在L沸石胶态导向剂的作用下ZSM-34及其杂原子沸石的无有机模板合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文旨在研究在L沸石胶态导向剂(以下简称L-导)的作用下ZSM-34及其杂原子沸石的无有机模板合成和新型硅酸锡微孔化合物的合成。详细地研究了各种合成条件对ZSM-34及其杂原子沸石的无有机模板合成的影响,并对所合成的样品进行了比较系统的物化性能表征;对新型硅酸锡微孔化合物的合成也进行了比较全面的研究和讨论,并对部分结果加以详细地表征。
     本文第一章是绪论部分,介绍了多孔材料尤其是微孔硅铝沸石的合成背景、结构组成、合成方法及机理简述,说明了无有机模板合成的概念、背景及最新进展,简要叙述了杂原子微孔材料的合成背景及合成方法。
     第二章中,我们详细地讨论在L-导的导向作用下ZSM-34的无有机模板合成影响因素及效果,优化了ZSM-34的合成凝胶组成及晶化条件,提出L-导对ZSM-34的形成具有至关重要的决定性作用,并推测了其可能的原因。
     第三章中,我们进一步在L-导的导向作用下实现了杂原子(B、Ga、Fe)ZSM-34的无有机模板合成,并较为详细地讨论了其合成的影响因素,对所合成的样品进行了一系列的结构表征及催化性能表征,结果表明无有机模板合成的ZSM-34及其杂原子沸石未经高温焙烧即具有开放畅通的孔道,在MTO(Methanol to Olefins)反应中具有良好的低碳烯烃选择性。
     第四章中,我们比较系统而全面地研究了硅酸锡微孔化合物的合成影响因素,并成功得到一系列已知和未知结构的硅酸锡微孔化合物,并对部分的样品进行了比较详细的表征。
Zeolites, especially aluminosilicates are regarded as the most important heterogeneous acid catalysts in industry due to their large surface area, high adsorption capacity, uniform and intricate channels, high thermal and hydrothermal stabilities, and well-defined micropores with excellent shape-selectivity in catalysis. In the early of the synthesis, aluminosilicate zeolites such as A, X, Y are normally prepared under hydrothermal conditions in the presence of inorganic cations such as sodium. However, mordern synthesis methodologies for synthesizing aluminosilicate zeolites ususally require the use of organic templates called structure-directing agents (SDAs) that rationally direct the assembly pathway and ultimately fill the pore space. For example, aluminosilicate zeolites of Beta, ZSM-5, and MWW are successfully synthesized from the use of tetraethylammonium, tetrapropylammonium, and hexamethyleneimine, respectively. To obtain zeolites with open pores, SDAs in the zeolites are generally removed by calcination at high temperature, which results in both the consumption of energy and the production of harmful gases for polluting the air. Additionally, the use of expensive organic templates also increase the cost of zeolite catalysts, which strongly hinders the wide applications in industry.
     To solve the problems brought with organic templates, the scientists are trying to recyle these organic templates in the synthesis of aluminosilicate zeolites. For example, partially recyling and fully recylcing organotemplate synthesis of Beta and MFI zeolites have been successfully performed from ion-exchange and disassembled-reassembled routes. The alternative route for solving these problems is to synthesize these zeolites without using organic templates (organotemplate-free synthesis), and the first example is successful to synthesize ZSM-5 zeolite a long time ago. Recently, several aluminosilicate zeolites such as ECR-1 and Beta have been successfully synthesized in the absence of organic templates. Aluminosilicate zeolite ZSM-34, another example, is originally synthesized in the presence of organic templates such as choline [(CH3)3NCH2CH2OH] and diamines (NH2CnH2nNH2, n=4, 6, 8, 10). In this work, we will show the organotemplate-free synthesis of ZSM-34 from an assistance of zeolite L seeds solution.
     In chapter two, organotemplate-free route for synthesis of aluminosilicates zeolite ZSM-34 from an assistance of zeolite L seeds solution have been extensively investigated. The amount of zeolite L seeds solution and the ratio of SiO2/Na2O play important roles during the preparation process. Amorphous product is obtained in the absence of zeolite L seeds solution, while ZSM-34 zeolite is formed after the addition of a small amount of zeolite L seeds solution; additionally, crystallization rate increases with the amount of zeolite L seeds solution, but too large amounts of zeolite L seeds solution would result in the formation of zeolite L in the final product. Furthermore, the ratio of SiO2/Na2O in the starting gels should be controlled carefully. Too large amounts of Na2O would lead to the formation of PHI zeolite and too few would result in the formation of MOR zeolite.
     It has been reported that heteroatoms-substituted zeolites strongly influence their catalytic properties. For example, the presence of framework Ga in zeolite is favorable for catalytic aromatization of propane; ZSM-5 zeolite containing framework Fe is catalytically active for benzene hydroxylation with nitrous oxide; ZSM-5 containing framework B is a very active and selective catalyst for the vapor-phase Beckmann rearrangement of cyclohexanone oxime toε-caprolactam. ZSM-34 zeolite is an intergrowth of offretite (OFF) and erionite (ERI) zeolites containing zeolitic building units of cancrinite (CAN) cages, and its pore size (5.2 ?) is smaller than that of ZSM-5 (5.6 ?). This feature has attracted much attention in the expectation of selective catalysis for conversion from methanol to ethylene and propylene, which are important chemicals for the polymer industry. Consequently, the organotemplate-free synthesis route is applied for heteroatoms-substituted ZSM-34, looking forwards to their excellent properties in catalytic conversion from methanol to ethylene and propylene.
     In chapter three, organotemplate-free and in-situ synthesis of ZSM-34 analogue containing framework heteroatoms (B, Ga, Fe) have been successfully achieved in the presence of zeolite L seeds solution. We demonstrate here the detailed results of synthesis and characterization of ZSM-34 analogue. Similar to aluminosilicate zeolite ZSM-34, the significant influence on the synthesis of these analogue are the amount of zeolite L seeds solution and the ratio of SiO2/Na2O, which related to crystallization rate and final products. Furthermore, the ratio of SiO2/M2O3 (M: heteroatoms) should be varied in a suitable area for purity of products. By the way of NMR and UV-vis, the heteroatom species are confirmed to be tetrahedral coordinated sites, indicating that they had been essentially incorporated into the framework of ZSM-34 zeolites. Significantly, the nitrogen adsorption isotherms of ZSM-34 zeolite and its analogue all exhibit typical Langmuir adsorption, confirming existence of open pores in these as-synthesized samples without calcination at high temperature.
     The acidity of H-ZSM-34, H-B-ZSM-34 and H-Ga-ZSM-34 zeolites has been characterized by NH3-TPD. All of the samples have showed weak acidic sites and strong acidic sites, which offers them great opportunity as solid acidic catalysts in industry. As a typical example, methanol-to-olefin (MTO) reaction was chosen to test their catalytic properties. The results show that the selectivity of propylene and ethylene in these zeolites is totally larger than 80%, superior to H-ZSM-5 at less than 30%.
     In chapter four, a great deal of work has been performed to investigate the hydrothermal synthesis of microporous framework stannosilicates, and a series of products have been obtained successfully, some of them with novel microporous crystal structure included. Moreover, we have illustrated that the final products could be influenced by many factors, such as SiO2/SnO2, pre-activation, pH, ionic effect (such as F-, K+), crystallization temperature and so on. Interestingly, Sn species in stannosilicate framework are six-coordinative number, and play an important role in the synthesis of this kind of microporous materials.
引文
[1]徐如人,庞文琴,于吉红等.分子筛与多孔材料化学[M].北京:科学出版社,2004:1.
    [2] Everett D H. IUPAC manual of symbols and terminologyManual of Symbols and Terminology for Physicochemical Quantities and Units, Appendix II: Definitions, Terminology and Symbols in Colloid and Surface Chemistry [J]. Pure Appl. Chem. 1972, 31: 578-638.
    [3] Cronstedt A F. Ron och beskrifning om en obekant barg art , som kallas zeolites . Kongl . Vetenskaps Acad [J]. Handl. Stockholm, 1756, 17: 120-123.
    [4] Barrer R M. Syntheses and reactions of mordenite [J]. J. Chem. Soc., 1948, 10: 2158-2163.
    [5] Corma, A. Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions [J]. Chem. Rev., 1995, 95: 559-614.
    [6] Barrer R M, Denny P J. Hydrothermal chemistry of the silicates. Part IX. Nitrogenous aluminosilicates [J]. J. Chem. Soc., 1961, 201: 971-982.
    [7] Wilson S T, Lok B M, Flanigen E M. U.S. patent 4, 310,440 (1982)
    [8] Davis M E, Saldarriaga C, Montes C, et al. A molecular sieve with eighteen-membered rings [J]. Nature, 1988, 331: 698-699.
    [9] Kresge C T, Leonowicz M E, Roth W J, Vartuli J C, Beck J S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism [J]. Nature, 1992, 359: 710-712.
    [10] Beck J S, Vartuli J C, Roth W J, Leonowicz M E, Kresge C T, Schmitt K D, Chu C T W, Olson D H, Sheppard E W. A new family of mesoporous molecular sieves prepared with liquid crystal templates, [J]. J. Am. Chem. Soc., 1992, 114: 10834.
    [11] Kresge C T, Leonowicz, M E, Roth, W J, Vartuli, J C, Beck, J S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. [J]. Nature1992, 359: 710-712.
    [12]陈逢喜,黄茜丹,李全芝,中孔分子筛研究进展[J],科学通报,1999,44,8: 905-1920.
    [13] Echchahed B, Moen A, Nicholson D, Bonneviot L. Iron-Modified MCM-48 Mesoporous Molecular Sieves [J]. Chem. Mater. 1997, 9: 1716-1719.
    [14] Velev O D, Jede T A, Lobo R T, Lenhoff A M. Microstructured porous silica obtained via colloidal crystal templates [J]. Chem. Mater.,1998, 10: 97-3602.
    [15] Wijnhoven J, Vos W J. Preparation of photonic crystals made of air spheres in titania [J]. Science, 1998, 281: 802-804.
    [16] Davis S A, Burkett S L, Mann S. Bacterial templating of ordered macrostructures in silica and silica-surfactant mesophases [J]. Nature, 1997, 385: 420-423.
    [17] Choi K, Gardner D, Bein T. Combinatorial Methods for the Synthesis of Aluminophosphate Molecular Sieves [J]. Angew. Chem. Int. Ed., 1999, 38: 2891-2894.
    [18] Jacobsen C J H, Madsen C, Houzvicka J, Schmidt I, Carlsson A. Mesoporous Zeolite Single Crystals [J]. J. Am. Chem. Soc., 2000, 122: 7116.
    [19] Xiao F, Wang L, Yin C, Lin K, Di Y, Li J, Xu R, Su D, Schlogl R, Yokoi T, Tatsumi T. Catalytic Properties of Hierarchical Mesoporous Zeolites Templated with a Mixture of Small Organic Ammoniun Salts and Mesoscale Cationic Polymers [J]. Angew. Chem. Int. Ed., 2006, 45: 3090.
    [20] Miyazawa K, Inagaki S. Control of The Microporosity within The Pore Walls of Ordered Mesoporous Silica SBA-15 [J]. Chem. Comm., 2000: 2121.
    [21] (a) Estermann M, McCusker L B, Baerlocher C, Merrouche A, Kessler H A synthetic gallophosphate molecular sieve with a 20-tetrahedral-atom pore opening [J]. 1991, 352: 320-323. (b) R Millini, G Perego, G Bellussi. Synthesis and characterization of boron-containing molecular sieves [J] . Top. Catal. 1999 , 9: 13-34.
    [22] Lowenstein W. The distribution of aluminium in the tetrahedra of silicates and aluminosilicates [J]. Am. Mineral, 1954, 9: 92-96.
    [23] W M Meier, J B Uytterhoeven. Molecular Sieves [M], Washington: AmericanChemical Society, 1973.
    [24] Meier W M, Olson D H. Atlas of zeolite structure types. 2nd rev. ed.[M], London: Butterworths. 1987: 5.
    [25] Smith J V. Topochemistry of zeolites and related materials. l. Topology and geometry [J]. Chem. Rev., 1988, 8: 49~182.
    [26] Baerlocher Ch, Meier W M, Olson D H. Atlas of zeolite framework types [M]. Elsevier, 2001.
    [27] Newsam J M. The zeolite cage structure [J]. Science, 1989, (231): 1093~1099.
    [28] Baerlocher Ch, Meier W M, Olson D H. Atlas of zeolite framework types [M]. Elsevier, 2007.
    [29] Cantíná, Corma A et al. Synthesis and Characterization of the All-Silica Pure Polymorph C and an Enriched Polymorph B Intergrowth of Zeolite Beta [J]. Angew. Chem. Int. Ed. 2006, 45: 8013–8015.
    [30] Corma A, Davis M E. Issues in the Synthesis of Crystalline Molecular Sieves: Towards the Crystallization of Low Framework-Density Structures[J]. ChemPhysChem 2004, 5: 304-313.
    [31] Xiao F-S, Qiu S L, Pang W Q, et al. New Developments in Microporous Materials. [J]. Adv. Materials., 1999 ,11: 1091-1099.
    [32] Chen J S, Pang W Q, Xu R R. Mixed-bonded Open Framework Aluminophosphates and Related Layered Materials. [J]. Topics in Catalysis, 1999 ,9: 93-103.
    [33] Yu J H, Xu R R, Li J X. Structural Diversity of a family of Aluminophosphates with Al/P Ratio of Non-unity. [J]. Solid State Sliences 2000, 2 (2), 181-192.
    [34] Xu R R, Huo Q S, Pang W Q. Proceedings from the Ninth International Zeolites Conference [C]. London: Butternorth Heinemann. 1992: 271-278.
    [35] Sastre G, Vidal-Moya J A, Blasco T, Rius J, JordáJ L, Navarro M T, Rey F, Corma A. Preferential Location of Ge Atoms in Polymorph C of Beta Zeolite (ITQ-17) and Their Structure-Directing Effect: A Computational, XRD, and NMR Spectroscopic Study[J]. Angew. Chem. Int. Ed., 2002, 41: 4722-4726.
    [36] Kessler H, Patarin J, Schott-Darie C. Synthesis of High-Silica Zeolites and Phosphate- based Materials in the Presence of Fluoride. Stud. Surf. Sci. Catal., 1994 (85): 75~113 [J] // H Robson. Verified Synthesis of Zeolitic Materials Second Edition. Elsevier Science. 2001.
    [37]庞文琴,裘式纶,周凤歧.杂原子分子筛合成研究进展[J].吉林大学自然科学学报,长春:吉林大学出版社. 1992年特刊(化学):78~84.
    [38] Xu Y, Maddox P J, Couves JW, et al. The Synthesis of SAPO-34 and CoSAPO-34 from a Triethylamine-hydrofluoric Acid-Water system [J]. J. Chem. Soc. Faraday Trans, 1990, 86: 425-429.
    [39] Estermann M, McCusker L B, Baerlocher C, Merrouche A, Kessler H. A synthetic gallophosphate molecular sieve with a 20-tetrahedral-atom pore opening [J]. Nature, 1991, 352: 320-332.
    [40] Bekkum H van, Jacobs P A, Flanigen E M, Jansen J C. Introduction to Zeolite Science and Practice. Stud. Surf. Sci, Catal 137 [M]. Elsevier 2001: 247.
    [41] Meng X, Xu W, Tang S, Pang W. Hydrothermal Synthesis of Zeolite NaA by Microwave Radiation [J]. Chinese Chemical Letters, 1992, 1: 69~70.
    [42] Han Y, Ma H, Qiu S L, Xiao F-S. Preparation of Zeolite A Membranes by Microwave Heating [J]. Microporous and Mesoporous Materials, 1999, 30: 321~326.
    [43] Xiao F-S, Zheng S, Sun J M, Yu R B, Qiu S L, Xu R R. Dispersion of Inorganic salts into Zeolites and Their Pore Modification [J]. Journal of Catalysis, 1998, 176: 474~487.
    [44] Imre K, Shimizu S, Kiyozumi Y, Toba M, Niwa S, Mizukami F. Catalytic Activity of a Zeolite disc Synthesized though Solid State Reactions [J] . Microporous and Mesoporous Materials, 1998, 21: 453~459.
    [45] Xu W Y, Dong J X, Li J P, Li J Q, Wu F, A Noval Method for the Preparation of Zeolites ZSM-5 [J], J. Chem. Soc. Chem. Commun., 1990, 10: 755-756.
    [46] Rao P R, Leon C A L, Ueyama K, Matsukata M. Synthesis of BEA by Dry Gel Conversion and Its Characterization [J]. Microporous and Mesoporous Materials,1998, 21: 305-313.
    [47] Matsukata M, Osaki T, Ogura M, Kikuchi E. Crystallization Behavior of Zeolite Beta during Steam-assited Crystallization of Dry Gel [J]. Microporous and Mesoporous Materials, 2002, 56: 1~10.
    [48] Huo Q S, Xu R R. A new route for the synthesis of molecular sieves: crystallization of APO-5 at high temperature [J]. J. Chem. Soc. Chem. Commun., 1992, 2: 168~169.
    [49] Dent Glasser L S, Harvey G. Proc. 6th Int. Conf. Zeolites [C], UK: Betterworths, 1984: 925.
    [50] Harvey G, Dent Glasser, L S. Properties of Aluminosilicate Solution [D]. 1984.
    [51] Flanigen E M. Review and new perspectives in zeolite crystallization [M]. Advances in Chemistry Series, 1973, 121, 119-139.
    [52] (a) Dutta P K, Pur M, Shieh D C. Mater. Res. Soc. Symp. Proc., 1988, 111, 101. (b) Dutta P K, Rao K M, Park J Y. J. Phys. Chem., 1991, 95: 6654-6656. (c) Dutta P K, DC Shieh and M Puri, Zeolites, 1988, 8: 306-309.
    [53] Breck D W. Zeolites Molecular Sieves [M]. New york: Wiley. c1974: 270-271.
    [54] Barrer R M, Denny P J. Hydrothermal chemistry of the silicates. Part IX. Nitrogenous aluminosilicates [J]. J. Chem. Soc., 1961: 971-982.
    [55] Flanigen E M, Patton R L, Wilson S T. Stud. Surf. Sci. Catal., 1988, 13: 37.
    [56] Arharcet J P, Dauis M E. Systematic synthesis of zeolites that contain cubic and hexagonal stackings of faujasite sheets [J]. Chem. Mater., 1991, 3: 567-569.
    [57] Lok B M, Cannon T R, Messina C A. Zeolites, 1983, 3, 282.
    [58]徐如人,庞文琴,无机合成与制备化学,北京高等教育出版社,2001.
    [59] Lawton S L, Rohrbaugh W J, Lawton S L; Rohrbaugh W J. The framework topology of ZSM-18, a novel zeolite containing rings of three (Si,Al)-O species [J] . Science, 1990, 247:1319-1322.
    [60] Ciric, J. U. S. Patent, 1976,3950496.
    [61] (a) Yoshikawa M, Wagner P, Lovallo M. Synthesis, Characterization, and Structure Solution of CIT-5, a New, High-Silica, Extra-Large-Pore Molecular Sieve [J] . J. Phys. Chem. B.; 1998, 102, 7139. (b) Rollmann L D, Valyoosik E M U S. Synthesis of zeolite ZSM-11 . Patent, 1978, 4108881.
    [62] Goretsky A V, Beck L W, Zones S I. Davis M E. Influence of the hydrophobic character of structure-directing agents for the synthesis of pure-silica zeolites[J]. Microporous and Mesoporous Materials,1999, 28: 387–393.
    [63] Bu X, Feng P, Stucky G D. Large-cage zeolite structures with multidimensional 12-ring channels [J]. Science, 1997, 278: 2080-2085.
    [64] Domine D, Quobex J. Molecular Sieves. London: Soc. of Chemical Industry, 1968: 78.
    [65] Meise W, Schwochow F E. Kinetic Studies on the Formation of Zeolite A // Meier W M, Uytterhoeven J B, Molecular Sieves, 1973, 121: 169.
    [66] Breck D W. Zeolites Molecular Sieves. New york: Wiley, c1974: 270-271.
    [67] Kiyozumi Y, Nemoto Y et al. Synthesis of acid-resistant Phillipsite (PHI) membrane and its pervaporation performance[J]. Microporous and Mesoporous Materials, 2008, 116: 485–490.
    [68] Breck D W, Flanigen E M. Molecular Sieves. London: Society of Chemical Industry. c1968: 47-61.
    [69] Schüth F, Schmidt W. Microporous and Mesoporous Materials[J], Adv. Mater. 2002, 14: 629-638.
    [70] Kerr G T. Chemistry of Crystalline Aluminosilicates. I. Factors Affecting the Formation of Zeolite A [J], J. Phys. Chem., 1966, 70: 1047.
    [71] Ciric J. Kinetics of zeolite A crystallization [J]. J. Colloidal Interface Sci., 1968, 28: 315-324.
    [72] Zhdanov S P. Miecular Series I Adv. Chem. Series 101 Washington D. C. 1971: 20. Zhdanov, in Molecular Zeolites I // Flanigen E M, Sand L B. Washington, D.C.: American Chemical Society, c1971, 101: 20–28.
    [73] Zhdanov S P. Molecular Sieve Zeolites [M]. Advances in Chemistry Series No.101, Am. Chem. Soc., Washington, D. D. 1971, p. 20.。
    [74] Shibata M, Gérarda J, Gabelica Z. Rapid synthesis of MFI titanosilicates using in situ seeding method [J], 1997, 12: 141-148.
    [75] Derouane E G, Determmerie S, Gabelica Z, Blom N. Synthesis and characterization of ZSM-5 type zeolites I. physico-chemical properties of precursors and intermediates [J]. Appl. Catal., 1981, 1: 201-224.
    [76] Breck D W. Zeolites Molecular Sieves [M]. New york: Wiley. c1974: 270-271.
    [77] Jones C W, Tsuji K, Davis M E. Organic-functionalized molecular sieves as shape-selective catalysts [J]. Nature, 1998, 393 (6680): 52-54.
    [78] Takewaki T, Beck L W, Davis M E. Takewaki T, Beck L W, Davis M E. Zincosilicate CIT-6: A Precursor to a Family of *BEA-Type Molecular Sieves [J]. J. Phys. Chem. B, 1999, 103 (14): 2674-2679.
    [79] Takewaki T, Hwang S J, Yamashita H, Davis M E. Synthesis of BEA-type molecular sieses using mesoporous materials as reagents [J]. Microporous and Mesoporous Materials, 1999, 32 (3): 265-278.
    [80] Takewaki T, Beck L W, Davis M E. Synthesis of CIT-6, a zincosilicate with the *BEA topology [J]. Top Catal., 1999, 9 (1-2): 35-42.
    [81] Jones C W, Tsuji K, Davis M E. Organic-functionalized molecular sieves (OFMSs): II. Synthesis, characterization and the transformation of OFMSs containing non-polar functional groups into solid acids [J]. Microporous and Mesoporous Materials, 1999, 33 (1-3): 223-240.
    [82] Jones C W, Hwang S J, Okubo T, Davis M E. Synthesis of Hydrophobic Molecular Sieves by an Acetic Acid Treatment [J]. Chem. Mater., 2001, 13 (3): 1041-1050.
    [83] Jones C W, Tsuji K, Takewaki T, Beck L W, Davis M E. Tailoring molecular sieve properties during SDA removal via solvent extraction [J]. Microporous and Mesoporous Materials, 2001, 48 (1-3): 57.
    [84] Lee H, Zones S I, Davis M E. A combustion-free methodology for synthesizing zeolites and zeolite-like materials [J], Nature, 2003, 425 (6957): 385-388.
    [85] Lee H, Zones S I, Davis M E. Zeolite synthesis using degradable structure-directing agents and pore-filling agents [J]. J Phys Chem B, 2005, 109 (6): 2187.
    [86] Wang J Y, Song J W, Yin C Y, Ji Y Y, Zou Y C, Xiao F-S. Tetramethylguanidine-templated synthesis of aluminophosphate-based microporous crystals with AFI-type structure [J]. Microporous and Mesoporous Materials, 2008, 117 (3): 561-569.
    [87] Liu S Z, Li L S, Li C J, Xiong X Y, Xiao F-S. Preformed zeolite precursor for synthesis of mesoporous X zeolite [J]. J. Porous. Mater., 2008, 15 (3): 295.
    [88]孟祥举,谢彬,肖丰收.无有机模板条件下合成沸石催化材料的新路线[J].催化学报,in press.
    [89]李赫咺,项寿鹤,吴德明,刘月亭,张晓森,刘述铨.高等学校化学学报(Li X H, Xiang S H, Wu D M, Liu Y T, Zhang X S, Liu S S, Chem J Chin Univ),1981, 2 (4): 517.
    [90] Song T, Xu R, Li L, Ye Z. Proceedings of the 7th International Zeolite Conference, 1986. 201.
    [91]王福生,程文才,张式.催化学报(Wang F S, Cheng W C, Zhang S, Chin J Catal),无机铵型ZSM系高硅分子筛的合成1981,2 (4): 282-287.
    [92] Shiralkar V P, Clearfield A. Zeolites, 1989, 9 (9): 363
    [93] Xie B, Song J W, Ren L M, Ji Y Y, Li J X, Xiao F-S.Organotemplate-free and fast route for synthesizing Beta zeolite [J]. Chem Mater, 2008, 20 (14):4533-4535
    [94] Vaughan D E W, Strohmaier K G. US Patent 4657748. 1987.
    [95] Leonowicz M E, Vaughan D E W. Proposed synthetic zeolite ECR-1 structure gives a new zeolite framework topology [J] .Nature, 1987, 329 (6142): 819.
    [96] Vaughan D E W, Strohmaier K G. Proceeding of the 7th International Zeolite Conference, 1986. 207.
    [97] Gualtieri A F, Ferrari S, Galli E, Di Renzo F, van Beck W. Rietveld structure refinement of zeolite ECR-1 [J] .Chemical Materials, 2006, 18 (1): 76.
    [98] Song J W, Dai L, Ji Y Y, Xiao F-S. Organic template free synthesis of aluminosilicate zeolite ECR-1 [J]. Chemical Materials, 2006, 18 (12): 2775
    [99] (a) Corma A. Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions [J]. Chem. Rev., 1995, 95 (3): 559-614. (b) Millini R, Perego G, Bellussi G. Synthesis and characterization of boron-containing molecular sieves [J] . Top. Catal. 1999 , 9: 13-34. (c) Lalik E, Liu X, Klinowshi J. The role of gallium in the catalytic activity of zeolite [Si,Ga]-ZSM-5 for methanol conversion [J]. J. Phys. Chem. 1992, 96: 805-809. (d) R?seler J, Heitmann G, H?lderich W F. Vapour-phase Beckmann rearrangement using B-MFI zeolites [J], Appl. Catal. A: General, 1996, 144: 319-333. (e) Fricke R, Kosslick H, Lischke G, Richter M, Incorporation of Gallium into Zeolites: Syntheses, Properties and Catalytic Application [J]. Chem. Rev. 2000, 100: 2303-2406.
    [100] (a) Ueda S, Koizumi M.“Molecular Sieve Zeolites”, ACS Washington, D. C., 101, 135, 1971; (b) Flanigen E M, Grose R W.“Molecular Sieve Zeolites”, ACS Washington, D. C., 101, 76, 1971.
    [101] Whittam, Thomas Vincent, Eur. Pat. Appl., EP 54, 386, 1982.
    [102] Whittam, Thomas Vincent, Eur. Pat. Appl., EP 59, 059 ,1982.
    [103] Flanigen E M, Lok B M, Patton R L, et al. Aluminophosphates Molecular Sieves and Periodic Table, In“New Developments in Zeolite Science and Technology”. Procedings of the 7th IZC (Eds: Murakami Y, Lijima A, Ward J. W) Kodansha. Elsvier 1986: 103~112.
    [104]庞文琴,裘式纶,周凤歧。杂原子分子筛合成的研究进展。《吉林大学自然科学学报》(特刊)1992: 78.
    [105] Barrer R. et al., J. Chem. Soc., 195-208, 1959.
    [106] Schaack B B, Schrader W, Schüth F. How are Heteroelements (Ga and Ge) Incorporated in Silicate Oligomers? [J]. Chem. Eur. J., 2009, 15 : 5920– 5925.
    [107] Taramasso M, Perrgo G, Notari B.“Proceedings of the 5 th International Conference on Zeolites”, London, p. 40, 1980.
    [108] Robson Harry E. Compiler: US Patent 3328119 [P/OL]. 1967-06-27.
    [109] Ryder J A, Chakraborty A K, Bell A T. Density functional theory study of benzene oxidation over Fe-ZSM-5[J]. Journal of Catalysis, 2003, 220: 84–91.
    [110]周帆,田鹏,刘中民,刘广宇,常福祥,李金哲,催化学报,2007,28(9):817~822.
    [111] Anderson M W, Occelli M L, Klinowski J. 13C and 1H magic-angle-spinning NMR studies of the conversion of methanol over offretite/erionite intergrowths [J], J. Phys. Chem.,1992 , 96(1): 388-392.
    [112] Occelli M L, Innes R A, Pollack S S, Sanders J V. Quaternary ammonium cation effects on the crystallization of offretite—erionite type zeolites: Part 1. Synthesis and catalytic properties [J], Zeolites, 1987, 7(3): 265-271.
    (1) Corma A. From microporous to mesoporous molecular sieve materials and their use in catalysis [J]. Chem. Rev. 1997, 97: 2373-2419.
    (2) Davis M E. Ordered porous materials for emerging applications [J]. Nature, 2002, 417: 813-821.
    (3) Cundy C S, Cox P A. The Hydrothermal Synthesis of Zeolites: History and Development from the Earliest Days to the Present Time [J]. Chem. Rev., 2003, 103: 663-702.
    (4) Breck D W. Structure, Chemistry and Use [J]. Zeolite Molecular Sieves; Wiley: New York, 1974.
    (5) Barrer R M, Denny P J. Hydrothermal chemistry of the silicates. Part IX. Nitrogenous aluminosilicates [J]. J Chem. Soc., 1961, 971-982.
    (6) Lee H, Zone S I, Davis M E. Zeolite Synthesis Using Degradable Structure-Directing Agents and Pore-Filling Agents [J]. J. Phys. Chem. B 2005, 109: 2187.
    (7) Chen Z W, Li S, Yan Y S. Synthesis of template-free zeolite nanocrystals by reverse microemulsion-microwave method [J]. Chem. Mater. 2005, 17: 2262.
    (8) Kim S D, Noh S H, Seong K H, Kim W J. Compositional and kinetic study on the rapid crystallization of ZSM-5 in the absence of organic template under stirring [J]. Micropor. Mesopor. Mater. 2004, 72: 185-192.
    (9) (a) Plak C J, Rosinski E J, Rubin M K, Method for producing zeolites U.S.Patent 4 175 114, 1979; U.S.Patent 4 419 556, 1980; (b) Grosh R M, Flanigan E M. Novel zeolite compositions and processes for preparing and using same U.S.Patent 4 257 885, 1981; (c) Whittam T V. Bri. Patent 1 567 948, 1980; (d) Chu P, LaPierre R B. U.S. Pat. Appl. 1984; Eur. Pat. Appl 170 486, 1986.
    (10) Li X H, Xiang S H, Wu D M, Liu Y T, Zhang X S, Liu S S. Chem. J. Chin. Univ. 1981, 2: 517.
    (11) Wang F S, Cheng W C, Zhang S. Chinese Journal of Catalysis. 1981, 2: 282.
    (12) Shiralkar V P, Clearfield A. Synthesis of molecular sieve ZSM-5 without the aid of template [J]. Zeolites 1989, 9: 363-370.
    (13) Warrender S J, Wright P. A, Zhou W Z, Lightfoot P, Camblor M A, Shin C–H, Kim D J, Hong S B. TNU-7: a large-pore gallosilicate zeolite constructed of strictly alternating MOR and MAZ layers [J]. Chemical Materials, 2005, 17: 1272-1274.
    (14) Song J W, Dai L, Ji Y Y, Xiao F -S. Organic template free synthesis of aluminosilicate zeolite ECR-1 [J] .Chemical Materials, 2006, 18: 2775.
    (15) Wu Z F, Song J W, Ji Y Y, Ren L M, Xiao F -S. Organic Template-Free Synthesis of ZSM-34 Zeolite from an Assistance of Zeolite L Seeds Solution [J]. Chemical Materials. 2008, 20: 357.
    (16) Xie B, Song J W, Ren L M, Ji Y Y, Xiao F -S. Organotemplate-Free and Fast Route for Synthesizing Beta Zeolite [J]. Chemical Materials. 2008, 20: 4533.
    (17) Occelli M E, Innes R A, Pollack S S, Sanders J V. Quaternary ammonium cation effects on the crystallization of offretite—erionite type zeolites: Part 1. Synthesis and catalytic properties [J]. Zeolites, 1987, 7: 265-271.
    (18) Bessel S. Investigation of bifunctional zeolite supported cobalt Fischer-Tropsch catalysts [J], Applied Catalysis A: General, 1995, 126, 235.
    (19) Zhou F, Tian P, Liu Z M, Liu G Y, Chang F X, Li J Z. Synthesis of ZSM-34 and Its Catalytic Properties in Methanol-to-Olefins Reaction [J], Chinese Journal of Catalysis, 2007, 28: 817.
    (20) Rubin M K, Rosinski E J, Plank C J. U.S. Patent 4 086 186, 2003.
    (21) Vartuli J C, Kennedy G J, Yoon B A, Malek A. Zeolite syntheses using diamines: evidence for in situ directing agent modification [J]. Microporous and Mesoporous Materials, 2000, 38: 247-254.
    (22) Liu Y, Zhang W Z, Pinnavaia T J. Steam-Stable aluminosilicate mesostructures assembled from zeolite type Y seeds [J]. J. Am. Chem. Soc. 2000, 122: 8791.
    (23) Robson H. ACS Symp. Ser. 1989, 398, 436.
    (24) Han Y, Xiao F–S, Wu S, Sun Y Y, Meng X J, Li D S, Lin S. A Novel Methodfor Incorporation of Heteroatoms into the Framework of Ordered Mesoporous Silica Materials Synthesized in Strong Acidic Media [J]. J. Phys. Chem. B 2001, 105: 7963-7966.
    (25) Zhang Z T, Han Y, Xiao F–S, Qiu S L, Zhu L, Wang R W, Yu Y, Zhang Z, Zou B S, Wang Y Q, Sun H P, Zhao D Y, Wei Y. Mesoporous aluminosilicates with ordered hexagonal structure, strong acidity and extraordinary hydrothermal stability at high temperatures [J]. J. Am. Chem. Soc. 2001, 123: 501.
    (26) (a)李守贵.Y型沸石和L型沸石液相成核的研究[D].长春:吉林大学化学学院,1987. (b) Li S G, Xu R R. CN 85 103 013, 1986.
    (27) (a) Xu R R, Pang W Q. Chemistry-Zeolites and Porous Materials; Academic Press of China: Beijing, 2004; Chapter 2. (b) van Bekkum H, Flanigen E M, Jacobs P A, Jansen J C. Introduction to Zeolite Science and Practice; Elsevier: Amsterdam, 2001,PP 1-9.
    (28)徐如人,庞文琴,于吉红等.分子筛与多孔材料化学[M].北京:科学出版社,2004:1.
    (29) Karl P. Lillerud and Johan H. Raeder,ZEOLITES, 1986, Vol 6, November 475,On the synthesis of erionite-offretite intergrowth zeolites
    (30) Bennett, Gard,Non-identity of the Zeolites Erionite and Offretite [J]. Nature 1967,214: 1005-1006.
    (31) Rubin L, et al. Compiler: US, 4086186 [P/OL]. 1978-04-25.
    [1] Davis M E. Ordered porous materials for emerging applications[J]. Nature, 2002, 417 (6891): 813-821.
    [2] Corma A. Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions [J]. Chem. Rev., 1995, 95 (3): 559-614.
    [3] Corma A. From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis [J]. Chem. Rev., 1997, 97 (6): 2373-2420.
    [4] Cundy C S, Cox P A. The Hydrothermal Synthesis of Zeolites: History and Development from the Earliest Days to the Present Time [J]. Chem. Rev., 2003, 103 (3): 663-702.
    [5] Corma A , Romanach M, Sanchez F. Auguet, A.SP 8900384, 1989.
    [6] Janssen M J G,Mortier W J, van Oorschot W m. WO patent Appl [P]. 18851, 1991.
    [7] Chen N Y, Ketkar A B, Nace PM, et al. EP186446B1, 1991.
    [8] Bonetto L, Camblor MA, Corma A, Perez-Pariente J. Optimization of zeolite-βin cracking catalysts. Influence of crystallite size [J]. Appl.conf. 1992, 82: 37.
    [9] Bonetto L, Corma A, Herrero E. Proc. Int. Zeol. Conf. 1992, 10.
    [10] Madon R J. Role of ZSM-5 and ultrastable Y zeolites for increasing gasoline octan number [J]. J. Catal, 1991, 129: 275.
    [11] Chu Y F, Chester A W. Reactions of isobutene with butane over zeolite catalysts [J]. Zeolites, 1986, 6: 195.
    [12] Corma A, Martinez A, Martinez C. Isobutane /2-butene alkylation on ultrastable Y zeolites: Influence of zeolite unit cell size [J]. J. Catal, 1994, 146: 185.
    [13] Corma A, Gmez V, Martinez A. Zeolite beta as a catalyst for alkylation of isobutane with 2-butene. Influence of synthesis conditions and process variables [J]. Appl. Catal, 1994, 119L: 83.
    [14] Corma A, Martinez A, Martinez C. Isobutane/2-butene alkylation on MCM-22 catalyst. Influence of zeolite structure and activity on activity and selectivity [J].Catal. Lett. 1994, 28: 187-201.
    [15] Leonowicz M E, Lawton J A, Lawton S L, Rubin M K. MCM-22: A Molecular Sieve with Two Independent Multidimensional Channel Systems [J]. Science, 1994, 264: 1910.
    [16] Barrer R. M.; Denny P. J.; Hydrothermal chemistry of the silicates. Part IX. Nitrogenous aluminosilicates[J]. J. Chem. Soc., 1961: 971-982.
    [17] Estermann M, McCusker L B, Baerlocher C, Merrouche A, Kessler H. A synthetic gallophosphate molecular sieve with a 20-tetrahedral-atom pore opening [J]. 1991, 352: 320-323.
    [18] (a) Mark E. Davis, Carlos Saldarriaga, Consuelo Montes, Juan Garces, Cyrus Crowdert. A molecular sieve with eighteen-membered rings[J]. Nature, 1988, 331: 698-699. (b) James W. Richardson Jr., Joseph V. Smith, Joseph J. Pluth. Theoretical nets with 18-ring channels: enumeration, geometrical modeling, and neutron diffraction study of aluminophosphate 54 [J], J. Phys. Chem., 1989, 93 (25): 8212–8219. (c) L.B. McCusker, Ch. Baerlocher, E. Jahn, M. Bülow. The triple helix inside the large-pore aluminophosphate molecular sieve VPI-5 [J], Zeolites, 1991, 11(4): 308-313.
    [19] Karl G. Strohmaier, David E. W. Vaughan. Structure of the First Silicate Molecular Sieve with 18-Ring [J]. J. AM. CHEM. SOC., 2003, 125: 16035-16039.
    [20] R. Millini, G. Perego, G. Bellussi; Synthesis and characterization of boron-containing molecular sieves [J] . Top. Catal. 1999 , 9: 13-34.
    [21] E. Lalik, X. Liu, J. Klinowshi; The role of gallium in the catalytic activity of zeolite [Si,Ga]-ZSM-5 for methanol conversion [J]. J. Phys. Chem. 1992, 96: 805-809.
    [22] Wu, T. Komatsu, T. Yashima; Isomorphous substitution of Fe3 + in the framework of aluminosilicate mordenite by hydrothermal synthesis [J]. Micropor. Mesopor. Mater. 1998, 20: 139-147.
    [23] M. Dong, J. Wang, Y. Sun; Synthesis of zincosilicate mordenite using citric acidas complexing agent [J]. Micropor. Mesopor. Mater. 2001, 43: 237-243.
    [24] R?seler J, Heitmann G, H?lderich W F, Vapour-phase Beckmann rearrangement using B-MFI zeolites [J], Appl. Catal. A: General, 1996, 144: 319-333.
    [25] L. Marosi, J. Stabenow, M. Schwarzmann, EP 7 081, EP 46, 504, EP 10 572.
    [26] A.E. Shilov, G.B. Shulpin; Activation of C-H bonds by metal complexes [J]. Chem. Rev. 1997, 97: 2879-2932.
    [27] R. Fricke, H. Kosslick, G. Lischke, M. Richter, Incorporation of Gallium into Zeolites: Syntheses, Properties and Catalytic Application [J]. Chem. Rev. 2000, 100: 2303-2406.
    [28] Chen, L.; Zhang, M. J.; Yue, Y.; Ye, C. H.; Deng, F. NMR and theoretical studies of boron-modified mordenite[J]. Microporous and Mesoporous Mater. 2004, 76:151-156.
    [29] Grünewald-Lüke, A.; Marler, B.; Hochgr?fe, M.; Gies, H. Quinuclidine derivatives as structure directing agents for the synthesis of boron containing zeolites [J]. J. Mater. Chem. 1999, 9: 529-2536.
    [30] Dong, W. Y.; Sun, Y. J.; He, H. Y.; Long, Y. C. Synthesis and structural characterization of B-Al-ZSM-5 zeolite from boron–silicon porous glass in the vapor phase [J]. Microporous and Mesoporous Mater. 1999, 32:93-100.
    [31] Fyfe, C. A. Solid State NMR for Chemists, Press, Guelph, Canada, 1983.
    [32] C. Fild, D.F. Shantz, R.F. Lobo, H. Koller Cation-Induced Transformation of Boron-Coordination in Zeolites [J]. Phys. Chem. Chem. Phys. 2 (2000) 3091-3098.
    [33] D.H. Lin, G. Coudurier, J.C. Vedrine, Fe-ZSM-5: Physicochemical and Catalytic Properties[J]. Stud. Surf. Sci. Catal. 49 (1989) 1431-1448.
    [34] B. Echchahed, A. Moen, D. Nicholson, L. Bonneviot, Iron-Modified MCM-48 Mesoporous Molecular Sieves [J]. Chem. Mater. 9 (1997) 1716.
    [35] A. Tuel, I. Arcon, J.M.M. Miller, Investigation of structural iron species in Fe-mesoporous silicas by spectroscopic techniques [J]. J. Chem. Soc. Faraday Trans. 94 (1998) 3501-3510.
    [36] N.-Y. He, S.-L. Bao, Q.-H. Xu, Synthesis and characterization of FeSiMCM-41 and LaSiMCM-41 [J]. Stud. Surf. Sci. Catal. 105 (1997) 85-92.
    [37] Song Z X, Takahashi A, Mimura N, Fujitani T, Production of Propylene from Ethanol Over ZSM-5 Zeolites [J], CATALYSIS LETTERS, 2009, 131(3-4): 364-369.
    [38] (a) Liu J, Zhang C X, Shen Z H, Hua W M, Tang Y, Shen W, Yue Y H, Xu H L. Methanol to propylene: Effect of phosphorus on a high silica HZSM-5 catalyst [J], CATALYSIS COMMUNICATIONS, 2009, 10(11): 1506-1509. (b) Janssens T V W, A new approach to the modeling of deactivation in the conversion of methanol on zeolite catalysts [J], JOURNAL OF CATALYSIS, 2009, 264: 130-137.
    [39] Nishiyama N, Kawaguchi M, Hirota Y, Van Vu D, Egashira Y, Ueyama K. Size control of SAPO-34 crystals and their catalyst lifetime in the methanol-to-olefin reaction [J], APPLIED CATALYSIS A: GENERAL, 2009, 362:193-199.
    [40] Hereijgers B P C, Bleken F, Nilsen M H, Svelle S, Lillerud K P, Bjorgen M, Weckhuysen B M, Olsbye U. Product shape selectivity dominates the Methanol-to-Olefins (MTO) reaction over H-SAPO-34 catalysts [J], JOURNAL OF CATALYSIS, 2009, 264: 77-87.
    [41] Lu J Z, Wang X P, Li H B. Catalytic conversion of methanol to olefins over rare earth (La, Y) modified SAPO-34 [J], REACTION KINETICS AND CATALYSIS LETTERS, 2009, 97: 255-261.
    [42] Dahl IM, Kolboe S: On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34, 1. isotopic labeling studies of the co-reaction of ethene and methanol. [J]. J Catal 1994, 149:485-494.
    [43] Dahl IM, Kolboe S: On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34, 2. Isotopic labeling studies of the co-reaction of propene and methanol. [J]. J Catal 1996, 161:304-309.
    [44] Zhu, Q. J.; Kondo, J. N.; Tatsumi, T.; Inagaki, S.; Ohnuma, R.; Kubota, Y.; Shimodaira,Y.; Kobayashi, H.; Domen, K. A Comparative Study of Methanol toOlefin over CHA and MTF Zeolites [J]. J. Phys. Chem. C 2007, 111:5409-5415.
    [45] Ocelli, M. E.; Innes, R. A.; Pollack, S. S.; Sanders, J. V. Quaternary ammonium cation effects on the crystallization of offretite—erionite type zeolites: Part 1. Synthesis and catalytic properties [J], Zeolites 1987, 7(3): 265-271.
    [46] Givens, E. N.; Plank, C. J.; Rosinski, E. J. U.S. Manufacture of light olefins Patent 4 079 095, 1978.
    [47] Givens, E. N.; Plank, C. J.; Rosinski, E. J. U.S. Manufacture of light olefins Patent 4 079 096, 1978.
    [48] Rubin, M. K.; Rosinski, E. J.; Plank, C. J. Hydrocarbon conversion with crystalline zeolite ZSM-34, U.S.Patent 4 116 813, 1978.
    [49] Zhou, F.; Tian, P.; Liu, Z. M.; Liu, G. Y.; Chang, F. X.; Li, J. Z. Synthesis of ZSM-34 and Its Catalytic Properties in Methanol-to-Olefins Reaction [J]. Chin. J. Catal. 2007, 28, 817-822.
    [1] (a) Mark E. Davis, Carlos Saldarriaga, Consuelo Montes, Juan Garces, Cyrus Crowdert. A molecular sieve with eighteen-membered rings[J]. Nature, 1988, 331: 698-699. (b) James W. Richardson Jr., Joseph V. Smith, Joseph J. Pluth. Theoretical nets with 18-ring channels: enumeration, geometrical modeling, and neutron diffraction study of aluminophosphate 54 [J], J. Phys. Chem., 1989, 93 (25): 8212–8219. (c) L.B. McCusker, Ch. Baerlocher, E. Jahn, M. Bülow. The triple helix inside the large-pore aluminophosphate molecular sieve VPI-5 [J], Zeolites, 1991, 11(4): 308-313.
    [2] Bu X, Feng P, Stucky G D. Large-cage zeolite structures with multidimensional 12-ring channels [J]. Science, 1997, 278: 2080-2085.
    [3] SHI Lei(石磊),LI Ji-Yang(李激扬),DUAN Fang-Zheng(段芳正),YU Ji-Hong(于吉红),LI Yi(李乙),XU Ru-Ren(徐如人). Hydrothermal synthesis and crystal structure of a new bimetallic oxide cluster constructed fromβ-Octamolybdate and copper (Ι)-organonitrogen complexes [J], Chem. J. Chinese Universities(高等学校化学学报), 2005, 26(5): 819-821
    [4] Barrer R. M. Syntheses and reactions of mordenite [J]. J. Chem. Soc., 1948, 10: 2158-2163.
    [5] Corma A. Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions [J]. Chem. Rev., 1995, 95 (3): 559-614.
    [6] Barrer R. M.; Denny P. J. 201. Hydrothermal chemistry of the silicates. Part IX. Nitrogenous aluminosilicates [J]. J. Chem. Soc., 1961: 971-982.
    [7] Baerlocher Ch, Meier W M, Olson D H. Atlas of Zeolite frameworks Type [M]. Elsevier (5th Ed), 2001.
    [8] Braunbarth C M, Boudreau L C, Tsapatsis M. Synthesis of ETS-4/TiO2 composite membranes and their pervaporation performance [J], Journal of Membrane Science, 2000, 174: 31-42.
    [9] Guan, G.; Kusakabe, K.; Morooka, S. Synthesis and permeation properties ofion-exchanged ETS-4 tubular membranes [J], Microporous and Mesoporous Materials. 2001, 50(2-3): 109-120.
    [10] Guan G, Kusakabe K, Morooka S. Separation of nitrogen from oxygen using a titanosilicate membrane prepared on a porous alpha-alumina support tube [J], SEPARATION SCIENCE AND TECHNOLOGY, 2002, 37: 1031-1039.
    [11] Jeong H K, Krohn J, Sujaoti K, Tsapatsis M. Oriented Molecular Sieve Membranes by Heteroepitaxial Growth [J], J. Am. Chem. Soc. 2002, 124: 12966-12968.
    [12] Lin Z, Rocha J, Navajas A, Te′llez C, Coronas J, Santamar?′a J. Synthesis and characterisation of titanosilicate ETS-10 membranes [J], Microporous and Mesoporous Materials, 2004, 67: 79-86.
    [13] Francesc X. Llabre′s i Xamena, Paola Calz, Carlo Lamberti, Carmelo Prestipino, Alessandro Damin, Silvia Bordiga, Ezio Pelizzetti, Adriano Zecchina, Enhancement of the ETS-10 Titanosilicate Activity in the Shape-Selective Photocatalytic Degradation of Large Aromatic Molecules by Controlled Defect Production [J], J. AM. CHEM. SOC., 2003, 125: 2264-2271.
    [14] Corcoran E W, Vaughan Jr and D E W. Hydrothermal synthesis of mixed octahedral-tetrahedral oxides: Synthesis and characterization of sodium stannosilicates [J], Solid State Ionics, 1989, 32-33: 423-429.
    [15] Dyer A.; Jáfar J. J. J. Chem. Soc., Dalton Trans. 1990, 3239
    [16] Lin Z, Rocha J, Valente A. Synthesis and characterisation of a framework microporous stannosilicate [J], Chem.Commun., 1999, 2489-2490.
    [17] Lin Z, Rocha J, Pedrosa de Jesus J D, Ferreirab A Synthesis and structure of a novel microporous framework stannosilicate [J], J. Mater. Chem. 2000, 10: 1353-1356.
    [18] Lin Z, Rocha J. Hydrothermal synthesis of the tin analogue of penkvilksite-2O [J], Eur. J. Miner. 2005, 17: 869-873.
    [19] Ferreira A, Lin Z, Rocha J, Morais C M, Lopes M, Fernandez C. Ab initio structure determination of novel small-pore metal-silicates: knots-and-crossesstructures [J], Inorg. Chem., 2001, 40: 3330-3335.
    [20] Lin Z, Ferreira A, Rocha J. Synthesis and structural characterization of novel tin and titanium potassium silicates K4M2Si6O18 [J], J. Solid State Chem., 2003, 175: 258-263.
    [21] Ferreira A, Lin Z, Soares M R, Rocha J. Ab initio structure determination of novel small-pore metal-silicates: knots-and-crosses structures [J], Inorganica Chimica Acta, 2003, 356: 19-26.
    [22] Lin Z, Rocha J. Synthesis and characterisation of a stannosilicate with the structure of penkvilksite-1M [J], Microporous Mesoporous Materials, 2006, 94: 173–178.
    [23] Millini R, Carati A, Belluss G, Cruciani G, Parker Jr W O, Rizzo C, Zanardi S. Synthesis, characterization and crystal structure of EMS-2– a novel microporous stannosilicate [J], Microporous Mesoporous Materials, 2007, 101: 43-49.
    [24] Lo F R, Lii K H. High-temperature, high-pressur e hydrothermal synthesis and characterization of a new framework stannosilicate: Cs2SnSi3O9 [J], J. Solid State Chem. 2005, 178: 1017-1022.
    [25] Liao C H, Chang P C, Kao H M, Lii K H. Synthesis, Crystal Structure, and Solid-State NMR Spectroscopy of a Salt-Inclusion Stannosilicate: [Na3F][SnSi3O9] [J], Inorg. Chem. 2005, 44: 9335-9339.
    [26] Yamnova N A, Egorov-Tismenko Yu K, Pekov I V, Ekimenkova I A. Crystal Structure of Litvinskite: A New Natural Representative of the Lovozerite Group [J], Crystallography Reports 2001, 46: 190-193.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700