汽油机电子控制系统硬件设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文叙述了汽油机电控系统硬件的设计和开发过程。本系统采用先进的硬件作为发动机的控制器。发动机控制单元硬件开发的主要目的是降低开发成本而且不牺牲发动机的性能,针对发动机控制的特点,进行了控制硬件专业化的设计,达到了该目的。
     高级软件工具的帮助使那些不具备较强的硬件知识或软件编程知识的人应用控制系统工作成为可能。硬件以及ECM和其它控制单元之间的通信协议在保证发动机在最佳工作状态下工作方面起着重要作用。这使得工程师在测试和标定发动机时变得更加容易。
     本文第一章简要地介绍了一下电控系统、论文主要内容、电控系统工作原理和面临的挑战。第二章是本文的核心,详细地说明了硬件设计过程。第三章介绍了控制软件,然后在第四章介绍了实验台架。第5章对试验数据进行了处理分析。在最后一章对全文进行了总结和对未来尚需完善的工作进行了展望。基于MAP图的电控燃油喷射、电控点火、空燃比闭环控制等技术的应用大大地提高了现代汽油机的性能。但是这些技术还有待进一步完善,因此本文进行了电控系统的相关研究。众所周知,发动机电控单元是一个非常复杂的实时微控制系统。按功能不同,电控单元硬件由四个电路模块组成:
     1.单片机系统电路;
     2.输入信号处理电路;
     3.执行器驱动电路;
     4.通信接口电路。
     根据传感器输入信号:节气门位置、进气歧管压力、进气温度、冷却液温度、氧传感器信号和曲轴转速信号,电控系统确定发动机的工作状态,然后依靠存储在ECM里的MAP图并根据一定控制算法来控制喷油脉宽和点火正时。为了提高三效催化转换器的转换效率,本文进行了空燃比的闭环控制。
     发动机电控系统的设计是汽车电控系统开发的核心也是本文的重点部分,它包括硬件设计、软件设计和抗干扰设计。由于电控系统工作时,存在很多干扰信号,因此为保证控制系统正常工作,很有必要采取一些抗干扰措施,如:
     1.空间电磁干扰的防护措施
     2.过程通道干扰的防护措施
     3.电路板设计中采用的抗干扰措施
     4.供电系统干扰的防护措施
     本文中的硬件电路包括:电源电路、输入信号处理电路、输出信号驱动电路、通信接口电路。在满足可靠性和控制精度的前提下,为降低成本,尽量简化了系统设计。为保证合理的功能分配,软件系统由主程序和模块化的功能子程序组成,这样保证了系统的有效性和可扩展性,其中包括主程序模块、模拟量采集模块、起动模块、加减速模块和稳定工况模块。
     试验结果表明:发动机的燃油经济性和动力性都达到了预期目标,这也证明了本文开发的电控系统能够很好地控制发动机运行。但是,为满足将来的功能要求(如:要很好地降低排放),硬件和软件都需作进一步地修改。总的来说,本文的主要目标即为491QE汽油机现代电控系统开发硬件,最终实现了。
     作为工程师,我们要始终把目光投向未来,以解决我们目前面临的挑战。所以,伴随着电子部件成本的不断降低和对控制系统进行简化的需要不断地增长,应用智能型传感器和智能型执行器将会越来越普遍。智能型传感器\执行器不需要控制器(内部有一个小的CPU),直接与整车控制系统相连。而且随着汽车控制系统的增多和车载通信网络的发展,汽车上将会有更多的微控制器,这也会带来传感器和控制器的增多。在传统的控制系统里,传感器直接与相应的电控单元相连接,且通常使用双绞线,这往往会带来干扰问题。智能型传感器和执行器就预先避免了这个问题。
     我们都知道消耗能量是要付出代价的。电流消耗随着系统时钟频率的增大而增长,所以尽可能地降低系统时钟频率,对于降低电能消耗是至关重要的。一些企业将采用多处理器电控系统来降低时钟频率。时钟频率受很多因素影响,如:控制器的环境和外围设备、以及系统架构和指令系统。在许多应用场合,处理器并不是连续地工作,而且外围设备在很多时间是处于空闲状态。因此,对于所有实际控制器,利用各种“休眠模式”将会降低总体的能量消耗。
     在一种更高效的、环境友好型的、适于大批量生产的动力机械被引入汽车工业之前,内燃机将会一直被用作汽车的主要动力装置。只要内燃机汽车没有被纯电动汽车或混合动力汽车所代替,对内燃机的进一步改进以提高其效率和响应特性,改善其对环境的影响仍然是至关重要的。
Automotive technology is rapidly incorporating increasingly sophisticated safety andautomation features. These advances have resulted in an ever increasing dependenceon electronics. With car costs expected to remain at roughly the same level, new costsfor electronic components must displace the existing cost of some mechanicalcomponents. The complexity of automotive electronics and related software continuesto increase. Microcontrollers are getting faster and their shrinking die size, expandingmemory, and low power consumption enable designers to find innovative methods ofdevelopment and standardization. The recent trend is to use smart sensors andactuators with built in processors, resulting in enhanced safety, security, and emissioncompliance. There is a need to synchronize the systems, a key accomplishment fornext generation powertrain and vehicle management systems. The newest challengesare in architecting, defining, designing, managing, and integrating these components inthe main system. This is the task I have taken in my project.
     The automotive industry supplies a host of advanced technologies all in the name ofsafety, economy, comfort, and luxury. These advancements include anti lock brakingsystem (ABS), air bags, traction control, automatic and tiptronic transmission systems.Engine management systems have been developed by a multitude of variouscompanies around the world, all having the same goal; to improve engine performance,better fuel efficiency and reduce emissions. These are all tasks that require fullcomprehension of the problem and an understanding of how the improvement of onefactor can lead to the degradation of other systems. That is why the field of electronicsneeds continuous research and development.
     This thesis mainly describes hardware design and development for an ElectronicControl system for a gasoline engine.
     The control software design is also included in this thesis. The necessary calibrationexperiments and engine performance tests were carried out to validate the functionsand reliability of the self developed electronic control system.
引文
[1] Victor L. Vargas Garcia, 2004. Microcontroller design and concepts. Thesis Ms.Degree.
    [2] INTEL, http://www.intel.com.
    [3] Escuela Politéctinica Superior de Alcoy, http://server die.alc.upv.es/asignaturas/LSED /2002 03/micros/downloads/trabajo.pdf.
    [4] IBM RESEARCH, http://www.research.ibm.com.
    [5] Toyota Motor sales, USA. Fuel systems No. 2 Injection duration control.
    [6] Arcoumanis C, Beamy M, Flora H, Gavaises M (2000) Cavitation in Real SizeMulti Hole Diesel Injector Nozzles. SAE paper 2000 01 1249
    [7] Arcoumanis C, Gavaises M, French B (1997) Effect of Fuel Injection Processon the Structure of Diesel Sprays. SAE paper 970799
    [8] Chehroudi B, Chen SH, Bracco FV, Onuma Y (1985) On the Intact Core of FullCone Sprays. SAE paper 850126
    [9] Dan T, Takagishi S, Senda J, Fujimoto H (1997) Organized Structure andMotion on a Diesel Spray. SAE paper 970641
    [10] Dent JC (1971) A Basis for the Comparison of Various Experimental Methodsfor Studying Spray Penetration. SAE paper 710571
    [11] Fujimoto H, Sugihara H, Tanabe H, Sato GT (1981) Investigation onCombustion in Medium Speed Marine Diesel Engines Using Model Chambers.CIMAC Congress 1981, Helsinki
    [12] Nonlinear predictive control and moving horizon estimation an introductoryoverview. In P.M. Frank, editor, Advances in Control, Highlights of ECC'99,pages 391 449, 1999.
    [13] G. Almkvist and S. Eriksson. A study of air to fuel transient response andcompensation with different fuels. SAE Paper No. 941931, 1994.
    [14] C.F. Aquino. Transient A/F characteristics of the 5 liter central fuel injectionengine. SAE Paper No. 810494, 1981.
    [15] M. Balenovic, A.C.P.M. Backx, and J.H.B.J. Hoebink. On a model basedcontrol of a three way catalytic converter. SAE Paper No. 2001 01 0937, 2001.
    [16] M. Balenovic and T. Backx. Model based predictive control of a three waycatalytic converter. Proc. IEEE Conference on Control Applications, MexicoCity, pages 626 631, 2001.
    [17] M. Balenovic, J.M.A. Harmsen, A.C.P.M. Backx, and Hoebink J.H.B.J.Advanced modeling and control of a three way catalytic converter. Journal A,vol. 42, no. 1, pages 25 30, 2001.
    [18] M. Balenovic, J.M.A. Harmsen, J.H.B.J. Hoebink, and A.C.P.M. Backx. Lowtemperature dynamic characteristics of a three way catalytic converter. Proc.IFAC Workshop on Advances in Automotive Control, pages 323 328, 2001.
    [19] M. Balenovic, A.J.L. Nievergeld, J.H.B.J. Hoebink, and A.C.P.M. Backx.Modeling of an automotive exhaust gas converter at low temperatures aiming atcontrol application. SAE Paper No. 1999 01 3623, 1999.
    [20] Platinum Metals Review, 45, No.2, pages 50 59, 2001.
    [21] E.P. Brandt, Y. Wang, and J.W. Grizzle. Dynamic modeling of a three waycatalyst for SI engine exhaust emission control. IEEE Trans. On ControlSystems Technology 8, pages 767 776, 2000.
    [22] R. Burch and T.C. Watling. Kinetics of the reduction of NO by C3H6 andC3H8 over Pt based catalysts under lean burn conditions. Stud. Surf.Sc. Catal.116, pages 199 211, 1998.
    [23] S.B. Choi and J.K. Hedrick. An observer based controller design method orimproving air/fuel characteristics of spark ignition engines. IEEE Trans. onControl Systems Technology 6, No. 3, pages 325 334, 1998.
    [24] S.B. Choi, M. Won, and J.K. Hedrick. Fuel injection control of S.I.engines.Proc. 33rd Conference on Decision and Control, Lake Buena Vista,FL,pages 1609 1614, 1994.
    [25] S.J. Cornelius. Modelling and Control of Automotive Catalysts. PhD thesis,Sidney Sussex College, University of Cambridge, March 2001.
    [26] E.W. Curtis, C.F. Aquino, D.K Trumpy, and G.C. Davis. A new port andcylinder wall wetting model to predict transient air/fuel excursions in a port fuelinjected engine. SAE Paper No. 961186, 1996.
    [27] A.W.B. de Bie. Validation of a wall wetting model for MPI petrol engines.TNOreport 00.OR.VM.050.1/TDB, TNO Automotive, Delft, 2000..
    [28] M.C. Drake, R.M. Sinkevitch, A.A. Quader, K.L. Olson, and T.J. Chapaton.Effect of fuel/air ratio variations on catalyst performance and hydrocarbonemissions during cold start and warm up. SAE Paper No.962075, 1996.
    [29] P. Eastwood. Critical Topics in Exhaust Gas Aftertreatment. Research StudiesPress LTD., Baldock, Herfordshire, England, 2000.
    [30] J.M. Evans, G.P. Ansell, C.M. Brown, J.P. Cox, D.S. Lafyatis, andP.J.Millington. Computer simulation of the FTP performance of 3 way catalysts.SAE Paper No. 1999 01 3472, 1999.
    [31] R.J. Farrauto and R.M. Heck. Catalytic converters: state of the art andperspectives. Catalysis Today 51, pages 351 360, 1999.
    [32] J. Fiaschetti and N. Narasimhamurthi. A descriptive bibliography of SI enginemodeling and control. SAE Paper No. 950986, 1995.
    [33] H. Germann, S. Taglaiferri, and H.P. Geering. Differences in pre and postconverter lambda sensor characteristics. SAE Paper No. 960335, 1996.
    [34] P. Greening. European vehicle emission legislation present and future.Topicsin Catalysis 16/17, Nos. 1 4, pages 5 14, 2001.
    [35] L. Guzzela, M. Simmons, and H.P. Geering. Feedback linearizing air/fuel ratiocontroller. Control Eng. Practice 5, No. 8, pages 1101 1105, 1997.
    [36] L. Guzzela. Models and model based control of IC engines a nonlinearapproach. SAE Paper No. 950844, 1995.
    [37] D.R. Hamburg, J.A. Cook, W.J. Kaiser, and E.M. Logothetis. An enginedynamometer study of the A/F compatibility between a three way catalyst andan exhaust gas oxygen sensor. SAE Paper No. 830986, 1983.
    [38] J.M.A. Harmsen, J.H.B.J. Hoebink, and J.C. Schouten. Transient kineticmodeling of the ethylene and carbon monoxide oxidation over a commercialautomotive exhaust gas catalyst. Ind. Eng. Chem. Res. 39, pages 599 609, 2000.
    [39] J.M.A. Harmsen, J.H.B.J. Hoebink, and J.C. Schouten. Acetylene and carbonmonoxide oxidation over a commercial exhaust gas catalyst: kinetic modelingof transient experiments. Chem. Eng. Sc. 56, pages 2019 2035, 2001.
    [40] J.M.A. Harmsen, J.H.B.J. Hoebink, and J.C. Schouten. Kinetic modeling oftransient NO reduction by CO in the presence of O2 over an automotive exhaustgas catalyst. Stud.Surf. Sc. Catal. 133, pages 349 356, 2001.
    [41] Climate Change 2007: The Physical Science Basis Summary for Policymakers(UN report)
    [42] Richard Bohuslav Kosik, Masters Degree Thesis 2000. Digital Ignition andElectronic Fuel Injection.
    [43] Johan Kallstrom, Masters Thesis 2001 11 05. Embedded software for newengine controller.
    [44] Klas Telbom, Masters Thesis 19thDec, 2002. A Real Time Platform forClosed Loop Control and Crank Angle based Measurement.
    [45] Patrick Rundown, Masters Thesis 28th March, 2006.Evaluation of a statisticalmethod to use prior information in the estimation of combustion parameters.
    [46] Markus Klein, PhD Thesis 2007. Single zone Cylinder Pressure Modeling andEstimation for Heat Release Analysis of SI engines
    [47] Robert Bosch GmbH, Book 3rd Edition June 2006. Gasoline EngineManagement.
    [48] Uwe Kiencke, Lars Nielsen, Book 2000. Automotive Control Systems.
    [49] Carsten Baumgarten, Book 1stEdition 2006. Mixture Formation in InternalCombustion Engines
    [50] C Chung, JS Yoon, Jongwoo Kim (Inha Technical College). Development ofUniversal ECU for Natural Gas Vehicle

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700