硬软模板法合成介孔沸石及其催化性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,具有介孔孔道的沸石材料引起了人们的广泛关注,它是在结晶微孔沸石中引入一定数目的介孔通道。这种复合孔的沸石材料既有微孔沸石良好的热稳定性和强的催化活性,又具有介孔材料通畅的传质孔道。介孔沸石具有潜在的应用价值,可望在催化、环保以及新材料等领域得到广泛的应用。本论文在综述前人工作的基础上,针对该领域的一些基本问题进行了深入研究,并取得了一系列原创性的成果。采用纳米碳酸钙和聚乙烯醇缩丁醛为硬介孔模板合成出了介孔沸石,同时研究了沸石在聚乙烯醇溶液中的晶化过程,最后对合成的介孔沸石的催化性能进行了考察,具体研究方法和结果如下:
     1.以纳米CaCO_3为硬模板合成出了具有二次介孔的silicalite-1和ZSM-5沸石。在MFI结构的沸石晶化过程中,纳米CaCO_3被共生到了沸石晶体结构中。然后通过酸洗涤,复合到沸石晶体中的纳米CaCO_3被去除从而在沸石中留下介孔。XRD、TEM、SEM和N_2吸附表征手段证明了合成的沸石中含有二次孔,并且这些孔的大小和形状与纳米CaCO_3的形貌一致。研究发现,只有亲水性的纳米碳酸钙才能在沸石的合成中起到介孔模板的作用。当其表面被脂肪酸修饰钝化后,纳米碳酸钙就不能在沸石合成中造孔了,证明了纳米碳酸钙表面羟基对其模板效应有重要的影响。
     2.研究沸石分子筛在聚乙烯醇体系中的晶化过程及聚乙烯醇在分子筛合成中的软介孔模板作用。聚乙烯醇的存在对沸石分子筛晶化过程影响很小,在聚乙烯醇的溶液中能制备出ZSM-5和ZSM-11沸石。聚乙烯醇体系中合成出来的ZSM-5和ZSM-11沸石的结构中都存在一定量的介孔,并且介孔的体积可以通过加入的聚乙烯醇量进行调节。
     3.使用聚乙烯醇缩丁醛为硬介孔模板合成出了介孔ZSM-5、ZSM-11和Beta沸石。首先,通过溶胶-凝胶技术制备出了二氧化硅和聚乙烯醇缩丁醛的复合物,并将该复合物用作合成沸石的前驱体。在水热晶化条件下,无定型的二氧化硅转化成了沸石晶体,而聚乙烯醇缩丁醛则被共生到了沸石晶体中。焙烧水热晶化后的产物能够使沸石中的微孔和介孔孔道开放。表征的结果证明沸石中的微孔是有序的,而介孔则无规则的分布在沸石晶体中。聚乙烯醇缩丁醛为硬模板合成介孔沸石的总孔体积和介孔体积可以通过PVB/SiO_2的值进行有效的调节。
     4.表征了常规沸石与介孔沸石中Al和Si元素的核磁性质。介孔沸石中的铝原子都进入了沸石的骨架并以四配位的形式存在,同时介孔沸石中硅的化学环境也与常规沸石的相同。NH_3-TPD表征进一步证实了介孔沸石结构中的骨架铝产生了相应的酸性质,是催化活性中心的来源。由此可见:模板法引入介孔后对沸石的化学性质没有影响,介孔沸石完全具有与常规沸石相同的化学性质。介孔ZSM-5沸石和ZSM-11沸石在三甲苯(1,3,5-三甲苯和1,2,4-三甲苯)的裂解的探针反应中表现出了比常规沸石高的裂解能力,在产物分布上介孔沸石中更容易生成大分子。在Beta沸石裂解三甲苯的反应中,介孔Beta沸石的失活过程被抑制了。这是由于导致结焦的大分子更容易从介孔沸石晶粒中扩散出去,减小了进
     一步聚合反应而产生结焦的可能。探针反应证实了介孔沸石的引入对沸石催化性质的改善是有显著效果的。在具有现实意义的甲苯歧化与重芳烃烷基转移反应中,介孔ZSM-5和ZSM-11沸石显示了对重芳烃高的转化性能,这是与其特殊的孔道结构密不可分的。当介孔被引入到沸石中后,这些介孔为C_9A和C_(10)A芳烃提供了一条传质的通道,有利于它们在反应当中的扩散,因而在这个反应中对重芳烃的处理能力提高了。具有双孔分布的介孔沸石将是化学工业中一种有应用前景的新型催化材料。
The zeolite-based hierarchical porous materials with two or more levels of porosity have drawn much attention in the field of porous materials, because of their potential applications in the industrial fields. These materials have been proven to be the promising catalysts that combine the advantage of shape selectivity with the efficient mass transport. The presence of mesopores in zeolite has improved catalytic activity and selectivity significantly in comparison with conventional zeolite catalysts. Most importantly, some zeolites with mesoporosity have been used in a number of industrial processes including the cracking of heavy oil fraction over zeolite Y, the production of cumene, hydro-isomerization of alkanes over mordenite, and the synthesis of fine chemicals over Y, ZSM-5, and beta. The enhanced catalytic activities are due to the reduction of diffusion path and easier access to the active site as the result of the introduction of mesopores into the zeolite framework. In this dissertation we used nano-sized CaCO_3 and polyvinyl butyral gel as the hard mesopore directing agent for the synthesis of mesoporous zeolite. Meanwhile, we investigated the zeolite crystallization in the polyvinyl alcohol system, and it was found that the polyvinyl alcohol in zeolite synthesis could produce mesopores within the zeolite. Lastly, the catalytic performance of mesoporous zeolite was studied in the tri-methyl benzene cracking reaction as well as toluene disproportionation and transalkylation with C_9 and C_(10) aromatics. The main results in this dissertation are as follows:
     1. The silicalite-1 and ZSM-5 crystal with secondary pores in the range of 50-100 nm was synthesized by using the nanosized CaCO_3 as a hard template. The nanosized CaCO_3 can be trapped into the MFI zeolite crystals during the crystallization process. By means of acid dissolution, the encapsulated nanoparticles were removed, giving rise to the intracrystal pores within the zeolite crystal. Characterization techniques including XRD, TEM, SEM, and N2 adsorption provided the detailed information on this hierarchical pore structure. The hydroxyl groups on the surface of CaCO_3 are essential to taking the hard template effect. The secondary pores within zeolite correspond well to the morphology of the nanosized CaCO_3, which confirms the template effect of nanosized CaCO_3. These results suggest that using CaCO_3 as a hard template may be a useful approach for the synthesis of hierarchical porous materials.
     2. The zeolite crystallized in the presence of polyvinyl alcohol solution was systematically studied. The existence of polyvinyl alcohol in zeolite synthesis did not exert negative effect on the crystallization of zeolite, meanwhile ZSM-5 and ZSM-11 could be synthesized in the polyvinyl alcohol system. The characterization technique indicated that the zeolites obtained from polyvinyl alcohol not only possessed micropore but also had additional mesopore. The mesopore volume can be controlled by the amount of polyvinyl alcohol in the synthesis.
     3. The mesoporous zeolites with BEA, MFI, and MEL topology were synthesized by using polyvinyl butyral gel as the mesopore directing agent. The PVB/silica composite was readily prepared by sol-gel technique and then used as precursor for the synthesis of mesoporous zeolites. Upon the direct hydrothermal crystallization of PVB/silica composite, the silica was transformed into zeolite, whereas the PVB gel was incorporated in the zeolite crystals. Calcination of the obtained PVB/zeolite composite yielded the opening of micropores and mesopores in zeolites, respectively. The characterization techniques confirmed that the obtained porous materials consisted of well-defined microporosity and irregular mesoporosity. Raising the ratio of PVB/SiO2 in the synthesis leaded to the increase in mesopore volume of mesoporos zeolite, indicating the mesopore volume in mesoporous zeolite is controllable.
     4. The NMR analyses on the mesoporous zeolites suggested that the mesoporosity in zeolite had little influence on the Si and Al species in the framework. Furthermore, the characterization data from the temperature-programmed desorption of ammonia (NH_3-TPD) on the H-form conventional zeolites and mesoporous zeolites confirmed that the mesoporous zeolites shown the same acidity as that of conventional zeolites. The mesoporous zeolites exhibited better catalytic activity and enhanced resistance toward deactivation in the cracking of 1,3,5-trimethylbenzene and 1,2,4-trimethylbenzene, as compared with conventional zeolites. Also, the mesoporous zeolites show improved catalytic activity in the toluene disproportionation and transalkylation with C9 and C10 aromatics. The enhanced catalytic performance is due to the presence of mesopores for increasing the diffusion rate of the reactant. Bimodal porosity as well as strong acidity will enable these materials to be a promising catalyst in a wide range of chemical industry.
引文
1. Soler-Illia Galo J. A. A., Sanchez C., Lebeau B., Patarin J., Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures, Chem. Rev., 2002,102(11): 4093-4138.
    2. McCusker L. B., Liebau F., Engelhardt G., Nomenclature of structural and compositional characteristics of ordered microporous and mesoporous materials with inorganic hosts, IUPAC Pure Appl. Chem., 2001, 73(2): 381-394.
    3.徐如人,庞文琴,无机合成与制备化学,高等教育出版社, 2001.
    4. Corma A. From microporous to mesoporous molecular sieve materials and their use in catalysis, Chem. Rev., 1997, 97(6): 2373-2420.
    5. Yu S.Y., Waku T., Iglesia E. Catalytic desulfurization of thiophene on H-ZSM-5 using alkanes as Co-Reactants. Appl. Catal. A: Gen. 2003, 242(19): 111-121.
    6. Inglezakis V. J., Poulopoulos S. G., adsorption, ion exchange and catalysis, Elsevier, 2006.
    7. Tsai W. T., Hsu H. C., Su T. Y., Lin K. Y., Lin C. M.,Adsorption characteristics of bisphenol-A in aqueous solutions onto hydrophobic zeolite, J. Colloid Interface Sci., 2006, 299(2): 513-519.
    8. Swanson, M. E., Greene H. L., Qutubuddin S., Reactive sorption of chlorinated VOCs on ZSM-5 zeolites at ambient and elevated temperatures. Appl. Catal. A: Environ., 2004, 52(2): 91-108.
    9. Clark J. H., Solid acids for green chemistry. Acc. Chem. Res., 2002, 35(9): 791–797.
    10. Xiao Q., Yang H., Cheng Y. F., Zhou Z. G., Chen Z. G., Li F. Y., Yi T., Huang C. H. Ionic liquid based electrolyte with mesoporous silica SBA-15 as framework for quasi-solid-state dye-sensitized solar cells, Chin. J. Chem., 2006, 24(12): 1737-1740.
    11. Wu C., Gao Q., Hu J., Chen Z., Shi W., Rapid preparation, characterization and hydrogen storage properties of pure and metal ions doped mesoporous MCM-41, Microporous Mesoporous Mater., 2009, 117(1-2): 165-169.
    12. Wan Y., Yang H., Zhao D.,“Host-Guest”Chemistry in the synthesis of ordered nonsiliceous mesoporous materials, Acc. Chem. Res., 2006, 39(7): 423-432.
    13. Soni S. S., Henderson M. J., Bardeau J., Gibaud A., Visible-Light photocatalysis in titania-based mesoporous thin films, Adv. Mater., 2008, 20(8): 1493-1498.
    14. Stefan K., Porous Materials: Introduction to materials chemistry, properties, and applications, Wiley, 2009.
    15 . Chaudharya Y. S., Mannab S. K., Mazumdarb S., Khushalania D., Protein encapsulation into mesoporous silica hosts, Microporous Mesoporous Mater., 2008, 109(1-3): 535-541.
    16. Stefano L. D., Rotiroti L., Rea I., Moretti L., Francia G. D., Massera E., Lamberti A., Arcari P., Sanges C., Rendina I., Porous silicon-based optical biochips, J. Opt. A: Pure Appl. Opt. 2006, 8: 540-544.
    17. Dancil K. S., Greiner D. P., Sailor, M. J., A porous silicon optical biosens_ or: detection of reversible binding of IgG to a protein A-modified surface, J. Am. Chem. Soc., 1999, 121(34): 7925-7930.
    18 . Wang S. B., Ordered mesoporous materials for drug delivery, Microporous Mesoporous Mater., 2009, 117(1-2): 1-9
    19. Cundy C. S., Cox P. A., The hydrothermal synthesis of zeolites: history and development from the earliest days to the present time,Chem. Rev., 2003, 103(3): 663-702.
    20. Smit B., Maesen T. L. M., Molecular simulations of zeolites: adsorption, diffusion, and shape selectivity, Chem. Rev., 2008, 108(10): 4125-4184.
    21 . Okuhara T., Water-tolerant solid acid catalysts, Chem. Rev., 2002, 102(10): 3641-3666.
    22. Ferey G., Microporous Solids: From organically templated inorganic skeletons to hybrid frameworks ecumenism in chemistry, Chem. Mater., 2001, 13(10): 3084-3098.
    23. Vos D. E, D., Dams M., Sels B. F., Jacobs P. A., Ordered mesoporous and microporous molecular sieves functionalized with transition metal complexes as catalysts for selective organic transformations, Chem. Rev., 2002, 102(10):3615-3640.
    24. Santen R. A. V., Kramer G. J., Reactivity theory of zeolitic broensted acidic sites, Chem. Rev., 1995, 95(3): 637-660.
    25. Sheldon R. A., Dakka J., Heterogeneous catalytic oxidations in the manufacture of fine chemicals, Catal.Today, 1994, 19(2): 215-245.
    26. Fan W., Duan R. G., Yokoi Y., Wu P., Kubota Y., Tatsumi T., Synthesis, crystallization mechanism and catalytic properties of titanium-rich TS-1 free of extraframework titanium species, J. Am. Chem. Soc., 2008, 130(31): 10150-10164.
    27. Marthala V. R. R., Jiang Y., Huang J., Wang W., Gl?ser R., Hunger M, Beckmann rearrangement of 15N-cyclohexanone oxime on zeolites silicalite-1, H-ZSM-5, and H-[B]ZSM-5 studied by solid-state NMR spectroscopy, J. Am. Chem. Soc., 2006, 128(46): 14812-14813.
    28. Corma A., Nemeth L. T., Renz M., Valencia S. Sn-zeolite beta as a heterogeneous chemoselective catalyst for Baeyer–Villiger oxidations, Nature, 412: 423-425.
    29. Lacheen H., Iglesia, E., Synthesis and structure of isolated V(V)-Oxo species in V-ZSM5 prepared by VOCl3 sublimation, J. Phys. Chem. B, 2006, 110(11): 5462-5472.
    30. Lacheen H. S., Iglesia, E., Structure of zirconium-exchanged H-ZSM5 prepared by vapor exchange of ZrCl4, Chem. Mater., 2007, 19(7): 1877-1882.
    31. Lacheen H., Iglesia, E., Stability, structure, and oxidation state of Mo/H-ZSM5 during reactions of CH4 and CH4-CO2 mixtures. J. Catal., 2005, 230(1): 173-185.
    32. Li X., Iglesia E., Pt/[Fe]ZSM-5 Modified by Na and Cs Cations: an active and selective catalyst for dehydrogenation of n-Alkanes to n-Alkenes, Chem . Commun., 2008, 5: 594-595.
    33. Zhan, B.-Z., Modén, B., Dakka, J., Santiesteban, J., and Iglesia, E., Catalytic oxidation of n-Hexane on Mn-exchanged zeolites: turnover rates, regioselectivity, and spatial constraints, J. Catal., 2007, 245(2): 316-325.
    34 . Li, W., Yu, S.Y., Meitzner, G. D., Iglesia, E., Structure and properties of Cobalt-exchanged H-ZSM5 catalysts for dehydrogenation and dehydrocyclization ofalkanes. J. Phys. Chem. B, 2001, 105(6): 1176-1184.
    35. Fricke R., Kosslick h., Lischke G., Richter M., Incorporation of gallium into zeolites: syntheses, properties and catalytic application, Chem. Rev., 2000, 100(6): 2303-2406.
    36. Modén, B., DaCosta, P., Lee, D.K., Iglesia, E., Kinetics and mechanism of steady-state NO decomposition reactions on Cu-ZSM5. J. Catal. 2002, 209(1): 75-86.
    37. Corma, A. Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions, Chem. Rev., 1995, 95(3): 559-614.
    38. Davis, M. E. Zeolite-based catalysts for chemicals synthesis, Micorpor. Mesopor. Mater. 1998, 21(4-6): 173-182.
    39. Lobo, R. F. et al. Characterization of the extra-large-pore zeolite UTD-1, J. Am. Chem. Soc., 1997, 119(36): 8474-8484.
    40. Busca G., Acid catalysts in industrial hydrocarbon chemistry, Chem. Rev., 2007,
    107(11): 5366-5410.
    41. St?cker M., Gas phase catalysis by zeolites, Micorpor. Mesopor. Mater., 2005, 82(3): 257-292.
    42. Degnan Jr T. F., Recent progress in the development of zeolitic catalysts for the petroleum refining and petrochemical manufacturing industries, Stud. Surf. Sci. Catal., 2007, 170: 54-65.
    43.闵恩泽,杜泽学,石化催化技术的技术进步与技术创新-总结历史经验指导未来,当代石油石化, 2002, 10(11): 1-6.
    44.张怀科,郝代军,郭益群,液化石油气制芳烃技术的研究与应用进展,天然气与石油, 2006, 24(2): 35-39.
    45.史建公,高辉,曹钢,卢冠忠,分子筛催化合成乙苯工业化技术进展,当代石油石化, 2003, 11(9): 20-23.
    46. Armor J. N., New catalytic technology commercialized in the USA during the 1990s, Appl. Catal., A, 2001, 222(1-2): 407-426.
    47. Venuto P. B., Organic catalysis over zeolites: A perspective on reaction paths withinmicropores, Microporous Mater., 1994, 2(5): 297-411.
    48. Campbell S. M., Bibby D. M., Coddington J. M., Howe R. F., Dealumination of HZSM-5 zeolites: II. methanol to gasoline conversion, J. Catal., 1996, 161(1): 350-358.
    49. Kaeding W. W., Chu C., Young L. B., Butter S. A., Shape-selective reactions with zeolite catalysts: II. Selective disproportionation of toluene to produce benzene and p-Xylene, J. Catal., 1981, 69(2): 392-398.
    50. Li Y., Bai E., Duan Q., Recent progress of aromatics production technologies petrochemical technology 2005, 34(4): 309-315.
    51. Dwyer F. G., Lewis P. J., Schneider, F. H., Efficient, nonpolluting ethylbenzene process, Chem. Eng., 1976, 83(1): 90-91.
    52. Romano U., Esposi A., Maspero F., et a1. Selective oxidation with Ti-Silicalite, Stud. Surf. Sci. Catal, 1990, 55: 33-38.
    53. Guan C., Wang K., Yang C., Zhao X. S., Characterization of a zeolite-templated carbon for H2 storage application, Micorpor. Mesopor. Mater., 2008, 118(1-3): 503-507
    54. Rolison D. R., Zeolite-modified electrodes and electrode-modified zeolites, Chem. Rev., 1990, 90(5): 867–878.
    55. Smith J. V., Topochemistry of zeolites and related materials. 1. Topology and geometry, Chem. Rev., 1988, 88(1): 149-182.
    56. Demontis P., Suffritti G. B., Structure and dynamics of zeolites investigated by molecular dynamics, Chem. Rev., 1997, 97(8): 2845-2878.
    57. Structure type codes, Zeolites, 1996, 17: 5-211
    58. Meier W.M., Atlas of zeolite structure types: past - present - future, Stud. Surf. Sci. Catal., 1991, 65: 247-256.
    59. Ríos C.A., Williams C.D., Fullen M.A., Nucleation and growth history of zeolite LTA synthesized from kaolinite by two different methods, Appl. Clay Sci., 2009, 42(3-4): 446-454.
    60. Lillerud K. P., Raeder J. H., On the synthesis of erionite-offretite intergrowth zeolites,Zeolites, 1986, 6(6): 474-483.
    61. Zhang J, Singh R, Webley P. A., Alkali and alkaline-earth cation exchanged chabazite zeolites for ba adsorption sed CO2 capture, Micorpor. Mesopor. Mater., 2008, 111(1-3): 478-487.
    62. Kerr D. T., Zeolite ZK-5: A new molecular sieve, Science 1963, 140: 1412-1413.
    63. Ikeda T., Kodaira T., Oh T., Nisawa A., K+ ion distribution in zeolite ZK-4’s with various Si/Al ratios and the contribution of K+ ions to K cluster formation, Micorpor. Mesopor. Mater., 2003, 57(1-3): 249-261.
    64. Kühl G. H., Schmitt K. D., A reexamination of phosphorus-containing zeolites ZK-21 and ZK-22 in light of SAPO-42, Zeolites, 1990, 10(1): 2-7.
    65. Degnan T. F., Chitnis G. K., Schipper P. H., History of ZSM-5 fluid catalytic cracking additive development at Mobil, Micorpor. Mesopor. Mater., 2000, 35-36: 245-252
    66. Yoo K, Kashfi R, Gopal S et al. TEABr directed synthesis of ZSM-12 and its NMR characterization, Micorpor. Mesopor. Mater., 2003, 60(1-3): 57-68.
    67. Ernst S, Kumar R., Weitkamp J., Synthesis and catalytic properties of zeolite ZSM-23, Catal. Today, 1988, 3(1): 1-10.
    68. Suzuki K., Hayakawa T., The effects of seeding in the synthesis of zeolite ZSM-48 in the presence of tetramethylammonium ion, Micorpor. Mesopor. Mater., 2005, 77(2-3): 131-137.
    69. Terasaki O., Ohsuna T., Sakuma H., Watanabe D., Nakagawa Y., Medrud R. C., Direct observation of“pure MEL type”zeolite, Chem. Mater., 1996, 8(2): 463-468.
    70. Martins L., Vieira K. M., Rios L. M., Cardoso D., Basic catalyzed Knoevenagel condensation by FAU zeolites exchanged with alkylammonium cations, Catal. Today, 2008, 133-135: 706-710.
    71 . Sharma P., Rajaram P., Tomar R., Synthesis and morphological studies of nanocrystalline MOR type zeolite material, J. Colloid Interface Sci., 2008, 325(2): 547-557.
    72. Pashkova V., Góra-Marek K., Sarv P., Derewiński M., Formation and nature of active sites in the FAU-and BEA-composites, Stud. Surf. Sci. Catal., 2008, 174: 845-848.
    73. Arous W., Tounsi H., Djemel S., Ghorbel A., Delahay G., Catalytic activity of Cu-offretite catalysts prepared by solid state ion exchange in the reduction of NO with NH3 Stud. Surf. Sci. Catal., 2005, 158: 1883-1890.
    74. Chiyoda O., Davis M. E., Adsorption studies with gmelinite zeolites containing mono-, di- and tri-valent cations, Micorpor. Mesopor. Mater., 2000, 38(2-3): 143-149.
    75. Tajbakhsh M., Mohajerani B., Heravi M. M., Ahmadi A. N., Natural HEU type zeolite catalyzed Biginelli reaction for the synthesis of 3,4-dihydropyrimidin-2(1H) one derivatives, J. Mol. Catal. A: Chem. A: Chemical, 2005, 236(1-2): 216-219.
    76. Rodriguez-Fuentes G., Ménorval L. C. D., Reguera E., Chávez Rivas F., Solid state multinuclear NMR study of iron species in natural and modified clinoptilolite from Tasajera deposit , Micorpor. Mesopor. Mater., 2008, 111(1-3): 577-590.
    77. Inaoka W., Kasahara S., Fukushima T., Igawa K., Synthesis and characterisation of ferrisilicate zeolites, Stud. Surf. Sci. Catal., 1991, 60: 37-41.
    78. Li J.-P., Fan W.-G., Xu H., Liu L., Dong J.-X, Synthesis of zeolite ZSM-35 bulk material from aluminosilicate amorphous sinter, Stud. Surf. Sci. Catal., 2006, 162: 881-888.
    79. Hydrocarbon conversion over ZSM-38, United States Patent 4105541.
    80. Prasad P.S.R., Prasad K. S., Murthy S. R., In-situ FTIR study of dehydration of natural Fe-stilbite, Stud. Surf. Sci. Catal., 2005, 158: 813-820.
    81. Sanders J. V., Crystallographic faulting in the mordenite group zeolites, Zeolites, 1985, 5(2): 81-90.
    82. Kantiranis N., Filippidis A., Mouhtaris T., Paraskevopoulos K. M., Zorba T., Squires C., Charistos D., EPI-type zeolite synthesis from Greek sulphocalcic fly ashes promoted by H2O2 solutions, Fuel, 2006, 85(3): 360-366.
    83. http://www.iza-online.org/
    84. Davis M. E., New vistas in zeolite and molecular sieve catalysis, Acc. Chem. Res., 1993, 26(3): 111-115.
    85. Akporiaye D. E., Towards a rational synthesis of large-pore zeolite-type Materials, Angew. Chem. Int. Ed., 1998, 37(18): 2456-2457.
    86 . Zwijnenburg M. A., Bromley S. T., Jansen J. C., Maschmeyer T., Toward understanding extra-large-pore zeolite energetics and topology: A polyhedral approach, Chem. Mater., 2004, 16(1): 12-20.
    87. Yang, G. Y.; Sevov S. C., Zinc phosphate with gigantic pores of 24 tetrahedra. J. Am. Chem. Soc. 1999, 121(36): 8389-8390.
    88. Lobo R F, Tsapatsis M., Freyhardt C. C. et al., Characterization of the extra-large-pore zeolite UTD-1. J. Am. Chem. Soc., 1997, 119(36): 8474-8484.
    89. Wagner P., Yoshikawa M., Lovallo M. et al., CIT-5: a high-silica zeolite with 14-ring pores. Chem. Commun., 1997, 22: 2179-2180.
    90. Yoshikawa M., et al. Synthesis, characterization, and structure solution of CIT-5, a new, high-silica, extra-large-pore molecular sieve. J. Phys. Chem. B, 1998, 102(37): 7139-7147.
    91. M.E.Davis, Ordered porous materials for emerging applications Nature, 2002, 417: 813-821.
    92. Wan Y., Zhao D., On the controllable soft-templating approach to mesoporous silicates, Chem. Rev., 2007, 107(7): 2821-2860.
    93. Kresge C. T., Leonowlcz M. E., Roth W. J. et al., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature, 1992, 359: 710-712.
    94. Beck J. S., Vartuli J. C., Roth W. J., Leonowicz M. E., Kresge C. T., Schmitt K. D., Chu C. T. W., Olson D. H., Sheppard E. W. et al., A new family of mesoporous molecular sieves prepared with liquid crystal templates, J. Am. Chem. Soc.; 1992, 114(27): 10834-10843.
    95. Vartuli J. C., Kresge C. T., Leonowicz M. E., Chu A. S., McCullen S. B., Johnson I. D., Sheppard E. W., Synthesis of mesoporous materials: liquid-crystal templating versus intercalation of layered silicates, Chem. Mater.; 1994, 6(11): 2070-2077.
    96. Huo Q. S., Margolese D. I., Stucky G. D., et al. Generalized synthesis of periodic surfactant/inorganic composite materials, Nature, 1994, 368: 317-321.
    97. Inagaki S.,Fukushima Y., Kuroda K., Synthesis of highly ordered mesoporousmaterials from a layered polysilicate, J. Chem. Soc. Chem. Commun., 1993: 680-682.
    98. Goltner C. G., Antonietti M., Mesoporous materials by templating of liquid crystalline phase, Adv. Mater. 1997, 9(5): 431-436.
    99. Monnier A., Schuth F., Huo Q., et al., Cooperative formation of inorganic-organic in terf aces in the synthesis of silicate mesostructures, Science, 1993, 261: 1299-1301.
    100. Huang L., Guo W., Deng P., Xue Z., Li Q., Investigation of synthesizing MCM-41/ZSM-5 composites, J. Phys. Chem. B, 2000, 104(1): 2817-2823.
    101. Kloetstra K. R., Zandbergen H. W., Jansen J. C., Van Bekkum H., Overgrowth of mesoporous MCM-41 on faujasite, Micropor. Mater. 1996, 6(5-6): 287-293.
    102. Kloetstra K. R., Van Bekkum H., Jansen J. C., Mesoporous material containing framework tectosilicate by pore–wall recrystallization, J. Chem. Soc., Chem. Commun. 1997(23): 2281-2282.
    103. Karlsson A., Stocker M., Schmidt R., Composites of micro- and mesoporous materials: simultaneous syntheses of MFI/MCM-41 like phases by a mixed template approach, Micropor. Mesopor. Mater. 1999, 27(2-3): 181-192.
    104. Prokesova P., Mintova S., Cejka J. et al., Preparation of nanosized micro/ mesopor_ ous composites via simultaneous synthesis of Beta/MCM-48 phases, Micropor. Mesopor. Mater., 2003(1-3): 64, 165-174.
    105. Poladi R.H. P. R., Christopher C. L., Oxidation of octane and cyclohexane using a new porous substrate, Ti-MMM-1, Micropor. Mesopor. Mater., 2002, 52(1): 11-18.
    106. Liu Y., Zhang W., Pinnavaia T. J., Steam-stable aluminosilicate mesostructures assembled from zeolite type Y seeds, J. Am. Chem. Soc., 2000, 122(36): 8791-8792.
    107. Zhang Z., Han Y., Zhu L. et al. Strongly acidic and high-temperature hydrothermally stable mesoporous aluminosilicates with ordered hexagonal structure, Angew. Chem. Int. Ed. Eng., 2001, 40(7): 1258-1262.
    108. Di Y., Yu Y., Sun Y. Y. et al., Synthesis, characterization, and catalytic properties of stable mesoporous aluminosilicates assembled from preformed zeolite L precursors, Micropor. Mesopor. Mater., 2003, 62(3): 221-228.
    109. Xiao F. S., Han Y., Meng X. J. et al. Hydrothermally stable ordered mesoporoustitanosilicates with highly active catalytic sites, J. Am. Chem. Soc., 2002, 124(6): 888-889.
    110. Guo W., Huang L., Deng P. et al. Characterization of Beta/MCM-41 composite molecular sieve compared with the mechanical mixture, Micropor. Mesopor. Mater., 2001,44-45: 427-434.
    111. Goto Y., Fukushima Y., Ratu P. et al., Mesoporous material from zeolite, J. Por. Mater., 2002, 9(1): 43-48.
    112.李工,阚秋斌,吴通好等,含有沸石结构单元体介孔分子筛的合成及催化性能,化学学报, 2002, 60(5): 759-763.
    113. Sonwane C. G., Li Q., Molecular simulation of RMM: ordered mesoporous SBA-15 type material having microporous ZSM-5 walls, J. Phys. Chem. B 2005, 109(38): 17993-17997
    114. Trong On D., Kaliaguine S., Large-pore mesoporous materials with semi-crystalline zeolitic frameworks, Angew. Chem., Int. Ed. 2001, 40(17): 3248-3251.
    115. Trong On D., Kaliaguine S., Ultrastable and highly acidic, zeolite-coated mesoporous aluminosilicates, Angew. Chem., Int. Ed. 2002, 41(6): 1036-1040.
    116. Groen J.C., Bach T. U., Ziese A. M., Paulaime-van Donk K.P., de Jong J.A., Moulijn J. A., Pérez-Ramírez J., Creation of Hollow Zeolite Architectures by Controlled Desilication of Al-Zoned ZSM-5 Crystals, J. Am. Chem. Soc. 2005, 127(31): 10792-10793.
    117. Groen J. C., Peffer L. A. A., Moulijn J. A., Pérez-Ramírez J., Desilication: on the controlled generation of mesoporosity in MFI zeolites, J. Mater. Chem. 2006, 16: 2121-2131.
    118. Groen J. C., Peffer L. A. A., Moulijn J. A., Pérez-Ramírez J., Mechanism of hierarchical porosity development in MFI zeolites by desilication: the role of aluminium as a pore-directing agent, Chem. Eur. J. 2005, 11(17): 4983-4994.
    119. Groen J. C., Maldonado L., Moulijn J. A., Pérez-Ramírez J., On the role of iron in preparation of mesoporous Fe-MFI zeolites via desilication, Stud. Surf. Sci. Catal. 2006, 162: 267-274.
    120. Johan C. G., Sònia A., Luis A. V., Pérez-Ramírezb J., Mesoporous beta zeolite obtained by desilication. Micropor. Mesopor. Mater., 2008, 114(1-3): 93-102
    121. Kato H., Minami T., Kanazawa T., Sasaki Y., Mesopores created by platinum nanoparticles in zeolite crystals, Angew. Chem. Int. Ed. 2004, 43(10): 1251-1254.
    122. Claudiu C. P., Schmidt W., Generation of hierarchical pore systems in the titanosilicate ETS-10 by hydrogen peroxide treatment under microwave irradiation, Chem. Commun., 2006: 882-884.
    123. Pavel C. C., Palkovits R., Schüth F., Schmidt W., The benefits of mesopores in ETS-10 on the vapor-phase Beckmann rearrangement of cyclohexanone oxime, J. Catal. 2008, 254(1): 84-90.
    124 . Egeblad K., Christensen C. H., Kustova M., Christensen C. H., templating mesoporous zeolites,Chem. Mater., 2008, 20(3): 946-960.
    125. Kustova M., Egeblad K., Christensen C. H., Kustov A.L., Christensen C.H., Hierarchical zeolites: progress on synthesis and characterization of mesoporous zeolite single crystal catalysts, Stud. Surf. Sci. Catal, 2007, 170: 267-275.
    126. Kim S. S., Shah J., Pinnavaia T. J., Colloid-imprinted carbons as templates for the nanocasting synthesis of mesoporous ZSM-5 zeolite, Chem. Mater. 2003, 15(8): 1664-1668.
    127. Egeblad K., Kustova M., Klitgaard S. K., Zhu K., Christensen C. H., Mesoporous zeolite and zeotype single crystals synthesized in fluoride media, Micropor. Mesopor. Mater. 2007,101(1-2): 214-223.
    128. Yu M., Kustova A. L., Kustov C.H., Aluminum-rich mesoporous MFI- type zeolite single crystals, Stud. Surf. Sci. Catal., 2005, 158: 255-262.
    129. Zhu K., Egeblad K., Christensen C. H., Mesoporous carbon prepared from carbohydrate as hard template for hierarchical zeolites, Eur. J. Inorg. Chem. 2007, 25: 3955-3960.
    130. Tong Y., Zhao T., Li F., Wang Y., Synthesis of monolithic zeolite Beta with hierarchical porosity using carbon as a transitional template, Chem. Mater.; 2006, 18(18): 4218-4220.
    131. Kustova M., Egeblad K., Zhu K., Christensen C. H., Versatile route to zeolite single crystals with controlled mesoporosity: in-situ sugar decomposition for templating of hierarchical zeolites, Chem. Mater. 2007, 19(12): 2915-2917.
    132. Jacobsen C. J. H.; Madsen C.; Houzvicka J.; Schmidt I.; Carlsson A., Mesoporous zeolite single crystals, J. Am. Chem. Soc. 2000, 122(29): 7116-7117.
    133. Kustova M. Y., Hasselriis P., Christensen C. H., Mesoporous MEL–type zeolite single crystal catalysts, Catal. Lett. 2004, 96(3-4): 205-210.
    134. Schmidt I., Krogh A., Wienberg K., Carlsson A., Brorson M., Jacobsen C. J. H., Catalytic epoxidation of alkenes with hydrogen peroxide over first mesoporous titanium-containing zeolite Chem. Commun. 2000: 2157-2158.
    135. Pavla?kováZ., Ko?ováG., ?ilkov N., Zukal A., ?ejka J., Formation of Mesopores in ZSM-5 by Carbon Templating, Stud. Surf. Sci. Catal. 2006, 162: 905-912.
    136 . Kustova M., Egeblad K., Christensen C.H., Kustov A.L., Christensen C.H., Hierarchical zeolites: progress on synthesis and characterization of mesoporous zeolite single crystal catalysts, Stud. Surf. Sci. Catal. 2007, 170: 267-275.
    137. Jinka K. M., Lee S., Park S., Jasra R. V., Microwave synthesized mesoporous Tin MFI as efficient catalyst for Baeyer-Villiger Oxidation of cyclic ketones, Stud. Surf. Sci. Catal. 2008, 174: 1187-1190.
    138. Johannsen K., Boisen A., Brorson M., Schmidt I., Jacobsen C. J. H., Preparation and characterization of mesoporous TS-1 catalyst Stud. Surf. Sci. Catal. 2002, 142: 109-115.
    139. Moushey D., Wang F., Smirniotis P. G., Synthesis and Characterization of Mesoporous Structures Using Carbon Particles Stud. Surf. Sci. Catal. 2008, 174: 421-424.
    140. Zhu K., Egeblad K., Christensen C. H., Tailoring the porosity of hierarchical zeolites by carbon-templating, Stud. Surf. Sci. Catal. 2008, 174: 285-288.
    141. Donk A. M. P., Kooymanb P.J., Jansen J.C., The introduction of carbon oligomers into the framework of Silicalite-1, Stud. Surf. Sci. Catal. 2005, 158: 351-358.
    142. Janssen A. H., Schmidt I., Jacobsen C. J. H., Koster A. J., de Jong K. P., Exploratorystudy of mesopore templating with carbon during zeolite synthesis, Micropor. Mesopor. Mater., 2003, 65(1): 59-65.
    143. Schmidt I., Boisen A., Gustavsson E., Stahl K., Pehrson S., Dahl S., Carlsson A., Jacobsen C. J. H., Carbon nanotube templated growth of meso-porous zeolite single crystals, Chem. Mater. 2001, 13(12): 4416-4418.
    144. Boisen A., Schmidt I., Carlsson A., Dahl S., Brorson M., Jacobsen C. J. H., TEM stereo-imaging of mesoporous zeolite single crystals, Chem. Commun. 2003: 958-959.
    145. Tao Y., Kanoh H., Kaneko K., ZSM-5 monolith of uniform mesoporous channels, J. Am. Chem. Soc., 2003, 125(20): 6044-6045.
    146. Tao Y., Kanoh H., Kaneko K., Uniform mesopore-donated zeolite Y using carbon aerogel Templating, J. Phys. Chem. B, 2003, 107(40): 10974-10976.
    147. Tao Y., Kanoh H., Hanzawa Y., Kaneko K., Template synthesis and characterization of mesoporous zeolites, Colloids Surf., A, 2004, 241(1-3): 75-80.
    148. Tao Y., Hattori Y., Matsumoto A., Kanoh H., Kaneko K., Comparative Study on Pore Structures of Mesoporous ZSM-5 from Resorcinol-Formaldehyde Aerogel and Carbon Aerogel Templating, J. Phys.Chem. B, 2005, 109(1): 194-199.
    149. Li W., Lu A., Palkovits R., Schmidt W., Spliethoff B., Schüth F., Hierarchically structured monolithic silicalite-1 consisting of crystallized nanoparticles and its performance in the Beckmann rearrangement of cyclohexanone oxime, J. Am. Chem. Soc. 2005, 127(36): 12595-12600.
    150 . Yang Z., Xia Y., Mokaya R., Zeolite ZSM-5 with unique supermicropores synthesized using mesoporous carbon as a template, Adv. Mater. 2004, 16(8): 727-732.
    151. Tao Y., Kanoh H., Kaneko K., Comment: questions concerning the nitrogen adsorption data analysis for formation of supermicropores in ZSM-5 zeolites, Adv. Mater., 2005, 17(23): 2789-2791.
    152. Yang Z., Xia Y., Mokaya R., Reply: mesoporous zeolite ZSM-5 nanocast from mesoporous carbon templates, Adv. Mater. 2005, 17(23): 2791-2792.
    153. Sakthivel A., Huang S., Chen W., Lan Z., Chen K., Kim T., Ryoo R., Chiang A. S. T.,Liu S., Replication of mesoporous aluminosilicate mol ecular sieves (RMMs) with zeolite framework from mesoporous carbons (CMKs). Chem Mater. 2004, 16(16): 3168-3175.
    154. Cho S. I., Choi S. D., Kim J.-H., Kim G.-J., Synthesis of ZSM-5 films and monoliths with bimodal micro/mesoscopic structures, Adv. Funct. Mater., 2004, 14(1): 49-54.
    155. Ryoo R., Joo S. H., Jun S., Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation, J. Phys. Chem. B, 1999, 103(37): 7743-7746.
    156. Jun S., Joo S. H., Ryoo R., Kruk M., Jaroniec M., Liu Z., Ohsuna T., Terasaki O., Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure, J. Am. Chem. Soc. 2000, 122(43): 10712-10713.
    157. Ryoo R., Joo S. H., Kruk M., Jaroniec M., Ordered mesoporous carbons, Adv. Mater. 2001, 13(9): 677-681.
    158. Kim S.-H., Lee C.-Y., Kim G.-J., Syntheses of ZSM-5 and TS-1 zeolites with bimodal micro/mesoscopic structures, Stud. Surf. Sci. Catal. 2005,158: 407-414.
    159. Kustova M. Y., Kustov A. L., Christensen C. H., Aluminum-rich Mesoporous MFI-type Zeolite Single Crystals, Stud. Surf. Sci. Catal. 2005, 158: 255-262.
    160. Valtchev V. P., Smaihi M., Faust A., Vidal L., Equisetum arvense templating of Zeolite Beta macrostructures with hierarchical porosity, Chem. Mater. 2004, 16(7): 1350-1355.
    161. Dong A.G., Wang Y. J., Tang Y., Ren N., Zhang Y. H., Yue Y. H., Gao Z., Zeolitic tissue through wood cellular templating, Adv Mater, 2002, 14(12): 926-929.
    162. Zhang B., Davis S. A., Mann S., Starch gel templating of spongelike macroporous silicalite monoliths and mesoporous films, Chem. Mater. 2002, 14(3): 1369-1375.
    163. Zhang B.J., Davis S.A., Mendelsonb N. H., Mann S., Bacterial templating of zeolite fibres with hierarchical structure, Chem. Commun., 2000: 781-782.
    164. Brian T., Holland L. A., Andreas S., Dual templating of macroporous silicates with zeolitic microporous frameworks, J. Am. Chem. Soc. 1999, 121(17): 4308-4309.
    165. Y.J. Lee, S. Lee, Y.S. Park, K.B. Yoon, Synthesis of large monolithic zeolite foamswith variable macropore architectures, Adv Mater, 2001,13(16): 1259-1263.
    166. Xiao F. X., Wang L. F., Yin C. Y., Lin K. F., Di Y., Li J. X., Xu R. R., Su D. S., Schl?gl R, Yokoi T., Tatsumi T., Catalytic properties of hierarchical mesoporous zeolites templated with a mixture of small organic ammonium salts and mesoscale cationic polymers, Angew. Chem. Int. Ed. 2006, 45(19): 3090-3093.
    167. Liu S., Cao X., Li L., Li C., Ji Y., Xiao F., Preformed zeolite precursor route for synthesis of mesoporous X zeolite colloids and surfaces: Physicochem. Eng. Aspects, 2008, 318(1-3): 269-274.
    168. Wang, H., Pinnavaia T. J., MFI Zeolite with Small and Uniform Intracrystal Mesopores, Angew. Chem. Int. Ed. 2006, 118(45): 7765-7768.
    169. Wang H., Pinnavaia T. J., ZSM-5 with intracrystal mesopores for catalytic cracking, Stud. Surf. Sci. Catal. 2007, 170: 1529-1534.
    170. Choi M., Cho S. H., Srivastava R., Venkatesan C., Choi D. H., Ryoo R., Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity, Nature Mater., 2006, 5: 718-723.
    171. Chmelka B. F., Large molecules welcome, Nature Mater. 2006, 5: 681-682.
    172. Choi, M., Rrivastava R., Ryoo R., Organosilane surfactant-directed synthesis of mesoporous aluminophosphates constructed with crystalline microporous frameworks, Chem. Commun., 2006: 4380-4382.
    173. Rrivastava R., Choi M., Ryoo R., Mesoporous materials with zeolite framework: remarkable effect of the hierarchical structure for retardation of catalyst deactivation, Chem. Commun., 2006: 4489-4491.
    174. Anita B, Miros?aw D, Preparation of MFI type zeolite with hierarchical pores system as new supports for deposition of metal clusters, Stud. Surf. Sci. Catal. 2008, 174: 149-154.
    175. Christensen C.H., Schmidt I., Carlsson A., Johannsen K., Herbst K., Crystals in crystals–nanocrystals within mesoporous zeolite single crystals, J. Am. Chem. Soc., 2005, 127(22): 8098-8102.
    176. Tang T., Yin C., Wang L., Ji Y., Xiao F., Superior performance in deep saturation ofbulky aromatic pyrene over acidic mesoporous Beta zeolite-supported palladium catalyst, J. Catal. 2007, 249(1): 111-115.
    177. Rovik A. K., Hagen A., Schmidt I., Dahl S., Chorkendorff I., Christensen C. H., Dehydrogenation of light alkanes over rhenium catalysts on conventional and mesoporous MFI supports, Catal. Lett., 2006, 109(3-4): 153-156.
    178. Groen J. C., Zhu W., Brouwer S., Huynink S. J., Kapteijn F., Moulijn J. A., Pérez-Ramírez J., Direct demonstration of enhanced diffusion in mesoporous ZSM-5 zeolite obtained via controlled desilication, J. Am. Chem. Soc. 2007, 129(2): 355-360.
    179. Christensen, C. H., Johannsen, K., T?rnqvist, E., Schmidt, I., Tops?e, H., Christensen, C. H., Mesoporous zeolite single crystal catalysts: diffusion and catalysis in hierarchical zeolites, Catal. Today, 2007, 128(3-4): 117-122.
    180. Iver Schmidt, Anne Krogh, Katrine Wienberg, Anna Carlsson, Michael Brorsona, Claus, J. H. Jacobsen,Catalytic epoxidation of alkenes with hydrogen peroxide over first mesoporous titanium-containing zeolite, Chem. Commun., 2000: 2157-2158.
    181. Gopalakrishnan S., Lopez S., Zampieri A., Schwieger W., Selective oxidation of benzene to phenol over H-ZSM-5 catalyst: role of mesoporosity on the catalyst deactivation, Stud. Surf. Sci. Catal. 2008, 174: 1203-1206.
    182. Christensen C. H., Johannsen K., Schmidt I., Christensen C. H., Catalytic benzene alkylation over mesoporous zeolite single crystals: improving activity and selectivity with a new family of porous materials, J. Am. Chem. Soc., 2003, 125(44): 13370-13371.
    183. Schmidt I., Krogh A., Wienberg K., Carlsson A., Brorson M., Jacobsen C. J. H., Catalytic epoxidation of alkenes with hydrogen peroxide over first mesoporous titanium-containing zeolite, Chem. Commun., 2000: 2157-2158.
    184. Kustov A. L., Hansen T. W., Kustova M., Christensen C. H., Selective catalytic reduction of NO by ammonia using mesoporous Fe containing HZSM-5 and HZSM-12 zeolite catalysts: an option for automotive applications, Appl. Catal. B, 2007, 76(3-4): 311-319.
    185. Kustov A. L., Egeblad K., Kustova M., Hansen T. W., Christensen C. H., Mesopor_ ous Fe-containing ZSM-5 zeolite single crystal catalysts for selective catalytic reduction of nitric oxide by ammonia, Top. Catal., 2007, 45(1-4): 159-163.
    186. Kustova M., Rasmussen S. B., Kustov A. L., Christensen C. H., Direct NO decomposition over conventional and mesoporous Cu-ZSM-5 and Cu-ZSM-11 catalysts: improved performance with hierarchical zeolites, Appl. Catal. B. 2006, 67(1-2): 60-67.
    187 . Kustova, M., Kustov, A., Christiansen, S. E., Leth, K. T., Rasmussen, S. B., Christensen, C. H., Cu-ZSM-5, Cu-ZSM-11, and Cu-ZSM-12 catalysts for direct NO decomposition, Catal. Commun., 2006, 7(9): 705-708.
    188. Falsig, H., Bligaard, T., Christensen, C. H., N?rskov, J. K., Direct NO decomposition over stepped transition metal surfaces, Pure Appl. Chem. 2007, 79(11): 1895-1903.
    189. Fang Y., Hu H., Mesoporous TS-1: nanocasting synthesis with CMK-3 as template and its performance in catalytic oxidation of aromatic thiophene, Catal. Commun., 2007, 8(5): 817-820.
    190. Schmidt I., Christensen C.H., Hasselriis P., Kustova Y., Brorson M., Dahl S., Johannsen K., Christensen C.H., Mesoporous zeolite single crystals for catalytic hydrocarbon conversion, SStud. Surf. Sci. Catal., 2005, 158: 1247-1254.
    191. Kustova M., Egeblad K., Christensen C. H., Kustov A.L., Christensen C.H., Hierarchical zeolites: progress on synthesis and characterization of mesoporous zeolite single crystal catalysts, Stud. Surf. Sci. Catal, 2007, 170, 267-275
    192. Schmidt I., Boisen A., Gustavsson E., Stahl K., Pehrson S., Dahl S., Carlsson A., Jacobsen C. J. H., Carbon nanotube templated growth of meso-porous zeolite single crystals, Chem. Mater. 2001, 13, (12), 4416-4418.
    193. Boisen A., Schmidt I., Carlsson A., Dahl S., Brorson M., Jacobsen C. J. H., TEM stereo-imaging of mesoporous zeolite single crystals, Chem. Commun. 2003, 958-959.
    194. Janssen A. H., Schmidt I., Jacobsen C. J. H., Koster A. J., de Jong K. P., Exploratory study of mesopore templating with carbon during zeolite synthesis, Microporous Mesoporous Mater. 2003, 65, (1), 59.
    195. Yang Z., Xia Y., Mokaya R., Zeolite ZSM-5 with unique supermicropores synthesized using mesoporous carbon as a template, Adv. Mater., 2004, 16, (8), 727-732.
    196. Tao Y., Kanoh H., Kaneko K., Comment: questions concerning the nitrogen adsorption data analysis for formation of supermicropores in ZSM-5 zeolites, Adv. Mater., 2005, 17, (23), 2789-2791.
    197. Lipens, B. C., de Boer J. H., J. Catal. Studies on pore systems in catalysts : V. The t method, 1965, 4, (3), 319-323.
    198. Cho S. I., Choi S. D., Kim J.-H., Kim G.-J., Synthesis of ZSM-5 films and monoliths with bimodal micro/mesoscopic structures, Adv. Funct. Mater., 2004, 14, (1), 49-54.
    199. Zhang W. Z., Pauly T. R., Pinnavaia T. J, Tailoring the framework and textural mesopores of HMS molecular sieves through an electrically neutral (S°I°) assembly pathway, Chem. Mater., 1997, 9, (11), 2491-2498.
    200. Pauly T. R., Pinnavaia T. J, Pore size modification of mesoporous HMS molecularsieve silicas with wormhole framework structures, Chem. Mater., 2001, 13, (3), 987-993.
    201. Pauly T. R., Liu Y., Pinnavaia T. J., Billinge S. J. L, Rieker T. P., Textural mesoporosity and the catalytic activity of mesoporous molecular sieves with wormhole framework structures, J. Am. Chem. Soc., 1999, 121(38): 8835-8842.
    202. Tanev P. T., Pinnavaia T. J., Mesoporous silica molecular sieves prepared by ionic and neutral surfactant templating: A comparison of physical properties, Chem. Mater., 1996, 8 (8): 2068-2079.
    203. Tatsumi T., Jappar N., Properties of Ti-Beta zeolites synthesized by Dry-Gel conversion and hydrothermal methods, J. Phys. Chem. B, 1998, 102(37): 7126-7131.
    204. Fang Y. M., Hu H. Q., An ordered mesoporous aluminosilicate with completely crystalline zeolite wall structure, J. Am. Chem. Soc., 2006, 128(33): 10636-10637.
    205. Sadtler Commercial Spectra IR Grating Inorganics, 1 No. y4lk.
    206. Wang C. Y., Sheng Y., Zhao X., Zhao J. Z., Ma X. K., Wang, Z. C., A novel aqueous-phase route to synthesize hydrophobic CaCO3 particles in situ, Mater. Sci. Eng. C, 2007, 27(1): 42-45.
    207. Boisen A., Schmidt I., Carlsson A., Dahl S., Brorson M., Jacobsen C. J. H., TEM stereo-imaging of mesoporous zeolite single crystals, Chem. Commun. 2003: 958-959.
    208 . Li W. C., Lu A. H., Palkovits R., Schmidt W., Spliethoff B., Schüth F. Hierarchically structured monolithic silicalite-1 consisting of crystallized nanoparticles and its performance in the Beckmann rearrangement of cyclohexanone oxime, J. Am. Chem. Soc. 2005, 127(36): 12595-12600.
    209. Groen J. C.; Peffer, L. A. A., Pérez-Ramírez J., Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis, Micoporous Mesoporous Mater., 2003, 60(1-3): 1-17.
    210. Selvaraj M., Kawi S., An optimal direct synthesis of CrSBA-15 mesoporous materials with enhanced hydrothermal stability, Chem. Mater. 2007, 19(3): 509-519.
    211. Kato M., Shigeno T., Kimura T., Kuroda K., Synthesis of thermally stable and 2-D hexagonal super-microporous silica from hydratedα-sodium disilicate, Chem. Mater.2005, 17(25): 6416-6421.
    212. Kruk M., Celer E. B., Jaroniec M., Exceptionally high stability of copolymer- templated ordered silica with large cage-like mesopores, Chem. Mater. 2004, 16(4): 698-707.
    213 . Egeblad K., Christensen C. H., Kustova M., Christensen C. H., templating mesoporous zeolites,Chem. Mater., 2008, 20(3): 946-960.
    214. Xiao F. X., Wang L. F., Yin C. Y., Lin K. F., Di Y., Li J. X., Xu R. R., Su D. S., Schl?gl R, Yokoi T., Tatsumi T., Catalytic properties of hierarchical mesoporous zeolites templated with a mixture of small organic ammonium salts and mesoscale cationic polymers, Angew. Chem. Int. Ed. 2006, 45(19): 3090-3093.
    215. Ma K., Wang X., Dang Y., Cai S., Primary study on the assay of superficial hydroxyl group content upon the solid polyvinyl alcohol, Colloids Surf. B Biointerfaces, 2006, 50(1): 72-75.
    216. Majumdar S., Adhikari B., Polyvinyl alcohol: A taste sensing material, Sens. Actuators, B, 2006, 114(2): 747-755.
    217 . Jablonski G. A., Sand L. B., Gard J. A., Synthesis and identification of ZSM-5/ZSM-11 pentasil intergrowth structure, Zeolites. 1996, 6(5): 396-402.
    218. Taarit Y. B., Synthesis, characterization, and catalytic properties of titanium silicates prepared using phosphonium ions, Zeolites, 1993, 13(5): 357-364.
    219. Piccione P. M., Davis M. E., A new structure-directing agent for the synthesis of pure-phase ZSM-11, Micropor. Mesopor. Mater., 2001, 49(1-3): 163-169.
    220. Kokotailo G. T., Chu P., Lawton S. L., Meier W. M., Synthesis and structure of synthetic zeolite ZSM-11, Nature, 1978, 275: 1190-1192.
    221. Dougnier F., Guth J. L., Possible recovery of crown ethers occluded in FAU- and EMT-type zeolites, Microspor. Mater., 1996, 6(2): 79-88.
    222. Mehn D., Kukovecz A., The effect of calcination on the isomorphously substituted microporous materials using ozone, Stud. Surf. Sci., 2001,135: 215-217.
    223. Tian B., Zhao D., Microwave assisted template removal of siliceous porous materials, Chem. Commun. 2002: 1186-1187.
    224. Maesen T. L. M., Kouwenhoven H. W., van Bekkum H., Sulikowski B., Klinowski J., Template removal from molecular sieves by low-temperature plasma calcinations, J. Chem. Soc. Faraday. Trans, 1990, 86: 3967-3970.
    225. He J., Yang X., Xu D., New methods to remove organic templates from porous materials, Mater. Chem. Phys., 2002, 77(1-2): 270-275.
    226. Shikunov B. I., Lafer L. I., Yakerson V. I., Mishin I. V., Rubinshtein A. M., Infrared spectra of synthetic zeolites, Russ. Chem. Bull., 1972, 21(1): 204-206.
    227. Handbook of Organic Compounds, Academic Press, 2000.
    228. Campbell S. M., Bibby D. M., Coddington J. M., Howe R. F., Dealumination of HZSM-5 Zeolites: II. Methanol to Gasoline Conversion, J. Catal., 1996, 161(1): 350-358.
    229. Sing K., The use of nitrogen adsorption for the characterisation of porous materials, Colloids Surf., A, 2001, 187-188: 3-9.
    230. Groen J. C., Peffer L. A. A., Pérez-Ramírez J., Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis, Micopor. Mesopor. Mater. 2003, 60(1-3): 1-17.
    231. Wang H., Holmberg B. A., Yan Y., Synthesis of template-free zeolite nanocrystals by using in situ thermoreversible polymer hydrogels, J. Am. Chem. Soc., 2003, 125(33): 9928-9929.
    232. Xiao C., Zhou G., Synthesis and properties of degradable poly(vinyl alcohol) hydrogel, Polym. Degrad. Stab., 2003, 81(2): 297-301.
    233. Chetri P., Dass N. N., Preparation of poly(vinyl butyral) with high acetalization rate, J. Appl. Polym. Sci., 2001, 81(5): 1182-1186.
    234. Zhang Y., Ding Y., Gao J., Yang J., Mullite fibres prepared by sol–gel method using polyvinyl butyral, J. Eur. Ceram. Soc., 2009, 29(6): 1101-1107.
    235. Nakane K., Kurita T., Ogihara T., Ogata N., Properties of poly(vinyl butyral)/TiO2 nanocomposites formed by sol–gel process, Composites Part B, 2004, 35(3): 219-222.
    236. White R. L., Nair A., Effect of silica on the thermal degradation of poly(vinyl butyral), Chem. Mater., 1990, 2(6): 742-748.
    237. Perez-Pariente J., Jacobs P. A., Factors affecting the synthesis efficiency of zeolite Beta from aluminosilicate gels containing alkali and tetraethylammonium ions. Zeolites, 1988, 8(1): 46-53.
    238. Newsam J. M., Treacy M. M. J., Koetsier W. T., Structural characterization of zeolite Beta, Proc Roy Soc Lond, 1988, A420: 375-405.
    239. Perez-Pariente J., Martens J. A., Jacobs P. A., Crystallization mechanism of zeolite Beta from (TEA)2O,Na2O and K2O containing aluminosilicate gels. Appl. Catal., 1987, 31(1): 35-64.
    240. Sumio S., Handbook of sol-gel science and technology: processing, characterization and applications, 2005, Springer.
    241. Corma A., From microporous to mesoporous molecular sieve materials and their use in catalysis, Chem. Rev., 1997, 97(6): 2373-2420.
    242. Yoon K. B., Organization of zeolite microcrystals for production of functional materials, Acc. Chem. Res., 2007, 40(1): 29-40.
    243. Davis M. E., New vistas in zeolite and molecular sieve catalysis, Acc. Chem. Res., 1993, 26(3): 111-115.
    244. Soler-Illia G. J. de A. A., Sanchez C., Lebeau B., Patarin J., Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures, Chem. Rev., 2002, 102(11): 4093-4138.
    245. Xia Q. H., Hidajat K., Kawi S., Improvement of the hydrothermal stability of fluorinated MCM-41 material, Mater. Lett., 2000, 42(1-2): 102-107
    246. Hartmann M., Hierarchical Zeolites: A proven strategy to combine shape selectivity with efficient mass transport, Angew. Chem. Int. Ed. 2004, 43(44): 5880-5882.
    247. Tao Y., Kanoh H., Abrams L., Kaneko K., Mesopore-modified zeolites: preparation, characterization, and applications, Chem. Rev., 2006, 106(3): 896-910.
    248. Donk S. V., Janssen A. H., Bitter J. H., de Jong K. P., Generation, characterization, and impact of mesopores in zeolite catalysts, 2003, 45(2): 297-319.
    249. Farneth W. E., Gorte R. J., Methods for characterizing zeolite acidity, Chem. Rev., 1995, 95(3): 615-635.
    250. Engelhardt, G.; Michel, D. High-resolution solidstate NMR of silicates and zeolites, Wiley: New York, 1987.
    251. Darton R. J., Wormald P., Morris R. E., Variable temperature high resolution 29Si MAS NMR of siliceous zeolite ferrierite, J. Mater. Chem., 2004, 14: 2036-2040.
    252. Suzuki K., Kiyozumi Y., Shin S., Fujisawa K., Watanabe H., Saito K., Noguchiet K., Zeolite synthesis in the system pyrrolidine-Na2O-Al2O3-SiO2-H2O, Zeolite, 1986, 6(4): 290-298.
    253. Haag W.O., Proceedings of the 6th international zeolite conference, Buterworths, 1995, 466.
    254. Breck D.W., Zeolite molecular sieves, Wiley, New York, 1974, 231.
    255. Giudici R., Kouwenhoven H. W., Prins R., Comparison of nitric and oxalic acid in the dealumination of mordenite, Appl. Catal. A: Gen. 2000, 203: 101-110.
    256. Olson D. H., Kokotailo G. T., Lawton S. L., Meier W. M., Crystal structure and structure-related properties of ZSM-5, J. Phys. Chem., 1981, 85(15): 2238-2243.
    257. Weitkamp J., Zeolites and catalysis, Solid State Ionics, 2000, 131(1-2): 175-188.
    258. Fyfe C. A., Gies H., Kokotailo G. T., Pasztor C., Strobl H., Cox D. E., Detailed investigation of the lattice structure of zeolite ZSM-11 by a combination of solid-state NMR and synchrotron x-ray diffraction techniques, J. Am. Chem. Soc., 1989, 111(7): 2470-2474.
    259. Wright P. A., Zhou W., Pérez-Pariente J., Arranz M., Direct observation of growth defects in zeolite Beta, J. Am. Chem. Soc., 2005, 127(2): 494-495.
    260. Bursian N. R., Shavandin Y. A., Davydova Z. A., Shilyaev V. A., Zhemchugova E. I., Production of xylenes by transalkylation of toluene with trimethylbenzenes, Chem. Technol. Fuels Oils, 1975, 11(3): 3-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700