直膨式太阳能辅助热泵调节与控制关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直膨式太阳能辅助热泵系统是在传统的空气源热泵基础上,将太阳能热利用技术与其有机结合,旨在最大限度地获得空气中低品位热能与太阳能,是一种集热泵空调与热泵热水器于一体的多功能复合装置。近年来“节能环保、降耗减排”一直受到国家宏观政策的鼓励与国家“十五”、“十一五”科技计划项目的支持。因此直膨式太阳能辅助热泵系统的研制具有显著的经济与社会效益。
     直膨式太阳能辅助热泵系统由于将太阳能集热器与室外换热器并联,系统热力循环追求空调系统最佳运行工况品质是控制策略的第一考虑因素;另一方面由于系统中设计了蓄热水箱,用以最大限度地储存热能,从而用来弥补太阳能光照不足与长时间低温天气低品位热源的不足。由于系统结构及其控制目标的改变,显然常规热泵控制策略与方法不能照搬套用。太阳能辅助热泵复合系统与常规热泵空调系统相比,既有其共性的一面,更有其特别之处。研究直膨式太阳能热泵复合热泵系统控制策略与控制方法是该项目技术趋于完善、走向成熟的关键。这是近年来太阳能热利用领域的热点话题,也是该技术领域研究的焦点之一。
     山东科技大学先进热泵技术实验室于2005年11月研究开发了一套小型太阳能辅助热泵多功能复合机系统(DX-SAHPM)实验样机,随后的两年时间内,课题组不断深入研究与完善,取得了新的研究进展。本课题在此背景基础上,针对直膨式太阳能热泵系统中压缩机变频技术、电子膨胀阀控制技术及其太阳能热泵系统工作性能进行了系统研究。探讨了直膨式太阳能热泵系统采用压缩机变频技术,力求在最短时间内机组产生的负荷与建筑物室内所需负荷相匹配的控制策略与方法;采用电子膨胀阀对系统工质流量进行数字调节,使其输出工质流量最佳限度满足蒸发器热负荷需求:
     本文以理论分析、系统仿真相结合的方法,研究压缩机变频系统和电子膨胀阀节流系统在供热工况下的特性,采用稳态集中参数法,分别建立了压缩机与电子膨胀阀控制系统数学模型,根据各自控制目标,提出了变频压缩机和电子膨胀阀PID控制策略,并进行了计算机仿真分析。针对PID控制参数的整定,文中分别用Matlab对VFC控制系统和EEV控制系统的闭环时域特性进行仿真,通过时域特性分析,确定PID调节器中K_p、T_i、T_d三个参数,仿真结果显示采用PID控制后系统的控制特性明显改善。
     本文以准确、可靠检测系统热物理参数为原则,针对变频压缩机的转速与室内负荷匹配、电子膨胀阀的开度与蒸发器过热度匹配为控制目标,提出了以PLC为微处理核心、人机界面作为实时监控的控制方案。介绍了VFC-EEV实验系统的控制原理、给出了VFC和EEV控制系统的软硬件设计方法。
Direct-expansion solar assisted heat pump system is to combine organically solar heat utilization technology with the conventional air source heat pump to furthest absorb solar heat outside low quality heat, which is a new type of green equipment with the combination of heat pump air-condition and heat pump water heater. These years, 'energy-saving, environmental protection protection, reducing consumption' have been pay more attention to our country and have been supported by the Tenth Fine-Year Plan and 11th Five-Year Plan. So the development of direct-expansion solar assisted heat pump system has prominent economic and society benefit.
     As solar collector and outside evaporator are fixed in parallel in direct-expansion solar assisted heat pump system, the system thermodynamic cycle air-conditioning system to pursue the best operating conditions quality is the first consideration of control strategy. On the other hand, water tank is designed to maximum store heat energy in the system, so as to make up the lack of light time and shortage of long time low-grade heat source. Due to the change of system structure and control objective, obviously conventional heat pump control strategy and method can not be copied. Compared with conventional heat pump system, direct-expansion solar assisted heat pump system has common character and its peculiarities. The sdudy of control strategy and method in direct-expansion solar assisted heat pump is the key that this technology goes to perfect. This is hot topic of solar thermal use area in recent years the, the technology is the focus of research in the field.
     Advanced heat pump technology lab of Shandong University of Science and Technology exploited a suit of minitype direct-expansion solar assisted heat pump multi-function machine in November 2005. In the succedent two years, the subject group have done a lot of work and gained new research progress. This topic researches compressor's variable frequency technology, EEV's control technology and working performance of direct-expansion solar assisted heat pump. In order to realize optimum working character, VFC is adopted to realize dynamic matching between variable-frequency compressor's rotate speed and room heat loading; EEV is adopted to realize realize dynamic matching between refrigeration flux and evaporator load.
     This paper researches compressor's variable-frequency system and EEV's throttle system used theory analyse and system simulation, sets up VFC and EEV's mathematical model used steady-state centralized parametric method, proposes VFC and EEV's PID control tactic and simulation arithmetic. Aimed at setting of PID control parameters, this paper simulates closed-loop time-domain characteristic of VFC and EEV's control system. We confirm K_p, T_i, T_d of PID adjustor using time-domain characteristic analyse. Simulation results show that system's control characteristic improves prominently adopting PID control.
     Basing on credible and accurate thermal parameters, aiming at room heat loading and evaporator's superheat degree, this paper brings forward control project which used PLC as microprocessor, touched screen as real-time monitor. It introduces VFC-EEV experimental system's control principle and presents software and hardware design of VFC-EEV control system.
     This subject research gets hold of the science and technology plan item of Qingdao, 2007. Item number is 07-2-2-22-jch.
引文
1.杨前明,衣秋杰.新型太阳能热泵多功能复合机原理与热力学分析[J],山东科技大学学报,2004,12(3):46-49
    2.王沣浩,费继友,金立文,等.变频空调器控制系统的技术现状与发展趋势[J],制冷学报,2000,2:1-6
    3.王梅春,刘泽华.自控在暖通空调系统中的应用和发展[J],节能技术,2003,21(2):13-15
    4.高镗年.热工控制对象动力学[M].北京:水利电力出版社,1986,34-40
    5.卜明华,邢志勇.变频空调器能效指标及测试方法探讨[J],标准与测试,2000,4:53-55
    6.赵芳,杨前明,孔祥强.太阳能热泵多功能复合机试验系统建模与仿真分析[J],供热制冷,2006,10:38-41
    7.沈博.变频空调系统中的控制[J],变频技术,2000,9:45-47
    8.石文星,史斌华,彦启森.变频空调器的三种控制算法[J],暖通空调,2000,30(6):16-19
    9.唐景春,王铁军,刘向农.变频制冷压缩机的匹配研究[J],低温与超导,2004,32(4):59-61
    10.顾中平,黄国强,黄冲,等.电子膨胀阀在中小型中央空调系统中的应用研究[J],制冷与空调,2002,2(2):30-34
    11.朱瑞琪.蒸发器过热度自适应控制[J],流体机械,1997,3:28-30
    12.张坤竹,贾衡.变频一拖多空调系统的优化控制参数分析[J],北京工业大学学报,2000,26(supp):50-54
    13.招伟.PID和自适应联合控制电子膨胀阀对蒸发器供液量的影响[J],制冷与空调,2004,4(1):63-66
    14.刘来福,曾文艺.数学模型与数学建模[M].北京:北京师范大学出版社,1997,3-7,27-41
    15.薛卫华.变频控制热泵式VRV空调机组数学模型[J],流体机械,2003,31(9):58-62
    16.李连生.涡旋压缩机[M].北京:机械工业出版社,1998,20-45
    17.张华俊.制冷压缩机[M].北京:科学出版社,1999,118-131
    18.朱瑞琪.制冷机供液量调节系统中蒸发器态特性[J],流体机械,1998,26(5):33-361
    19.伍光辉,吴克启.变频压缩机空调系统的理论分析及实验研究[J],工程热物理学报, 2003(6):961-963
    20.丁国良,张春路,李撷.神经网络在空调器仿真中的应用研究[J],制冷学报,1999,(2):31-37
    21.丁国良,张春路,刘浩.结合人工神经网络翅片管式冷凝器快速仿真研究[J],工程热物理学报,2002,23(1):75-78
    22.范影乐,杨胜天,李铁.MATLAB仿真应用详解[M].北京:人民邮电出版社,2001,25-39
    23.丁国良,张春路著.制冷空调装置智能仿真[M].北京:科学出版社,2002,36-45
    24.武永强,周兴禧,夏清,等.一拖三变频空调(VRV)系统运行特性的仿真研究[J],系统仿真学报,2004,16(5):998-1000
    25.臣文勇,陈芝久,朱瑞琪,等.电子膨胀阀调节蒸发器过热度的控制算法[J],上海交通大学学报,2001,35(8):1228-1232
    26.张乐平,张早校,郁永章.电子膨胀阀流量特性及选型的分析[J],流体机械,2000,28(12):51-53,28
    27.陈文勇,陈芝久,朱瑞琪.制冷系统启动过程电子膨胀阀的控制[J],上海交通大学学报,2002,36(2):210-213
    28.仲华,陈芝久.电子膨胀阀动态特性的辨识[J].上海交通大学学报,1999,33(8):942-944
    29.陈武,蔡振雄,周兴禧,等.一拖三变频空调系统建模方法及控制研究[J].系统仿真学报,2004,16(10):2123-2127
    30.周兴禧,陈武,夏清,等.双联变频空调系统控制方法的仿真[J],上海交通大学学报,2006,36(10):1388-1392
    31.邵双全,石文星,李先庭,等.变频压缩机性能仿真建模[J],清华大学学报,2004,44(3):362-365
    32.陈芝久,孙文,于兵.制冷装置节能控制与电子膨胀阀应用研究[J],制冷学报,1998,4:39-44
    33.周兴禧,周滋锋,王懿.变频空调系统特性的仿真研究[J],流体机械,2000,28(2):43-47
    34.邵双全,石文星,李先庭,等.电子膨胀阀与毛细管在变频空调系统中的性能分析[J],流体机械,2001,29(12):41-43
    35.Sporn P.and Ambrose,E.R.The heat pump and solar energy[J],Proceedings of the World Symposium on Appiled Solar Energy,1955,139(10):56-60
    36. Franklin J. L, Saaski E. W. and Yamagiwa A. A high efficiency direct expansion solar panel[J]. Proceedings of 1977 Flat-Plate Solar Collector Conference, 1977: 187-195
    
    37. Chaturvedi S. K., Roberts A. S. and Mei V. Solar collector as Heat Pump Evaporator[J],Proceedings of 13Th Intersociety Energy Conversion Conference, 1979
    
    38. Suryanarayana N V, Bosio R C. Solar energy for space heating with heat pump[J],Mechanical Engineering, 1976, 98(10): 33-37
    
    39. Ritter H P, Berthoud G and Weisskopf S. Heat pump with solar and ambient air heat sources for space heating[J], Bull. Tech Suisse Romande, 1978, 104(16): 239-242
    
    40. Andrews J W, Kush E A and Metz P D. Solar-assisted heat pump system for cost-effective space heating and cooling[J], Brookhaven National Lab, 1978, 5: 138-143
    
    41. Neal W E J, Loveday D L and Pabon-Diaz M. Solar assisted heat pump and storage system for domestic space and water heating using a conventional roof as a radiation absorber[J], Proc of the Int. Sol. Energy Soc, 1979, 5:822-826
    
    42. H Bruecher. Bivalent space heating system with solar absorber roof and heat pump[J],Tech AMBAU, 1979, 4: 351-352
    
    43. Freeman T L, Mitchell J W, Audit T E. Performance of combine solar-heat pump systems[J], Solar energy, 1979, 22:125-135
    
    44. Qianming Yang, Qingliang Zeng, Tingrui Liu. Research on On-line Monitoring of Performance Parameters for Solar-Assisted-Heat Pump Machine[J], ACRA2006, 2006, 4
    
    45. J.M.Choi, Y.C.Kim. Capacity modulation of an inverter-driven multi-air conditioner using electronic expantion valves[J], Energy, 2003, 28(4): 141-155
    
    46. Hsiao-Ping Huang, Jyh-Cheng Jeng, Chih-Hung Chiang. A direct method for multi-loop PI/PID controller design[J], Journal of Process Control, 2003,13(1): 769-786
    
    47. Danijel Pavkovic, Josko Deur, Martin Jansz. Adaptive control of automotive electronic throttle[J], Control Engineering Practice, 2006,14(7): 121-136
    
    48. Ma Shanwei, Zhang Chuan, Chen Jiangping. Experimental research on refrigerant mass flow coefficient of electronic expansion valve[J], Applied Thermal Engineering, 2005, 12(25):2351-2366
    
    49. CEECHINIC, MARCHALD. A Simulation model of refrigerating and air-conditioning equipment based on experimental data[J], ASHRAETrans, 1991, 97(2): 388-393
    50.BANSAL.P.K,PURKAYASTHA B.An NTU-E model for alternative refrigerants[J],International Journal of Refrigeration,1998,21(5):281-391
    51.Hsiao-Ping Huang,Jyh-Cheng Jeng,Chih-Hung Chiang.A direct method for multi-loop PI/PID controller design[J],Journal of Process Control,2003,13(1):769-786
    52.Mahir A.Nayfeh,Eyad H.Abed.High-gain feedback control of rotating stall in axial flow compressors[J],Automatica,2002,154(5):995-1001
    53.朱瑞其.制冷装置自动化[M].西安:西安交通大学出版社,1993,74-89
    54.旷玉辉.直膨式太阳能热泵空调及热水系统的研究[D],上海:上海交通大学,2004
    55.李宜达.控制系统设计与仿真[M].北京:清华大学出版社,2004,233-248
    56.DVP-PLC应用技术手册[M].上海:中达电通股份有限公司
    57.DVP-PLC模拟量模块、温度模块使用说明书[M].上海:中达电通股份有限公司
    58.DOP人机界面使用说明书[M].上海:中达电通股份有限公司
    59.陶永华.新型PID控制及其应用[M].北京:机械工业出版社,2002,15-25
    60.刘金琨.先进PID控制及其MATLAB仿真[M].北京:电子工业出版社,2003,29-41
    61.方荣生等.太阳能应用技术[M].北京:中国农业机械出版社,1985,85-97
    62.刘应中,缪国平.高等流体力学[M].上海:上海交通大学出版社,2000,56-78
    63.蔡崧.传感器与PLC编程技术基础[M].北京:电子工业出版社,2005,96-109
    64.李光元.太阳能热泵多功能复合机(SAHPM)计算机监控系统实现方法研究[D],山东青岛:山东科技大学,2006
    65.赵芳.直膨式太阳能辅助热泵实验系统仿真分析与实验研究[D],山东青岛:山东科技大学,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700