,2004,12(5):714-722.
    罗贤,熊哲宏.语言的天赋性与模块性.襄樊学院学报,2006,27(1):27-31.
    马朝林,李葆明.动物数能力的研究进展.生理学报,2004,56(6):661-664.
    南云,罗跃嘉.数字加工的认知神经基础.心理科学进展,2003,11(3):289-295.
    钱秀莹,李传.Stroop效应及其脑机制研究概述.心理学探新,2003,23(3):33-37.
    商卫星,熊哲宏.进化心理学关于心理模块的领域特殊性思想.华东师范大学学报(教育 科学版),2007,25(1):56-61.
    沈模卫,高涛,丁海杰.汉字数字与阿拉伯数字的阈下启动研究.心理科学,2004,27(1):13-17.
    沈模卫,田瑛,丁海杰.一位阿拉伯数字的空间表征.心理科学,2004,27(1):13-17.
    王乃弋,罗跃嘉,李红.两种数量表征系统.心理科学进展,2006,14(4):610-617.
    王沛,胡林成.儿童社会信息加工的情绪-认知整合模型.心理科学进展,2003,4:411-416.
    王沛,胡林成.社会信息加工领域中的情境模型理论.心理科学进展,2003,3:285-289.
    熊哲宏,李放放.功能分解与心理的整体模块性.华东师范大学学报(教育科学版),2004,1:56-61.
    熊哲宏,李其维.“达尔文模块”与认知的“瑞士军刀”模型.心理科学,2002,25(2):163-166.
    熊哲宏,王中杰.论高级认知系统的模块性-对J·福多“中心系统的非模块性”论证的反驳.湖南师范大学教育科学学报.2004,3(5):401-406.
    熊哲宏.“心理模块”概念辨析—兼评J.Fodor经典模块概念的几个构成标准.南京师范大学学报,2002,6:88-93.
    熊哲宏.儿童“领域特殊”发展与“领域普遍”发展的统一.西北师范大学学报,2002,4:17-22.
    熊哲宏.皮亚杰理论与康德先天范畴体系研究.武汉:华中师范大学出版社,2002.
    熊哲宏.认知科学导论.武汉:华中师范大学出版社,2002.
    熊哲宏.是认知心理学,还是进化史?一论“进化心理学”研究方法的内在矛盾.华中师范大学学报,2003,42(4):431-437.
    熊哲宏.“模块心理学”的理论构建论纲.心理科学,2005,28(3):741-743.
    熊哲宏论.论“心理模块性”研究的理论心理学意义.心理学探新,2002,22(1):70-75.
    徐晓东,刘昌.数字的空间特性.心理科学进展,2006,149(6):851-858.
    宴倩,熊哲宏.国外人类先天“数字模块”的研究现状及展望.心理发展与教育,2006,4:115-118.
    宴倩,熊哲宏.先天模块与后天文化资源的相互作用论.心理科学,2006,29(5):1269-1271.
    宴倩,熊哲宏.先天模块与后天文化资源的相互作用论-B.Butterworth的“数字模块”理 论述评.心理科学,2006,29(5):1269-1271.
    杨治良.实验心理学.杭州:浙江教育出版社,1998.
    叶浩生.进化心理学思维方式的变革及其意义.心理科学进展,2005,13(6):847-855.
    叶浩生.有关进化心理学局限性的理论思考.心理学报,2006,5:784-790.
    叶浩生.有关西方心理学中生物学化思潮的质疑与思考.心理科学,2006,3:520-525.
    翟文静,熊哲宏.认知发展的领域特殊性与信息封闭-关于“儿童认知模块性”研究的理论思考.华东师范大学学报(教育科学版),2006,24(3):26-31.
    翟文静,熊哲宏.“分离机制”与假装的意义.心理科学,2006,29(6):1518-1520.
    张红川,董奇.数学认知能力的认知与脑机制理论模型综述.华东师范大学学报(教育科学版),2002,2(1):12-21.
    张雷,林丹,李宏利,张玲燕,莫雷.进化认知心理学的模块说.心理科学,2006,29(6):1412-1414.
    张立文.心.北京:中国人民大学出版社年版,1993.
    张丽丽.快乐经济学理论述评.四川教育学院学报,2007,23(11):22-27.
    张勇,熊哲宏.“觉察欺骗者模块”:推理的领域特殊性.华东师范大学学报(教育科学版),2005,23(4):74-80.
    张真,苏彦捷.人类数能力的演化基础-数能力比较研究的启示.心理科学进展,2007,15(1):57-63.
    周爱保,胡林成,刘萍.多元智力理论对中小学教育的启示湘潭师院学报.2003,1:118-121.
    朱伯崑.易学哲学史(上).北京:北京大学出版社,1986.
    朱滢.实验心理学.北京:北京大学出版社,1999.
    Abrams R L,Greenwald A G.Parts outweigh the whole(word)in unconscious analysis of meaning.Psychological Scienoe,2000,11:118-124.
    Allen H W,Maureen A M,Alina T.Numerical Stroop effect.Perceptual and Motor Skills,2004,98(1):67-77.
    Antell S E,Keating D P.Perception of numerical invariance in neonates.Child Development,1983,54:695-701.
    Atkinson C M,Drysdale KA,& Fulham W R.Event-related potentials to Stroop and reverse Stroop stimuli.International Journal of Psychophysiology,2003,47:1-21.
    Bachtold D, Baumuller M & Brugger P. Stimulus -response compatibility in representational space. Neuropsychologia, 1998,36(8): 731-735.
    Balakrishnan J D, Ashby F G Subitizing: magical numbers or mere superstition? Psychological Research, 1992,54: 80-90.
    Barth H, Kanwisher N, & Spelke E. The construction of large number representations in adults.Cognition, 2003, 86: 201-221.
    Beran M J. Summation and numerousness judgments of sequentially presented sets of items by chimpanzees (Pan troglodytes). Journal of Comparative Psychology, 2001,115:181 — 191.
    Berch D B, Foley E J, Hill R J, & Ryan P M. Extracting parity and magnitude from Arabic numerals: Developmental changes in number processing and mental representation. Journal of Experimental Child Psychology, 1999, 74: 286—308.
    Besner D, Colthart M. Ideographic and alphabetic processing in skilled reading of English. Neuropsychologia, 1979,17:467—472.
    Boysen S T, Berntson G G Numerical comptetence in a chimpanzee(Pan troglodytes). J. Comp.Psychol., 1989,103: 23-31.
    Brannon E M, Abbott S & Lutz D J. Number bias for the discrimination of large visual sets in infancy. Cognition, 2004,93(2): B59-B68.
    Brannon E M, Roitman J D. Nonverbal representations of time and number in animals and human infants. In W H Meck (Eds.): Functional and Neural Mechanisms of Interval Timing.Boca Raton F L, CRC Press, 2003,143-182.
    Brannon E M, Terrace H S. Ordering of the numerosities 1 to 9 by monkeys. Science, 1998,282(5389): 746-749.
    Brannon E M, Terrace H S. The evolution and ontogeny of ordinal numerical ability. In The Cognitive Animal (Bekoff M et al. eds.), MIT press. 2002,197—204.
    Brannon E M, Wusthoff C J, Gallistel C R, & Gibbon J. Numerical subtraction in the pigeon:Evidence for a linear subjective number scale.Psychological Science, 2001,12(3): 238—243.
    Brian Butterworth(吴辉译).数学脑.上海:中国出版集团东方出版中心,2004
    Brysbaert M. Arabic number reading: On the nature of the numerical scale and the origin of phonological recoding. Journal of experimental psychology: General, 1995,124: 434—452.
    Buckley P B, Gillman C B. Comparison of digits and dot patterns. J. Exp. Psychol. 1974, 103: 1131-1136.
    Bull R, Marschark M & Blatto - Vallee. SNARC hunting: examining number representation in deaf students. Learning and Individual Differences, 2005, 15: 223 —236.
    Bull R, Scerif G. Executive Functioning as a Predictor of Children's Mathematics Ability:Inhibition, Switching, and Working Memory. Developmental Neuropsychology, 2001, 19(3):273-293.
    Buss D M. Evolutionary psychology: The new science of the mind (2nd edition). Boston: Allyn& Bacon, 2004.
    Calabria M, Rossetti Y. Interference between number processing and line bisection: a methodology. Neuropsychologia, 2005, 43(5): 779—783.
    Carey S, Spelke E. On conceptual change: counting and number. In J Mehler & L. Bonatti (Eds.), Developmental cognitive science. Cambridge, MA: MIT Press, 2001.
    Carey S, Xu F. Infants' knowledge of objects: beyond object files and object tracking. Cognition,2001,80: 179-213.
    
    Changeux J P. Neuronal man: The biology of mind. New York: Pantheon, 1985.
    Cheesman J , Merikle P M. Priming with and without awareness. Perception & Psychophysics,1984, 36(4): 387-395.
    
    Chomsky N. Lectures on government and binding. Dordrecht, The Netherlands: Foris, 1981.
    Clearfield M W. Infants' enumeration of dynamic displays. Cognitive Development, 2004,19(3): 309-324.
    Cohen Kadosh R, Henik A, Rubinsten, et al. Are numbers special? The comparison systems of the human brain investigated by fMRI. Neuropsychologia, 2005, 43: 1238— 1248.
    Cohen Kadosh R, Henik A. A common representation for semantic and physical properties: A cognitive-anatomical approach. Experimental Psychology, 2006, 53: 87—94 .
    Cohen Kadosh, R., Henik, A., Rubinsten, O., Mohr, H., Dori, H., Van de Ven, V., et al. Are numbers special? The comparison systems of the human brain investigated by fMRI.Neuropsychologia, 2005, 43: 1238- 1248.
    Cole M, Gay J, & Glick J. A cross-cultural investigation of information processing. International Journal of Psychology 1968, 3(2): 93—102.
    
    Cosmides L, Tooby J . Origins of domain specificity : the evolution of functional organization. In Hirschfeld and Gelman (eds), Mapping the mind , Cambridge : Cambridge University Press, 1994.
    Dagenbach D, Can T H, & Barnhardt T M. Inhibition Semantic Priming of Lexical Decisions Due to Failure to Retrieve Weakly Activated Codes. Journal of Experimental Psychology:Learning, Memory, and Cognition, 1990,16 (2): 328-340.
    Dagenbach D, Can T H, & Wilhelmsen A. Task-induced strategies and near-threshold priming:Conscious influences on unconscious perception. Journal of Memory & Language, 1989,28:412-443.
    Damian M F. Congruity effects evoked by subliminally presented primes: Automaticity rather than semantic processing. Journal of Experimental Psychology: Human Perception and Performance, 2001,27 (1): 154-165.
    Dana M, Wolf S. Exploring the mental number line: evidence from a dual-task paradigm.Psychological Research, 2007, 71:598—613.
    Dehaene S, Bossini S, & Giraux P. The mental representation of parity and number magnitude.Journal of Experimental Psychology: General, 1993,122 (3): 371-396.
    Dehaene S, Cohen L. Cerebral pathways for calculation: Double dissociation between rote verbal and quantitative knowledge of arithmetic. Cortex, 1997, 33: 219—250.
    Dehaene S, Dehaene-Lambertz G, & Cohen L. Abstract representations of numbers in animal and human brain. Trends in Neuroscience, 1998, 21(8): 355—361.
    Dehaene S, Dupoux E, & Mehler J. Is numerical comparison digital? Analogical and symbolic effects in two-digit number comparison. Journal of Experimental Psychology: Human Perception and Performance, 1990,16: 626—641.
    Dehaene S, Molko N, Cohen L, & Wilson A J. Arithmetic and the brain. Cunent Opinion in Neurobiology, 2004,14: 218-224.
    Dehaene S, Naccache L, Le Clec H G, Koechlin E, Mueller M, Dehaene-Lambertz G, van de Moortele P F, & Le Bihan D.. Imaging unconscious semantic priming. Nature, 1998,395(6702): 597-600.
    Dehaene S, Piazza M, Pinel P, & Cohen L. Three parietal circuits for number processing. Cognitive Neuropsychology, 2003, 20: 487—506.
    
    Dehaene S, Spelke E, Pinel P, Stanescu R, & Tsivkin S. Sources of mathematical thinking: behavioral and brain-imaging evidence. Science, 1999, 284(5416): 970 — 974.
    Dehaene S. Electrophysiological evidence for category-specific word processing in the normal human brain. NeuroReport, 1995, 6: 2153 — 2157.
    Dehaene S. The Number Sense: How the Mind Creates Mathematics. New York: Oxford University Press, 1997.
    
    Dehaene S. Varieties of numerical abilities. Cognition, 1992, 44: 1 — 42.
    Dehaene, S., Akhavein, R. Attention, automaticity, and levels of representation in number processing. Journal of Experimental Psychology: Learning, Memory, and Cognition, 1995,21(2): 314-326.
    Delazer M, Domahs F, Bartha L, Brenneis C, Lochy A, Trieb T, & Benke T. Learning complex arithmetic-an fMRI study. Brain Research and Cognive Brain Research, 2003, 18 (1): 76—88.
    Duffau H, Denvil D, Lopes M, Gasparini F, Cohen L, Capelle L, & Van Effenterre R.Intraoperative mapping of the cortical areas involved in multiplication and subtraction: an electrostimulation study in a patient with a left parietal glioma. Journal of Neurology,Neurosurgery & Psychiatry, 2002, 73: 733-738.
    Eger E, Sterzer P, Russ M O, Giraud A L, & Kleinschmidt A. A supramodal number representation in human intraparietal cortex. Neuron, 2003, 37: 719 — 725.
    Enns J T, DiLollo V. Object substitution: A new form of masking in unattended visual locations.Psychological Science, 1997, 8(2): 136—139.
    Feigenson L, Carey S, Hauser M D. The representations underlying infants' choice of more:Object files versus analog magnitudes. Psychological Science, 2002, 13(2): 150— 156.
    Feigenson L, Dehaene S, Spelke E S. Core systems of number. Trends in Cognitive Science,2004,8:307-314.
    Feigenson L. A double-dissociation in infants' representations of object arrays. Cognition, 2005,95(3): B37-B48.
    Fias W, Brysbaert M, Geypens F, & d'Ydewalle G. The importance of magnitude information in numerical processing: Evidence from the SNARC effect. Mathematical Cognition, 1996, 2:95-110.
    
    Fias W, Dupont P, Reynvoet B, & Orban G A. The quantitative nature of a visual task differentiates between ventral and dorsal stream. J. Cogn. Neurosci. 2002,14 (4): 646—658.
    Fias W, Fischer M H. Spatial representation of number. In J I D Campbell (Ed.), Handbook of mathematical cognition. New York: Psychology Press, 2005: 43-54.
    Fias W, Lammertyn J, Reynvoet B, Dupont P, & Orban G A. Parietal representation of symbolic and non-symbolic magnitude. J. Cogn. Neurosc. 2003,15 (1): 47—56.
    Fias W, Lauwereyns J, Lammertyn J. Irrelevant digits affect feature-based attention depending on the overlap of neural circuits. Cognitive Brain Research, 2001,12: 415—423.
    Fias W. Two routes for the processing of verbal numbers: Evidence from the SNARC effect. Psychological Research, 2001, 65: 250-259.
    Fischer M H, Castel A D, Dodd M D & Pratt J. Perceiving numbers causes spatial shifts of attention. Nature Neuroscience, 2003,6(6): 555—556.
    Fischer M H, Rottmann J. Do negative numbers have a place on the mental number line ?Psychological Science, 2005,47 (1): 22-32.
    Fischer M H, Warlop N, Hill R L, & Fias W. Oculomotor bias induced by number perception.Experimental Psychology, 2004,51 (2): 91-97.
    Fischer M H, Warlop N, Hill R L, et al. Oculomotor bias induced by number perception.Experimental Psychology, 2004,51(2): 1—7.
    Fischer M H. Number processing induces spatial performance biases. Neurology, 2001,57 (5):822-826.
    Flombaum J I, Junge J A, & Hauser M D. Rhesus monkeys (Macaca mulatta) spontaneously compute addition operations over large numbers. Cognition, 2005, 97(3): 315—325.
    Fodor J. Modularity of Mind. Cambridge: The MIT Press, 1983.
    Fulbright RK, Manson SC, Skudlarski P, Lacadie CM, & Gore J C. Quantity determinations and the distance effect with letters, numbers, and shapes: a functional MR imaging study of number processing. Am. J. Neuroradiol, 2003, 23: 193—200.
    Gallistel C R, Gelman R. Mathematical cognition. In: K Holyoak, R Morrison (Eds.): The Cambridge and book of Thinking and Reasoning. Cambridge: Cambridge University Press,2005: 559-588.
    Gallistel C R, Gelman R. Non-verbal numerical cognition: From reals to integers. Trends in Cognitive Sciences, 2000,4:59—65.
    Gallistel C R, Gelman R. Preverbal and verbal counting and computation. Cognition, 1992, 44:43-74.
    Gallistel C R, Gibbon J. Time, rate and conditioning. Psychological Review, 2000, 107: 289—344.
    Gallistel C R, Mark T A, King A, & Latham P E. The Rat Approximates an Ideal Detector of Changes in Rates of Reward:Implications for the Law of Effect. Journal of Experimental Psychology.Animal Behavior Processes, 2001, 27: 354—372.
    Galton F. Visualised numerals. Nature, 1880, 21: 252-256.
    Gevers W, Lammertyn J, Notebaert W, Verguts T, & Fias W. Automatic response activation of implicit spatial information: Evidence from the SNARC effect. Acta Psychologica 2006, 122:221-233.
    
    Gevers W, Lammertyn J. The hunt for SNARC. Psychology Science, 2005, 47(1): 10-21.
    Gevers W, Reynvoet B, & Fias W. The mental representation of ordinal sequences is spatially organized. Cognition, 2003, 87: B87-B95.
    Gevers W, Reynvoet B, & Fias W. The mental representation of ordinal sequences is spatially organised: evidence from days of the week. Cortex, 2004, 40: 171 — 172.
    Gevers W, Verguts T, Reynvoet B, et al. Numbers and space: A computational model of the SNARC effect. Journal of Experimental Psychology: Human Perception and performance,2006, 32(1): 32-44.
    Gibbon J, Church R M. Time left: linear versus logarithmic subjective time. Journal of Experimental Psychology: Animal Behavior Processes, 1981, 7(2): 87—107.
    Girelli L, Lucangeli D, & Butterworth B. The Development of Automaticity in accessing Number Magnitude. Journal of Experimental Child Psychology , 2000, 76: 104— 122.
    Gordon P. Numerical cognition without words: Evidence from Amazonia. Science, 2004,306(15): 496-499.
    Hauser M D, Carey S, & Hauser L B. Spontaneous number representation in semi-free-ranging rhesus monkeys. Proceedings of the Royal Society B: Biological Sciences, 2000, 267( 1445):829-833.
    Hauser M D, Carey S. Spontaneous representation of small numbers of objects by rhesus macaques: Examinations of content and format. Cognitive Psychology, 2003, 47(4): 367 — 401.
    Hauser M D, Tsao F, Garcia P, Elizabeth S S. Evolutionary foundations of number: Spontaneous representation of numerical magnitudes by cotton-top tamarins. Proceedings of the Royal Society B: Biological Sciences, 2003,270(1523): 1441-1446.
    Henik A, Tzelgov J. Is three greater than five: The relation between physical and semantic size in comparison tasks. Memory and Cognition, 1982,10: 389—395.
    Hermelin B, Connor N O' . Factors and primes: a specific numerical ability. Psychological Medicine, 1990, 20:163-169.
    Herrnstein R J, Vaughan W J. Melioration and behavioral allocation.In J E R Staddon (Ed.),Limits to action: The allocation of individual behavior. New York: Academic, 1980:143—176.
    Herrnstein R J. Relative and absolute strength of response as a function of frequency of reinforcement. Journal of the Experimental Analysis of Behavior, 1961,4: 267—272.
    Hock H S, Egeth H. Verbal interference with encoding in a perceptual classification task.Journal of Experimental Psychology, 1970,83: 299—303.
    Hubbard E M, Piazza M, Pinel P, & Dehaene S. Interactions between number and space in parietal cortex. Nature Reviews Neuroscience, 2005, 6: 435—448
    Hung Y H, Hung D L, Tzeng O J L, & Wu D H. Flexible spatial mapping of different notations of numbers in Chinese readers. Cognition, 2008,106:1441 — 1450.
    Han A B, Polich J. P300 and response time from a manual Stroop task. Clinical Neurophysiology, 1999,110: 367-373.
    Ishihara M, Keller PE, Rossetti Y, & Prinz W. Horizontal spatial representations of time:evidence for the STEARC effect. Cortex, 2008, 44: 454—461.
    Ito Y, Hatta T. Spatial structure of quantitative representation of numbers: Evidence from the SNARC effect. Memory & Cognition, 2004, 32: 662—673.
    Itsukushima Y, Tozawa J, & Itagaki F. Representation and retrieval of two-digit numbers in mental comparison. Jpn. Psychol. Res. 1990, 32:117—127.
    Kahneman D, Treisman A, & Gibbs B. The reviewing of object files: object specific integration of information. Cognitive Psychology, 1992, 24: 175-219.
    Karmiloff-Smith A. Beyond modularity. Cambridge, MA: MIT Press, 1992.
    Kaufmann L, Koppelstaetter F, Delazer M, Siedentopf C, Rhomberg P, Golaszewski S, et al.Neural correlates of distance and congruity effects in a numerical Stroop task: An event-related fMRI study. Neuroimage, 2005, 25: 888-898.
    Kaufmann L, Koppelstaetter F, Siedentopf C, Haala I, Haberlandt E, Zimerhackl L-B, et al.Neural correlates of the number-size interference task in children. Neuroreport, 2006, 17: 587-591.
    Keus I M, Schwarz W. Searching for the functional locus of the SNARC effect: Evidence for a response-related origin. Memory & Cognition, 2005, 33: 681 — 695.
    Kornblum S, Hasbroucq T, & Osman A. Dimensional overlap: Cognitive basis for stimulus-response compatibility- A model and taxonomy. Psychological Review, 1990, 97:253-270.
    Lammertyn J, Fias W, & Lauwereyns J. Semantic influences on feature-based attention due to overlap of neural circuits. Cortex, 2002, 38: 878-882.
    Leahey T H. A history of psychology.Prentice Hall Inc.1997.
    Lee K M, Kang S Y. Arithmetic operation and working memory: Differential suppression in dual tasks. Cognition, 2002, 83: B63-B68.
    Leon M I, Gallistel C R. Self-Stimulating Rats Combine Subjective Reward Magnitude and Subjective Reward Rate Multiplicatively. Journal of Experimental Psychology: Animal Behavior Processes, 1998, 24(3): 265-277.
    Lidji P, Kolinsky R, Lochy A, & Morais J. Spatial Associations for Musical Stimuli: A Piano in the Head? Journal of Experimental Psychology: Human Perception and performance, 2007,33(5): 1189-1207.
    Link S W. Modelling imageless thought: The relative judgment theory of numerical comparisons. Journal of Mathematical Psychology, 1990, 34: 2 — 41.
    Lipton J S, Spelke E S. Discrimination of large and small numerosities by human infants.Infancy, 2004, 5(3): 271-290.
    Liu C, Fu X I. The influence of attention on the effects of number magnitude in number comparison task. Acta Psychologica Sinica, 2004, 36(3): 307 — 314.
    Liu C, Mai X Q, Fu X L. The spatial numerical association of response codes effects of number processing in different attention conditions. Acta Psychologica Sinica, 2004, 36(6): 671 — 680.
    MacLeod C M. Half a century of research on the Stroop effect: An integrative review.Psychological Bulletin, 1991,109:163-203.
    Marcel A J. Conscious and unconscious perception: An approach to the relations between phenomenal experience and perceptual processes. Cognitive Psychology, 1983,15: 238-300.
    Marshuetz C, Smith E E, Jonides J, DeGutis J, & Chenevert T L. Order information in working memory: fMRI evidence for parietal and prefrontal mechanisms. J. Cogn. Neurosci. 2000,12(Suppl 1): 130-144.
    McCrink K, Wynn K. Large-number addition and subtraction by 9-month-old infants.Psychological Science, 2004,15(11): 776-781.
    Meck W H, Church R M. A mode control model of counting and timing processes. Journal of Experimental Psychology: Animal Behavior Processes, 1983, 9: 320—334.
    Menon V, Rivera S M, White C D, Glover G H, & Reiss A L. Dissociating prefrontal and parietal cortex activation during arithmetic processing. Neuroimage, 2000,12: 357—365.
    Moyer R S, Landauer T K. Time required for judgments of numerical inequality. Nature, 1967,215:1519-1520.
    Naccache L, Dehaene S. The priming method: Imaging unconscious repetition priming reveals an abstract representation of number in the parietal lobes. Cerebral Cortex, 2001,11: 966—974.
    Naccache L, Dehaene S. Unconscious semantic priming extends to novel unseen stimuli.Cognition, 2001,80: 215-229.
    Nieder A, Freedman D J, & Miller E K. Representation of the quantity of visual items in the primate prefrontal cortex. Science, 2002, 297(5587): 1708—1711.
    Nieder A, Miller E K. Coding of cognitive magnitude. Compressed scaling of numerical information in the primate prefrontal cortex. Neuron, 2003, 37:149—157.
    Nuerk H C, Bauer F, Krummenacher J, et al. The power of the mental number line: how the magnitude of unattended numbers affects performance in an Eriksen task. Psychology Science, 2005,47(1): 34-50
    Nuerk H C, Iversen W, & Willmes K. Notational modulation of the SNARC and the MARC (linguistic markedness of response codes) effect. Quarterly Journal of Experimental Psychology: Section A, 2004, 57 (5): 835-863.
    Nuerk H C, Wood G, Willmes K. The universal SNARC effect. Experimental Psychology, 2005,52(3): 187-194.
    Olthof A, & Roberts W A. Summation of symbols by pigeons (Columbia livia): the importance of number and mass of reward items. Journal of Comparative Psychology, 2000, 114(2): 158-166.
    Piatelli-Palmarini M. Evolution, selection, and cognition: From "learning" to parameter setting in biology and study of language. Cognition 1989, 31: 1—44.
    Piazza M, Izard V, Pinel P, Le Bihan D, & Dehaene S. Tuning Curves for Approximate Numerosity in the Human Intraparietal Sulcus. Neuron, 2004, 44(28): 547—555.
    Pica P, Lemer C, Izard V, & Dehaene S. Exact and approximate arithmetic in an Amazonian indigene group. Science, 2004, 306(15): 499-503.
    Pinel P, Dehaene S, Riviere D, & LeBihan D. Modulation of parietal activation by semantic distance in a number comparison task. Neuroimage, 2001, 14: 1013— 1026.
    Pinel P, Piazza M, Le Bihan D, & Dehaene S. Distributed and overlapping cerebral representations of number, size, and luminance during comparative judgments. Neuron, 2004,41:983-993.
    Pinel P, Piazza M, Le Bihan M, & Dehaene S. Distributed and overlapping cerebral representations of number, size, and luminance during comparative judgments. Neuron 2004,41: 1-20.
    Proctor R W, Cho Y S. Polarity correspondence: A general principle for performance of speeded binary classification tasks. Psychological Bulletin, 2006, 132: 416—442.
    Rossor M, Warrington E, & Cipolotti L. The isolation of calculation skills. Journal of Neurology,1995,242:78-81.
    Rubinstein O, Henik A, Berger A, & Shahar-Shalev S. The development of internal representations of magnitude and their assiciation with Arabic numerals. Journal of Experimental Child Psychology, 2002, 81: 74-92.
    Rubinstein O, Henik A. Automatic activation of internal magnitudes: A study of developmental dyscalculia. Neuropsychology, 2005, 5: 641 — 648.
    
    Rusconi E, Kwan B, Giordano B L, Umilta C, & Butterworth B. Spatial representation of pitch height: the SMARC effect. Cognition, 2006, 99:113-129.
    Santens, S., & Gevers, W., The SNARC effect does not imply a mental number line, Cognition (2008), doi:10.1016/j.cognition. 2008.01.002.
    Sawamura H, Shima K, & Tanji J. Numerical representation for action in the parietal cortex of the monkey. Nature , 2002,415: 918—922.
    Schlaghecken F, Eimer M. Motor activation with and without inhibition: Evidence for a threshold mechanism in motor control. Perception & Psychophysics, 2002, 64 (1): 148—162.
    Scholl B J, Leslie A M. Explaining the infant's object concept: beyond the perception /cognition dichotomy. In E. Lepore & Z. Pylyshyn (Eds.), What is cognitive science? Oxford:Blackwell. 1999, 26-73.
    
    Scholl B J. Objects and attention: the state of the art. Cognition, 2001, 80 (1—2): 1—46.
    Schwarz W, Heinze H J. On the interaction of numerical and size information in digit comparison: A behavioural and event-related potential study. Neuropsychologia, 1998,36:1167-1179.
    Schwarz W, Keus I M. Moving the eyes along the mental number line: comparing SNARC effects with saccadic and manual responses. Perception & Psychophysics, 2004, 66 (4): 651-664.
    Shuman M, Kanwisher N. Numerical magnitude in the human parietal lobe: tests of representational generality and domain specificity. Neuron, 2004,44: 557—569.
    Simon O, Mangin J F, Cohen L, Le Bihan D, & Dehaene S. Topographical layout of hand, eye,calculation, and languagerelated areas in the human parietal lobe. Neuron, 2002,33: 475 —487.
    Snodgrass M, Bernat E, & Shevrin H. Unconscious perception: A model-based approach to method and evidence. Perception & Psychophysics, 2004, 66: 846—867.
    Spelke E S, Tsivkin S. Language and number: A bilingual training study. Cognition, 2001, 78:45-88.
    Stanescu-Cosson R, Pinel P, van De Moortele P F, Le Bihan D, Cohen L, & Dehaene S.Understanding dissociations in dyscalculia: a brain imaging study of the impact of number size on the cerebral networks for exact and approximate calculation. Brain, 2000,123: 2240-2255.
    Stolz J A, Besner D. Visual Word Recognition: Effort After Meaning but Not (Necessarily) Meaning After Effort. Journal of Experimental Psychology: Human Perception and Performance, 1997, 23 (5): 1314-1322.
    Stroop J R. Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 1935, 18: 643-662.
    Sulkowski G M, Hauser M D. Can rhesus monkey spontaneously subtract? Cognition, 2001,79(3): 239-262.
    Temple E, Posner M I. Brain mechanisms of quantity are similar in 5-year-olds and adults. Proc.Nat. Acad. Sci. U. S. A. 1998, 95: 7836-7841.
    Thioux M, Pesenti M, De Voider A, & Seron X. Category-specific representation and processing of numbers and animal names across semantic tasks: A PET study. Neurolmage,2002, 13: (6 suppl. 2/2), S617.
    Trick L, Pylyshyn Z. Why are small and large numbers enumerated differently? A limited capacity preattentive stage in vision. Psychological Review, 1994, 101: 80— 102.
    van Galen M S, Reitsma P. Developing access to number magnitude: A study of the SNARC effect in 7- to 9-year-olds. Journal of Experimental Child Psychology, 2008, 101: 99- 113.
    van Loosbroek E, Smitsman A W. Visual perception of numerosity in infancy. Developmental Psychology, 1990, 26(6): 916-922.
    Wood J N, Spelke E S. Infants'enumeration of actions: Numerical discrimination and its signature limits. Developmental Science, 2005, 8(2): 173— 181.
    Wynn K, Bloom P, & Chiang W. Enumeration of collective entities by 5-month-old infants.Cognition, 2002, 83: B55-B62.
    Wynn K, Chiang W C. Limits to infants' knowledge of objects: The case of magical appearance. Psychological Science, 1998, 9(6): 448-455.
    
    Wynn K. Addition and subtraction by human infants. Nature, 1992, 358(27): 749 — 750.
    Xu F, Spelke E S, Elizabeth S, & Goddard S. Number sense in human infants. Developmental Science, 2005, 8(1): 88-101.
    Xu F, Spelke E S. Large number discrimination in 6-month old infants. Cognition, 2000, 74, B1-B11.
    
    Xu F. Numerosity discrimination in infants: Evidence for two systems of representations. Cognition, 2003,89(1): B15-B25.
    Zebian S. Linkages between number concepts, spatial thinking, and directionality of writing:The SNARC effect and the reverse SNARC effect in English and Arabic monoliterates,biliterates, and illiterate Arabic speakers. Journal of Cognition and Culture, 2005,5(1—2):165-190.
    Zhou X, Chen Y, Chen C, Jiang T, Zhang H, & Dong Q. Chinese kindergartners' automatic processing on numerical magnitude in Stroop-like tasks. Memory & Cognition, 2007,35: 464-470.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700