第四周期过渡金属氧化物的结构控制合成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第四周期过渡金属氧化物以其独特的物理化学性质在电化学储能、光电器件、催化等领域都发挥着举足轻重的作用。随着对材料科学的深入认识及纳米科技的蓬勃发展,人们越发意识到除了材料的元素组成,其结构要素如晶相结构、微纳结构形态对无机材料的功能性同样具有重要影响。材料的结构控制合成对于深入研究材料物性与结构的紧密关联、并最终实现按照人们的意愿控制合成具有预期结构从而能表现出优良性能的功能材料具有重要意义,已成为当今材料科学的研究热点。本论文以第四周期过渡金属氧化物这类具有重要技术应用背景的材料为研究对象,对化学合成中晶相结构、微纳结构形态的控制进行了系统的探索研究,同时还考察研究了这两种结构要素对材料的超级电容器储能性能及光学性质的影响。论文的主要内容包含以下三方面:
     1.开展了镍基氧化物混合晶相结构、纳米片组装结构的控制合成研究。基于S042-诱导的晶相选择机制,实现了对包含α-Ni(OH)2与(3-Ni(OH)2双组分混合晶相结构的控制合成,超级电容器储能测试表明晶相组成对Ni(OH)2作为电极材料的性能具有重要影响,混合晶相结构由于具有更多的电化学活性位从而表现出优于单一相材料的储能性能;基于水热条件下α-Ni(OH)2向β-Ni(OH)2的晶相转化,实现了对包含α-Ni(OH)2、β-Ni(OH)2和α-Co(OH)2三组分混合晶相结构的控制合成,该多组分混合相镍基氧化物应用于超级电容器中表现出在大电流密度使用条件下的性能优势;基于低温热处理条件下α-Ni(OH)2/α-Co(OH)2纳米片组装结构前躯体向NiCo2O4的形貌保持转化,实现了对NiCo2O4纳米片组装结构的控制合成,化学沉淀合成前躯体过程中的超声振荡处理能抑制纳米片组装体的聚集生长,利于合成得到分散性良好的NiCo2O4纳米片组装结构粉体,从而作为超级电容器电极材料应用可获得较高的比容量。
     2.开展了锌基氧化物中空纳米结构、大孔结构和纳米组装结构的控制合成研究。基于奥氏熟化排空生长机制,实现了对Zn02中空纳米结构的控制合成,并考察了中空纳米结构对Zn02紫外-可见吸收性能的影响及亚稳相Zn02的热稳定性;基于Zn02中空纳米结构前躯体在溶剂热条件下分解释放的O2作为气泡模板对大孔结构的构建机制,实现了对ZnO大孔结构的控制合成,气泡模板合成法省去了传统模板法常需要的模板移除过程,简化了合成工艺流程;基于两相界面限域发生的自组装过程,实现了对ZnO纳米棒逐级构建的多级组装结构以及ZnO纳米棒、纳米片阵列型组装结构的控制合成,丰富了纳米组装结构的控制合成方法。
     3.开展了钛、锰基氧化物中空纳米结构、一维纳米结构的控制合成,以及二氧化钛多种晶相结构的选择性控制合成研究。基于配体对Ti06八面体基本结构单元连接方式的动力学调控作用,在高浓度溶胶前体的使用条件下实现了对TiO2板钛矿、锐钛矿不同晶相结构的选择性控制合成;基于配体调控促发的奥氏熟化排空生长方式,在低浓度溶胶前体的使用条件下实现了对锐钛矿TiO2中空纳米结构的控制合成,并将这一中空纳米结构的控制合成体系拓展应用于MoO2,考察了微纳结构对TiO2紫外-可见吸收性能的影响以及中空纳米结构MoO2电极的超级电容器及锂离子电池储能性能;基于自晶种生长机制,实现了对MnO2一维纳米结构的无模板控制合成,自晶种生长机制的提出丰富了MnO:一维纳米结构无模板生长机制的类型。
The fourth-period transition metal oxides have been widely applied in electrochemical energy storage, optoelectric devices, catalysis, and etc., owing to their unique physical and chemical properties. Benefiting from the tremendous development of material science and significant progress of nanotechnology achieved in the past decades, the key roles of structure factors (crystal phase, micro-/nano-structure) in determining the property of functional inorganic materials have been understood. Structure-controlled synthesis is accordingly of significance both for study on the structure-property relationships, and rational design of functional materials with prospective structures and thus exhibiting excellent functionality, which has become an intense topic in material science. In this dissertation, we studied on rational tuning of crystal phase, micro-/nano-structure of the fourth-period transition metal oxides that are technically important in multiple critical applications. Also the effect of above key structure factors on the supercapacitive performance and optical property of the transition metal oxide materials was investigated. The three main sections of this dissertation are summarized as follows.
     1. Controlled synthesis of mixed-phase structured, nanosheet-assembly structured nickel-based oxides was studied. Based on the SO42--induced crystal phase selective mechanism, this study realized controlled synthesis of mixed-phase α,β-Ni(OH)2that contains both a-Ni(OH)2component and β-Ni(OH)2component. The electrochemical test revealed that the crystal phase structure affected significantly on the supercapacitive performance of Ni(OH)2electrode materials. The mixed-phase a, P-Ni(OH)2electrode was better than both α-Ni(OH)2and β-Ni(OH)2electrodes benefiting from its more electrochemical active sites when applied in supercapacitors; Based on the crystal phase evolution from a-Ni(OH)2to β-Ni(OH)2under hydrothermal conditions, this study realized controlled synthesis of a mixed-phase nickel-based oxide containing a-Ni(OH)2, β-Ni(OH)2and α-Co(OH)2three components, which exhibited notable performance advantage when charged/discharged at high rate in supercapacitor applications. Based on the shape-preserving conversion from a-Ni(OH)2/a-Co(OH)2nanosheet-assembly precursor to NiCo2O4under low temperature calcination conditions, this study realized the controlled synthesis of NiCo2O4nanosheet assemblies. The ultrasonication processing can prevent the severe aggregation of nanosheet assemblies during the chemical precipitation of precursor so that well-separated NiCo2O4powder particles were obtained, thus the NiCo2O4powder electrode materials can deliver high specific capacitance when applied in supercapacitors.
     2. Controlled synthesis of hollow nanostructured, macroporous structured, and self-assembly nanostructured zinc-based oxides was studied. Based on the Ostwald ripening evacuation mechanism, this study realized controlled synthesis of ZnO2hollow nanostructures, and further investigated the significant effect of hollow nanostructure on the UV-Vis absorption property of ZnO2. and studied the thermal stability of ZnO2hollow nanostructures; Based on the bubble template functionality of O2that was generated by decomposition of hollow nanostructured ZnO2precursor under solvothermal treatment, this study realized controlled synthesis of ZnO macroporous nanostructures. Bubble template-directed synthesis avoided the template-elimination procedure that is commonly needed in conventional template synthesis, and thus simplified the synthesis process; Based on the self-assembly process occurred at the interphase area, this study realized controlled synthesis of ZnO multi-scale nano-assemblies that were constructed by ZnO nanorod building blocks via two-step assembly, and arrayed nano-assemblies that were constructed by ZnO nanorod or nanosheet building blocks. This work provided new routes to synthesis of nano-assemblies.
     3. Controlled synthesis of hollow nanostructured, one-dimensional (1D) nanostructured titanium, manganese-based oxides, and selective crystallization of different TiO2polymorphs were studied. Based on the ligand-induced phase selective mechanism, this study realized selective crystallization of brookite and anatase microcrystals when high-concentration sol precursor was employed; When low-concentration sol precursor was employed, this study realized controlled synthesis of anatase TiO2hollow nanostructures based on the ligand-induced Ostwald ripening evacuation mechanism. This hollowing route can also be extended to synthesis of MoO2hollow nanostructures. The effect of micro-/nano-structure on the UV-Vis absorption property of TiO2, and the electrochemical energy storage performance of MoO2hollow nanostructures applied in both lithium-ion batteries and supercapacitors were further studied; Based on the self-seeding growth mechanism, this study realized controlled synthesis of1D MnO2nanostructures. This novel growth mechanism provided new insight into the template-free growth of transition metal oxide1D nanostructures.
引文
[1]薛冬峰.材料化学进展[M].上海:华东理工大学出版社,2010.
    [2]薛冬峰.晶体的化学键和非线性光学效应[D].长春:中国科学院长春应用化学研究所,1998.
    [3]李克艳.晶体中的电负性标度及其应用[D].大连:大连理工大学,2008.
    [4]XUE D, ZHANG H. A Special Issue on Design and Engineering of Novel Functional Materials [J]. Rev. Adv. Sci. Eng.,2012,1(3):163-164.
    [5]WOLF E L纳米物理与纳米技术[M].薛冬峰等译.北京:机械工业出版社,2010.
    [6]KROTO H W, HEATH J R, O'BRIEN S C, et al. C60:Buckminsterfullerene [J]. Nature,1985, 318(14):162-163.
    [7]IIJIMA S. Helical Microtubules of Graphitic Carbon [J]. Nature,1991,354(7):56-58.
    [8]KRESGE C T. LEONOWICZ M E, ROTH W J, et al. Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-Crystal Template Mechanism [J]. Nature,1992,359(22):710-712.
    [9]JIANG K L, WANG J P, LI Q Q, et al. Superaligned Carbon Nanotube Arrays, Films, and Yarns: A Road to Applications [J]. Adv. Mater.,2011,23(9):1154-1161.
    [10]MAGASINKI A, DIXON P, HERTZBERG B, et al. High-Performance Lithium-Ion Anodes Using a Hierarchical Bottom-up Approach [J]. Nat. Mater.,2010,9(4):353-358.
    [11]NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric Field Effect in Atomically Thin Carbon Films [J]. Science,2004.306(5696):666-669.
    [12]LI K, WANG X. ZHANG F, et al. Electronegativity Identification of Novel Superhard Materials [J]. Phys. Rev. Lett.,2008,100(23):235504.
    [13]LI K, YANG P, XUE D. Anisotropic Hardness Prediction of Crystalline Hard Materials from the Electronegativity [J]. Acta Materialia,2012,60(1):35-42.
    [14]LI K, XUE D. Estimation of Electronegativity Values of Elements in Different Valence States [J]. J. Phys. Chem. A,2006,110(39):11332-11337.
    [15]晏成林.溶液法化学合成微纳米结构金属氧化物[D].大连:大连理工大学,2008.
    [16]刘军.二元过渡金属化合物中空纳米结构的合成研究[D].大连:大连理工大学,2010.
    [17]EL-KADAY M F, STRONG V, DUBIN S, et al. Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors [J]. Science,2012.335(6074):1326-1310.
    [18]SUN C, XUE D. Crystallization Physics and Chemistry of KH2PO4 and NH4H2PO4 Mixed System [J]. Rev. Adv. Sci. Eng.,2012,1(3):173-199.
    [19]钱逸泰.结晶化学导论[M].合肥:中国科技大学出版社,2002.
    [20]刘美男.铌酸锂微晶的化学控制合成[D].大连:大连理工大学,2009.
    [21]吴俊书Zn, Nb过渡金属氧化物的微结构结晶工艺研究[D].大连:大连理工大学,2011.
    [22]YAN J. FAN Z J, SUN W, et al. Advanced Asymmetric Supercapacitors Based on Ni(OH)2/Graphene and Porous Graphene Electrodes with High Energy Density [J]. Adv. Funct. Mater.,2012,22(12):2632-2641.
    [23]CUI B, LIN H, LI J B, et al. Core-Ring Structured NiCo2O4 Nanoplatelets:Synthesis, Characterization, and Electrocatalytic Applications [J]. Adv. Funct. Mater.,2008,18(9): 1440-H47.
    [24]DONDERS M E, KNOOPS H C M, KESSELS W M M, et al. Co3O4 as Anode Material for Thin Film Micro-Batteries Prepared by Remote Plasma Atomic Layer Deposition [J]. J. Power Sources, 2012,203:72-77.
    [25]MAI Y J, XIA X H, CHEN R, et al. Self-Supported Nickel-Coated NiO Arrays for Lithium-Ion Batteries with Enhanced Capacity and Rate Capability [J]. Electrochim. Acta,2012,67:73-78.
    [26]WU J, XUE D. Progress of Science and Technology of ZnO as Advanced Material [J]. Sci. Adv. Mater.,2011,3(2):127-149.
    [27]IBARRA L, MARCOS-FERNANDEZ A, ALZORRIZ M. Mechanistic Approach to the Curing of Carboxylated Nitrile Rubber (XNBR) by Zinc Peroxide/Zinc Oxide [J]. Polymer,2002.43(5): 1649-1655.
    [28]GORDON T R. CARGNELLO M. PAIK T, et al. Nonaqueous Synthesis of TiO2 Nanocrystals Using TiF4 to Engineer Morphology, Oxygen Vacancy Concentration, and Photocatalytic Activity [J]. J. Am. Chem. Soc.,2011,134(15):6751-6761.
    [29]ETGAR L, ZHANG W, GABRIEL S. et al. High Efficiency Quantum Dot Heterojunction Solar Cell Using Anatase (001) TiO2 Nanosheets [J]. Adv. Mater.,2012.24(16):2202-2206.
    [30]TARTAJ P, AMARILLA J M. Multifunctional Response of Anatase Nanostructures Based on 25 nm Mesocrystal-Like Porous Assemblies [J]. Adv. Mater.,2011,23(42):4904-4907.
    [31]JIN L, XU L P. MOREIN C, et al. Titanium Containing y-MnO2 (TM) Hollow Spheres:One-Step Synthesis and Catalytic Activities in Li/Air Batteries and Oxidative Chemical Reactions [J]. Adv. Funct. Mater.,2010,20(19):3373-3382.
    [32]REDDY A L M, SHAIJUMON M M, GOWDA S R, et al. Coaxial MnO2/Carbon Nanotube Array Electrodes for High-Performance Lithium Batteries [J]. Nano. Lett.,2009,9(3): 1002-1006.
    [33]LANG X Y, HIRATA A, FUJITA T, et al. Nanoporous Metal/Oxide Hybrid Electrodes for Electrochemical Supercapacitors [J]. Nat. Mater.,2011,6(4):232-236.
    [34]LIU J, ZHOU Y C, WANG J B, et al. Template-Free Solvothermal Synthesis of Yolk-Shell V2O5 Microspheres as Cathode Materials for Li-Ion Batteries [J]. Chem. Commun.,2011,47(37): 10380-10382.
    [35]KINSELLA J M, ANANDA S, ANDREW J S, et al. Enhanced Magnetic Resonance Contrast of Fe3O4 Nanoparticles Trapped in a Porous Silicon Nanoparticle Host [J]. Adv. Mater.,2011, 23(36):H248-H253.
    [36]ABOU-HASSAN A, BAZZI R, CABUIL V, et al. Multistep Continuous-Flow Microsynthesis of Magnetic and Fluorescent y-Fe2O3@SiO2 Core/Shell Nanoparticles [J]. Angew. Chem. Int. Ed., 2009,48(39):7180-7183.
    [37]PARK J C, KIM J. KWON H. et al. Gram-Scale Synthesis of Cu2O Nanocubes and Subsequent Oxidation to CuO Hollow Nanostructures for Lithium-Ion Battery Anode Materials [J]. Adv. Mater.,2009,21(7):803-807.
    [38]许家胜.微纳尺度下铜化合物的结晶形态研究[D].大连:大连理工大学,2009.
    [39]XU J, XUE D. Five Branching Growth Patterns in the Cubic Crystal System:A Direct Observation of Cuprous Oxide Microcrystals [J]. Acta Materialia,2007.55(7):2397-2406.
    [40]CHEN K, SI Y, XUE D. Directing the Branching Growth of Cuprous Oxide by OH Ions [J]. Mod. Phys. Lett. B,2009,23(31-32):3753-3760.
    [41]SI Y, XUE D. Hydrothermal Fabrication of Core-Shell Structured Cu2O Microspheres via an Intermediate-Template Route [J]. Mod. Phys. Lett. B,2009,23(31-32):3851-3858.
    [42]CHEN K, SI Y. XUE D. Diethanolamine Reduction Route to Shaped Cuprous Oxide [J]. Nanosci. Nanotechnol. Lett.,2011,3(3):423-428.
    [43]CHEN K, XUE D. Nanoscale Surface Engineering of Cuprous Oxide Crystals:The Function of Chloride [J]. Nanosci. Nanotechnol. Lett.,2011,3(3):383-388.
    [44]CHEN K, XUE D. Nanoparticles via Crystallization:A Chemical Reaction Control Study of Copper Oxides [J]. Nanosci. Nanotechnol. Lett.,2012,4(1):1-12.
    [45]DEVARAJ S, Munichandraiah N. Effect of Crystallographic Structure of MnO2 on Its Electrochemical Capacitance Properties [J]. J. Phys. Chem. C.2008,112(11):4406-4417.
    [46]GHAEMI M, ATAHERIAN F, ZOLFAGHARI A, et al. Charge Storage Mechanism of Sonochemically Prepared MnO2 as Supercapacitor Electrode:Effects of Physisorbed Water and Proton Conduction [J]. Electrochim. Acta,2008,53(14):4607-4614.
    [47]ZHANG Y, SUN C. LU P, et al. Crystallization Design of MnO2 towards Better Supercapacitance [J]. CrystEngComm,2012,14(18):5892-5897.
    [48]KOBAYASHI M, PETRYKIN V V, KAKIHANA M, et al. One-Step Synthesis of TiO2 (B) Nanoparticles from a Water-Soluble Titanium Complex [J]. Chem. Mater.,2007,19(22): 5373-5376.
    [49]KOELSCH M. CASSAIGNON S, GUILLEMOLES J F, et al. Comparison of Optical and Electrochemical Properties of Anatase and Brookite TiO2 Synthesized by the Sol-Gel Method [J]. Thin Solid Films,2002,403:312-319.
    [50]SHIBATA T, IRIE H, OHMORI M, et al. Comparison of Photochemical Properties of Brookite and Anatase TiO2 Films [J]. Phys. Chem. Chem. Phys.,2004,6(6):1359-1362.
    [51]BRUCE P G, SCROSATI B, TARASCON J M. et al. Nanomaterials for Rechargeable Lithium Batteries [J]. Angew. Chem. Int. Ed.,2008.47(16):2930-2946.
    [52]ARMSTRONG A R, ARMSTRONG J C, CANALES J, et al. Lithium-Ion Intercalation into TiO2-B Nanowires [J]. Adv. Mater.,2005,17(7):862-865.
    [53]BRUTTI S. GENTILI V, MENARD H. et al. TiO2-(B) Nanotubes as Anodes for Lithium Batteries:Origin and Mitigation of Irreversible Capacity [J]. Adv. Energy Mater.,2012,2(3): 322-327.
    [54]REN Y, LIU Z. POURPOINT F. et al. Nanoparticulate TiO2 (B):An Anode for Lithium-Ion Batteries [J]. Angew. Chem. Int. Ed.,2012,51(9):2164-2167.
    [55]ARMSTRONG G, ARMSTRONG A R, CANALES J, et al. TiO2 (B) Nanotubes as Negative Electrodes for Rechargeable Lithium Batteries [J]. Electrochem. Solid State Lett.2006,9(3): A139-A143.
    [56]LIU H, BI Z, Sun X G, et al. Mesoporous TiO2-B Microspheres with Superior Rate Performance for Lithium Ion Batteries [J]. Adv. Mater.,2011,23(30):3450-3454.
    [57]YANG H G, SUN C H, QIAO S Z, et al. Anatase TiO2 Single Crystals with Large Percentage of Reactive Facets [J]. Nature,2008,453(7195):638-641.
    [58]HAN X G, KUANG Q, JIN M S, et al. Synthesis of Titania Nanosheets with a High Percentage of Exposed (001) Facets and Related Photocatalytic Properties [J]. J. Am. Chem. Soc.,2009, 131(9):3152-3153.
    [59]WEN C Z, JIANG H B, QIAO S Z, et al. Synthesis of High-Reactive Facets Dominated Anatase TiO2 [J]. J. Mater. Chem.,2011,21(20):7052-7061.
    [60]XIE X W, LI Y, LIU Z Q, et al. Low-Temperature Oxidation of CO Catalyzed by Co3O4 Nanorods [J]. Nature,2009,458(7239):746-749.
    [61]ZHOU X M, LAN J Y, LIU G, et al. Facet-Mediated Photodegradation of Organic Dye over Hematite Architectures by Visible Light [J]. Angew. Chem. Int. Ed.,2012.51(1):178-182.
    [62]LIU J, LIU F, GAO K. et al. Recent Developments in the Chemical Synthesis of Inorganic Porous Capsules [J]. J. Mater. Chem.,2009,19(34):6073-6084.
    [63]LIU J, XUE D. Hollow Nanostructured Anode Materials for Li-lon Batteries [J]. Nanoscale Res. Lett..2010,5(10):1525-1534.
    [64]WANG X, LIAO M Y, ZHONG Y T. et al. ZnO Hollow Spheres with Double-Yolk Egg Structure for High-Performance Photocatalysts and Photodetectors [J]. Adv. Mater.,2012,24(25): 3421-3425.
    [65]徐如人,庞文琴.无机合成与制备化学[M].北京:高等教育出版社,2001.
    [66]JEEVANANDAM P, KOLTYPIN Y, GEDANKEN A, et al. Synthesis of Nanosized a-Nickel Hydroxide by a Sonochemical Method [J]. Nano Lett.,2001,1(5):263-266.
    [67]CAI F S, ZHANG G Y, CHEN J, et al. Ni(OH)2 Tubes with Mesoscale Dimensions as Positive-Electrode Materials of Alkaline Rechargeable Batteries [J]. Angew. Chem. Int. Ed., 2004,43(32):4212-4216.
    [68]LIU Z P, MA R Z, OSADA M, et al. Selective and Controlled Synthesis of α-and β-Cobalt Hydroxides in Highly Developed Hexagonal Platelets [J]. J. Am. Chem. Soc.,2005,127(40): 13869-13874.
    [69]TOMITA K, PETRYKIN V, KOBAYASHI M. et al. A Water-Soluble Titanium Complex for the Selective Synthesis of Nanocrystalline Brookite, Rutile. and Anatase by a Hydrothermal Method [J]. Angew. Chem. Int. Ed.,2006,45(8):2378-2381.
    [70]CHEN G, LI M. LI F, et al. Protein-Mediated Synthesis of Nanostructured Titania with Different Polymorphs at Room Temperature [J]. Adv. Mater.,2010,22(11):1258-1061.
    [71]KAWAHARA T, KONISHI Y, TADA H. et al. A Patterned TiO2 (Anatase)/TiO2 (Rutile) Bilayer-Type Photocatalyst: Effect of the Anatase/Rutile Junction on the Photocatalytic Activity [J]. Angew. Chem. Int. Ed.,2002,41(15):2811-2813.
    [72]ZHANG J. XU Q. FENG Z C. et al. Importance of the Relationship between Surface Phases and Photocatalytic Activity of TiO2 [J]. Angew. Chem. Int. Ed.,2008.47(9):1766-1769.
    [73]LAZZARINI L, SALVIATI G, FABBRI F. et al. Unpredicted Nucleation of Extended Zinc Blende Phases in Wurtzite ZnO Nanotetrapod Arms [J]. ACS Nano,2009,3(10):3158-3164.
    [74]CUI D, GAO K. LU P, et al. Mild Solution Route to Mixed-Phase MnO2 with Enhanced Electrochemical Capacitance [J]. Funct. Mater. Lett.,2011,4(1):57-60.
    [75]KE C J. SU T Y. CHEN H L. et al. Smart Multifunctional Hollow Microspheres for the Quick Release of Drugs in Intracellular Lysosomal Compartments [J]. Angew. Chem. Int. Ed.,2011, 50(35):8086-8089.
    [76]BAI F, SUN Z C, WU H M, et al. Templated Photocatalytic Synthesis of Well-Defined Platinum Hollow Nanostructures with Enhanced Catalytic Performance for Methanol Oxidation [J]. Nano Lett.,2011.11(9):3759-3762.
    [77]WANG Z Y. ZHOU L. LOU X W. Metal Oxide Hollow Nanostructures for Lithium-ion Batteries [J]. Adv. Mater.,2012,24(14):1903-1911.
    [78]WANG F. LI C H, SUN L D. et al. Porous Single-Crystalline Palladium Nanoparticles with High Catalytic Activities [J]. Angew. Chem. Int. Ed.,2012,51(20):4872-4876.
    [79]WAN L S. LI J W. KE B B. et al. Ordered Microporous Membranes Templated by Breath Figures for Size-Selective Separation [J]. J. Am. Chem. Soc.,2012,134(1):95-98.
    [80]TIAN B Z. XIE P, KEMPA T J. et al. Single-Crystalline Kinked Semiconductor Nanowire Superstructures [J]. Nat. Nanotech.,2009,4(12):824-829.
    [81]XIE P. XIONG Q H. FANG Y. et al. Local Electrical Potential Detection of DNA by Nanowire-Nanopore Sensors [J]. Nat. Nanotech.,2012.7(2):119-125.
    [82]CARUSO F. CARUSO R A. MOHWALD H. Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating [J]. Science,1998,282(5391):1111-1114.
    [83]SUN X M, LI Y D. Colloidal Carbon Spheres and Their Core/Shell Structures with Noble-Metal Nanoparticles [J]. Angew. Chem. Int. Ed.,2004.43(5):597-601.
    [84]SUN X M, LI Y D. Ga2O3 and GaN Semiconductor Hollow Spheres [J]. Angew. Chem. Int. Ed., 2004,43(29):3827-3831.
    [85]XIA Y N, GATES B, YIN Y D, et al. Monodispersed Colloidal Spheres:Old Materials with New Applications [J]. Adv. Mater.,2000.12(10):693-713.
    [86]YU M. LIN J. FANG J. Silica Spheres Coated with YVO4:Eu3+ Layers via Sol-Gel Process:A Simple Method to Obtain Spherical Core-Shell Phosphors [J]. Chem. Mater.,2005,17(7): 1783-1791.
    [87]IMHOF A. Preparation and Characterization of Titania-Coated Polystyrene Spheres and Hollow Titania Shells [J]. Langmuir,2001.17(12):3579-3585.
    [88]ARNAL P M, WEIDENTHALER C. SCHUTH F. Highly Monodisperse Zirconia-Coated Silica Spheres and Zirconia/Silica Hollow Spheres with Remarkable Textural Properties [J]. Chem. Mater.,2006.18(11):2733-2739.
    [89]HUANG Z B, TANG F Q. Preparation, Structure, and Magnetic Properties of Mesoporous Magnetite Hollow Spheres [J]. J. Colloid Interface Sci.,2005,281(2):432-436.
    [90]QIAN H S, LIN G F, ZHANG Y X, et al. A New Approach to Synthesize Uniform Metal Oxide Hollow Nanospheres via Controlled Precipitation [J]. Nanotechnology,2007,18:355602.
    [91]DONG Z H, LAI X Y, HALPERT J E, et al. Accurate Control of Multishelled ZnO Hollow Microspheres for Dye-Sensitized Solar Cells with High Effciency [J]. Adv. Mater..2012,24(8): 1046-1049.
    [92]HOLLAND B T, BLANFORD C F, STEIN A. Synthesis of Macroporous Minerals with Highly Ordered Three-Dimensional Arrays of Spheroidal Voids [J]. Science,1998,281(5376):538-540.
    [93]FU M, ZHOU J, XIAO Q F, et al. ZnO Nanosheets with Ordered Pore Periodicity via Colloidal Crystal Template Assisted Electrochemical Deposition [J]. J. Am. Chem. Soc.,2006,18(8): 1001-1004.
    [94]YOO H, JO M, JIN B S, et al. Flexible Morphology Design of 3D-Macroporous LiMnPO4 Cathode Materials for Li Secondary Batteries:Ball to Flake [J]. Adv. Energy Mater.,2011.1(3): 347-351.
    [95]MANDLMEIER B, SZEIFERT J M, FATTAKHOVA-ROHLFING D, et al. Formation of Interpenetrating Hierarchical Titania Structures by Confined Synthesis in Inverse Opal [J]. J. Am. Chem. Soc.,2011,133(43):17274-17282.
    [96]WANG Y J, ANGELATOS A S. CARUSO F. Template Synthesis of Nanostructured Materials via Layer-by-Layer Assembly [J]. Chem. Mater.,2008,20(3):848-858.
    [97]HULTEEN J C. MARTIN C R. A General Template-Based Method for the Preparation of Nanomaterials [J]. J. Mater. Chem.,1997,7(7):1075-1087.
    [98]KANG T S, SMITH A P, TAYLOR B E, et al. Fabrication of Highly-Ordered TiO2 Nanotube Arrays and Their Use in Dye-Sensitized Solar Cells [J]. Nano Lett.,2009,9(2):601-606.
    [99]WANG Y, TAKAHASHI K, SHANG H M, et al. Synthesis and Electrochemical Properties of Vanadium Pentoxide Nanotube Arrays [J]. J. Phys. Chem. B,2005,109(8):3085-3088.
    [100]BACHMANN J, JING J, KNEZ M, et al. Ordered Iron Oxide Nanotube Arrays of Controlled Geometry and Tunable Magnetism by Atomic Layer Deposition [J]. J. Am. Chem. Soc.,2007, 129(31):9554-9555.
    [101]WANG W, TIAN M, ABDULAGATOV M, et al. Three-Dimensional Ni/TiO2 Nanowire Network for High Areal Capacity Lithium Ion Microbattery Applications [J]. Nano Lett.,2012, 12 (2):655-660.
    [102]ZENG H C. Ostwald Ripening: A Synthetic Approach for Hollow Nanomaterials [J]. Curr. Nanosci.,2007,3(2):177-181.
    [103]YANG H G, ZENG H C. Preparation of Hollow Anatase TiO2 Nanospheres via Ostwald Ripening [J]. J. Phys. Chem. B,2004,108(11):3492-3495.
    [104]LI J, ZENG H C. Hollowing Sn-Doped TiO2 Nanospheres via Ostwald Ripening [J]. J. Am. Chem. Soc,2007,129(51):15839-15847.
    [105]YU J G, DAVIS S A, MANN S. Fabrication of Hollow Inorganic Microspheres by Chemically Induced Self-Transformation [J]. Adv. Funct. Mater.,2006,16(15):2035-2041.
    [106]罗超.铌酸锂粉体的湿化学法制备工艺[D].大连:大连理工大学,2009.
    [107]GAO K, XUE D. Nanostructured Niobates via Phase Transformation [J]. Nanosci. Nanotechnol. Lett.,2011,3(3):378-382.
    [108]LIU J, XIA H, LU L, et al. Anisotropic Co3O4 Porous Nanocapsules toward High-Capacity Li-lon Batteries [J]. J. Mater. Chem.,2010,20(8):1506-1510.
    [109]LIU J, XIA H, XUE D, et al. Double-Shelled Nanocapsules of V2O5-Based Composites as High-Performance Anode and Cathode Materials for Li Ion Batteries [J]. J. Am. Chem. Soc., 2009,131(34):12086-12087.
    [110]LUO C, XUE D. Mild, Quasireverse Emulsion Route to Submicrometer Lithium Niobate Hollow Spheres [J]. Langmuir,2006,22(24):9914-9918.
    [111]YANG X F, FU J X, JIN C J, et al. Formation Mechanism of CaTiO3 Hollow Crystals with Different Microstructures [J]. J. Am. Chem. Soc.,2010,132(40):14279-14287.
    [112]YE T N, DONG Z H, ZHAO Y N, et al. Controllable Fabrication of Perovskite SrZrO3 Hollow Cuboidal Nanoshells [J]. CrystEngComm,2011,13(11):3842-3847.
    [113]ZHANG L, WANG H. Cuprous Oxide Nanoshells with Geometrically Tunable Optical Properties [J]. ACS Nano,2011,5(4):3257-3267.
    [114]TOBERER E S, SESHADRI R. Spontaneous Formation of Macroporous Monoliths of Mesoporous Manganese Oxide Crystals [J]. Adv. Mater.,2005,17(18):2244-2246.
    [115]TOBERER E S, SCHLADT T D, SESHADRI R. Macroporous Manganese Oxides with Regenerative Mesopores [J]. J. Am. Chem. Soc.,2006,128(5):1462-1463.
    [116]YU H D, WANG D S, HAN M Y. Top-Down Solid-Phase Fabrication of Nanoporous Cadmium Oxide Architectures [J]. J. Am. Chem. Soc.,2007,129(8):2333-2337.
    [117]ERLEBACHER J, AZIZ M J, KARMA A, et al. Evolution of Nanoporosity in Dealloying [J]. Nature,2001,410(6827):450-453.
    [118]WISTTSTOCK A, ZIELASEK V, FRIEND C M, et al. Nanoporous Gold Catalysts for Selective Gas-Phase Oxidation Couple of Methanol at Low Temperature [J]. Science,2010, 327(5963):319-322.
    [119]PAN W Z, DAI Z R, WANG Z L. Nanobelts of Semiconducting Oxides [J]. Science,2001, 291(5510):1947-1949.
    [120]LIU B, ZENG H C. Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50 nm[J].J. Am. Chem. Soc.,2003,125(15):4430-4431.
    [121]YAN C, XUE D. Conversion of ZnO Nanorod Arrays into ZnO/ZnS Nanocable and ZnS Nanotube Arrays via an in situ Chemistry Strategy [J]. J. Phys. Chem. B,2006,110(51): 25850-25855.
    [122]YAN C, XUE D. Electroless Deposition of Aligned ZnO Taper-Tubes in a Strong Acidic Medium [J]. Electrochem. Commun.,2007,9(6):1247-1251.
    [123]MORIN S A, BIERMAN M J, TONG J, et al. Mechanism and Kinetics of Spontaneous Nanotube Growth Driven by Screw Dislocation [J]. Science,2010,328(5977):476-480.
    [124]XU S, WANG Z L. One-Dimensional ZnO Nanostructures:Solution Growth and Functional Properties [J]. Nano Res.,2011,4(11):1013-1098.
    [125]XANG X, LI Y D. Synthesis and Formation Mechanism of Manganese Dioxide Nanowires/Nanorods [J]. Chem. Eur. J.,2003,9(1):300-306.
    [126]YUAN J K, LIU X G, AKBULUT O,et al. Superwetting Nanowire Membranes for Selective Absorption [J]. Nat. Nanotech.,2003,3(6):332-336.
    [127]LU W, LIEBER C M. Nanoelectronics from the Bottom Up [J]. Nat. Mater.,2007,6(11): 841-850.
    [128]WHITESIDES G M, GRZYBOWSKI B. Self-Assembly at All Scales [J]. Science,2002, 295(5564):2418-2421.
    [129]YAO K X, YIN X M, WANG T H, et al. Synthesis, Self-Assembly, Disassembly, and Reassembly of Two Types of Cu2O Nanocrystals Unifaceted with{001} or{110} Planes [J]. J. Am. Chem. Soc.,2010,132(17):6131-6144.
    [130]TALAPIN D V, SHEVCHENKO E V, BODNARCHUK M I, et al. Quasicrystalline Order in Self-Assembled Binary Nanoparticle Superlattices [J]. Nature.2009,461(7266):964-967.
    [131]DONG, A G, CHEN J, VORA P M, et al. Binary Nanocrystal Superlattice Membranes Self-Assembled at the Liquid-Air Interface [J]. Nature,2010,466(7305):474-477.
    [132]JUN Y W, CHOI J S, CHEON J W, et al. Shape Control of Semiconductor and Metal Oxide Nanocrystals through Nonhydrolytic Colloidal Routes [J]. Angew. Chem. Int. Ed.,2006,45(21): 3414-3439.
    [133]TIAN Z R R, VOIGT J A, LIU J. et al. Complex and Oriented ZnO Nanostructures [J]. Nat. Mater.,2003,2(12):821-826.
    [134]CHEN J S, TAN Y L, LI C M, et al. Constructing Hierarchical Spheres from Large Ultrathin Anatase TiO2 Nanosheets with Nearly 100% Exposed (001) Facets for Fast Reversible Lithium Storage [J]. J. Am. Chem. Soc.,2010,132(17):6124-6130.
    [135]BAXTER J, BIAN Z X, CHEN G, et al. Nanoscale Design to Enable the Revolution in Renewable Energy [J]. Energy Environ. Sci.,2009,2(6):559-588.
    [136]WINTER M. BRODD R J. What Are Batteries, Fuel Cells, and Supercapacitors? [J]. Chem. Rev.,2004,104(10):4245-4269.
    [137]LIU C, LI F, MA L P, et al. Advanced Materials for Energy Storage [J]. Adv. Mater.,2010, 22(8):E28-E62.
    [138]SIMON P, GOGOTSI Y. Materials for Electrochemical Capacitors [J]. Nat. Mater.,2008,7(11): 845-854.
    [139]ZHAO L, FAN L Z, ZHOU M Q, et al. Nitrogen-Containing Hydrothermal Carbons with Superior Performance in Supercapacitors [J]. Adv. Mater.,2010,22(45):5202-5206.
    [140]CHMIOLA J, YUSHIN G, GOGOTSI Y. et al. Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer [J]. Science,2006,313(5794):1760-1763.
    [141]MILLER J R. OUTLAW R A, HOLLO WAY B C. Graphene Double-Layer Capacitor with ac Line-Filtering Performance [J]. Science,2010,329(5999):1637-1639.
    [142]LIU F, SONG S, XUE D, et al. Folded Structured Graphene Paper for High Performance Electrode Materials [J]. Adv. Mater.,2012,24(8):1089-1094.
    [143]LU P, XUE D. Hydrothermal Carbons Derived from Wild Wormwood as Promising Electrode Materials for Supercapacitors [J]. Energy Focus, under review.
    [144]HU C C. CHANG K H, LIN M C. Design and Tailoring of the Nanotubular Arrayed Architecture of Hydrous RuO2 for Next Generation Supercapacitors [J]. Nano Lett.,2006,6(12): 2690-2695.
    [145]SONG M, CHENG S, CHEN H, et al. Anomalous Pseudocapacitive Behavior of a Nanostructured, Mixed-Valent Manganese Oxide Film for Electrical Energy Storage [J]. Nano. Lett.,2012,12(7):3483-3490.
    [146]YANG S B, WU X L, CHEN C L, et al. Spherical a-Ni(OH)2 Nanoarchitecture Grown on Graphene as Advanced Electrochemical Pseudocapacitor Materials [J]. Chem. Commun.,2012, 48(22):2773-2775.
    [147]TONG X, WANG X, LEE J M. Dual-Template Synthesis of Co(OH)2 with Mesoporous Nanowire Structure and Its Application in Supercapacitor [J]. J. Power Sources,2012,201: 382-386.
    [148]ZHU X J, DAI H L, HU J, et al. Reduced Graphene Oxide-Nickel Oxide Composite as High Performance Electrode Materials for Supercapacitors [J]. J. Power Sources,2012,203:243-249.
    [149]TUMMALA R, GUDURU R K, MOHANTY P S. Nanostructured CO3O4 Electrodes for Supercapacitor Applications from Plasma Spray Technique [J]. J. Power Sources,2012,209: 44-51.
    [150]SIVARAMAN P, KUSHWAHA R K, SHASHIDHARA K. et al. All Solid Supercapacitor Based on Polyaniline and Crosslinked Sulfonated Poly[ether ether ketone] [J]. Electrochim. Acta, 2010,55(7):2451-456.
    [151]MUTHULAKSHMI B, KALPANA D, PITCHUMANI S, et al. Electrochemical Deposition of Polypyrrole for Symmetric Supercapacitors [J]. J. Power Sources,2006,158(2):1533-1537.
    [152]WEI T Y, CHEN C H, CHIEN H C, et al. A Cost-Effective Supercapacitor Material of Ultrahigh Specific Capacitances:Spinel Nickel Cobaltite Aerogels from an Epoxide-Driven Sol-Gel Process [J]. Adv. Mater.,2010,22(3):347-351.
    [153]WANG H L. CASALONGUE H S, LIANG Y Y. et al. Ni(OH)2 Nanoplates Grown on Graphene as Advanced Electrochemical Pseudocapacitor Materials [J]. J. Am. Chem. Soc.2010, 132(21):7472-7477.
    [154]LANG J W. KONG L B, WU W J, et al. A Facile Approach to the Preparation of Loose-Packed Ni(OH)2 Nanoflake Materials for Electrochemical Capacitors [J]. J. Solid State Electrochem., 2009,13(2):333-340.
    [155]LI H L, LIU S Q, HUANG C H, et al. Characterization and Supercapacitor Application of Coin-Like β-Nickel Hydroxide Nanoplates [J]. Electrochim. Acta,2011,58:89-94.
    [156]LIU X H, MA R Z, BANDO Y, et al. A General Strategy to Layered Transition-Metal Hydroxide Nanocones:Tuning the Composition for High Electrochemical Performance [J]. Adv. Mater.,2012,24(16):2148-2153.
    [157]HU Z A, XIE Y L, WANG Y M, et al. Synthesis and Electrochemical Characterization of Mesoporous CoxNi1-x Layered Double Hydroxides as Electrode Materials for Supercapacitors [J]. Electrochim. Acta,2009,54(10):2737-2741.
    [158]TANG Z, TANG C H, GONG H. A High Energy Density Asymmetric Supercapacitor from Nano-Architectured Ni(OH)2/Carbon Nanotube Electrodes [J]. Adv. Funct. Mater.,2012,22(6): 1272-1278.
    [159]YAN C Y, JIANG H, ZHAO T, et al. Binder-Free Co(OH)2 Nanoflake-ITO Nanowire Heterostructured Electrodes for Electrochemical Energy Storage with Improved High-Rate Capabilities [J]. J. Mater. Chem.,2011,21(28):10482-10488.
    [160]YANG G W, XU C L, LI H L. Electrodeposited Nickel Hydroxide on Nickel Foam with Ultrahigh Capacitance [J]. Chem. Commun,2008,48:6537-6539.
    [161]CHANG J K, WU C M, SUN I W. Nano-Architectured Co(OH)2 Electrodes Constructed Using an Easily-Manipulated Electrochemical Protocol for High-Performance Energy Storage Applications [J]. J. Mater. Chem.,2010,20(18):3729-3735.
    [162]LIANG X, XIAO J J, GOU Y, et al. Synthesis and Catalysis Properties of NiO Flower-Like Spheres and Nanosheets:Water-Induced Phase Transformation of Nickel Hydroxides [J]. J. Mater. Res..2011,26(24):3091-3097.
    [163]CHANG J, XU H, SUN J. et al. High Pseudocapacitance Material Prepared via in situ Growth of Ni(OH)2 Nanoflakes on Rduced Gaphene Oxide [J]. J. Mater. Chem.,2012,22(22): 11146-11150.
    [164]LUO Z J, WANG K, LI H M, et al. One-Dimensional β-Ni(OH)2 Nanostructures:Ionic Liquid Etching Synthesis, Formation Mechanism, and Application for Electrochemical Capacitors [J]. CrystEngComm,2011,13(23):7108-7113.
    [165]HE X M, LI J J. CHENG H W, et al. Controlled Crystallization and Granulation of Nano-Scale Ni(OH)2 Cathode Materials for High Power Ni-MH Batteries [J]. J. Power Sources,2005,152(1): 285-290.
    [166]JIANG H, ZHAO T, LI C Z, et al. Hierarchical Self-Assembly of Ultrathin Nickel Hydroxide Nanoflakes for High-Performance Supercapacitors [J]. J. Mater. Chem.,2011,21(11): 3818-3823.
    [167]WU C M, FAN C Y, SUN I W, et al. Improved Pseudocapacitive Performance and Cycle Life of Cobalt Hydroxide on an Electrochemically Derived Nano-Porous Ni Framework [J]. J. Power Sources,2011,196(18):7828-7834.
    [168]LI Y G, PANITAT H, WU Y Y, et al. NixCo3-xO4 Nanowire Arrays for Electrocatalytic Oxygen Evolution [J]. Adv. Mater.,2010,22(17):1926-1929.
    [169]HU L F, WU L M, LIAO M Y, et al. High-Performance NiCo2O4 Nanofilm Photodetectors Fabricated by an Interfacial Self-Assembly Strategy [J]. Adv. Mater.,2011,23(37):1988-1992.
    [170]WEI T Y, CHEN C H, CHIEN H C, et al. A Cost-Effective Supercapacitor Material of Ultrahigh Specific Capacitances:Spinel Nickel Cobaltite Aerogels from an Epoxide-Driven Sol-Gel Proces [J]. Adv. Mater.,2010,22(3):347-351.
    [171]GUPTA V, GUPTA S, MIURA N. Electrochemically Synthesized Nanocrystalline Spinel Thin Film for High Performance Supercapacitor [J]. J. Power Sources,2010,195(11):3757-3760.
    [172]CHENG M Y, HWANG B J. Control of Uniform Nanostructured a-Ni(OH)2 with Self-Assembly Sodium Dodecyl Sulfate Templates [J]. J. Colloid Interface Sci.,2009,337(1): 265-271.
    [173]RAHMAN M M, WANG Z Z, HASSAN M F, et al. Amorphous Carbon Coated High Grain Boundary Density Dual Phase Li4Ti5O12-TiO2:A Nanocomposite Anode Material for Li-Ion Batteries [J]. Adv. Energy Mater.,2011,1(2):212-220.
    [174]CHEN P, SHEN G Z, Shi Y, et al. Preparation and Characterization of Flexible Asymmetric Supercapacitors Based on Transition-Metal-Oxide Nanowire/Single-Walled Carbon Nanotube Hybrid Thin-Film Electrodes [J]. ACS Nano,2010,4(8):4403-4411.
    [175]QIN C L. LU X, YIN G P. et al. Study of Activated Nitrogen-Enriched Carbon and Nitrogen-Enriched Carbon/Carbon Aerogel Composite as Cathode Materials for Supercapacitors [J]. Mater. Chem.Phys.,2011,126(1-2):453-458.
    [176]LIU H B, XIANG L, JIN Y. Hydrothermal Modification and Characterization of Ni(OH)2 with High Discharge Capability [J]. Cryst. Growth Des.,2008,6(1):283-286.
    [177]MA R Z, LIU Z P, LIU K, et al. Tetrahedral Co(II) Coordination in Alpha-Type Cobalt Hydroxide:Rietveld Refinement and X-ray Absorption Spectroscopy [J]. Inorg. Chem.,2006, 45(10):3964-3969.
    [178]QI Y J, QI H Y. LI J H, et al. Synthesis, Microstructures and UV-vis Absorption Properties of β-Ni(OH)2 Nanoplates and NiO Nanostructures [J]. J. Cryst. Growth,2008,310(18):4221-4225.
    [179]AL-GHOUL M, EL-RASSY H, CORADIN T, et al. Reaction-Diffusion Based Co-Synthesis of Stable α-and (β-Cobalt Hydroxide in Bio-Organic Gels [J]. J. Cryst. Growth,2010,312(6): 856-862.
    [180]QU Q T, SHI Y, TIAN S, et al. A New Cheap Asymmetric Aqueous Supercapacitor:Activated Carbon//NaMnO2 [J]. J. Power Sources,2009,194(2):1222-1225.
    [181]QU Q T, LI L, TIAN S, et al. A Cheap Asymmetric Supercapacitor with High Energy at High Power:Activated carbon//K0.27MnO2·0.6H2O [J]. J. Power Sources,2010.195(9):2789-2794.
    [182]JIANG H. LI C Z, SUN T, et al. A Green and High Energy Density Asymmetric Supercapacitor Based on Ultrathin MnO2 Nanostructures and Functional Mesoporous Carbon Nanotube Electrodes [J]. Nanoscale,2012,4(3):807-812.
    [183]DENG L J, ZHU G. WANG J F, et al. Graphene-MnO2 and Graphene Asymmetrical Electrochemical Capacitor with a High Energy Density in Aqueous Electrolyte [J]. J. Power Sources,2011,196(24):10782-10787.
    [184]KONG L B, LIU M, LANG J W, et al. Asymmetric Supercapacitor Based on Loose-Packed Cobalt Hydroxide Nanoflake Materials and Activated Carbon [J]. J. Electrochem. Soc.,2009, 156(12):A926-A929.
    [185]LUO Y Y, DUAN G T, LI G H. Synthesis and Characterization of Flower-Like Beta-Ni(OH)2 Nanoarchitectures [J]. J. Solid State Chem.,2007,180(7):2149-2153.
    [186]WANG C H, ZHANG X, ZHANG D C, et al. Facile and Low-Cost Fabrication of Nanostructured NiCo2O4 Spinel with High Specific Capacitance and Excellent Cycle Stability [J]. Electrochim. Acta,2012,63:220-227.
    [187]WILLIS S M, CHENG C, ASSENDER H E, et al. The Transitional Heterojunction Behavior of PbS/ZnO Colloidal Quantum Dot Solar Cells [J]. Nano Lett.,2012,12(3):1522-1526.
    [188]HUANG H, GONG H, CHOW C L, et al. Low-Temperature Growth of SnO2 Nanorod Arrays and Tunable n-p-n Sensing Response of a ZnO/SnO2 Heterojunction for Exclusive Hydrogen Sensors [J]. Adv. Funct. Mater.,2011.21(14):2680-2686.
    [189]LU F, CAI W P, ZHANG Y G. ZnO Hierarchical Micro/Nanoarchitectures:Solvothermal Synthesis and Structurally Enhanced Photocatalytic Performance [J]. Adv. Funct. Mater.,2008, 18(7):1047-1056.
    [190]JING Z H, ZHAN J H. Fabrication and Gas-Sensing Properties of Porous ZnO Nanoplates [J]. Adv. Mater.,2008,20(23):4547-4551.
    [191]HUANG M H, MAO S, FEICK H, et al. Room-Temperature Ultraviolet Nanowire Nanolasers [J]. Science,2001,292(5523):1897-1899.
    [192]XU S, QIN Y, XU C, et al. Self-Powered Nanowire Devices [J]. Nat. Nanotech..2010.5(5): 366-373.
    [193]ZHANG Q F, CHOU T R, RUSSO B, et al. Aggregation of ZnO Nanocrystallites for High Conversion Efficiency in Dye-Sensitized Solar Cells [J]. Angew. Chem. Int. Ed.,2008,47(13): 2402-2406.
    [194]CHEN W, LU Y H, WANG M, et al. Synthesis. Thermal Stability and Properties of ZnO2 Nanoparticles [J]. J. Phys. Chem. C,2009,113(4):1320-1324.
    [195]GUO T H, LIU Y, ZHANG Y C, et al. Green Hydrothermal Synthesis and Optical Absorption Properties of ZnO2 Nanocrystals and ZnO Nanorods [J]. Mater. Lett.,2011,65(4):639-641.
    [196]ESCOBEDO-MORALES A, ESPARZA R, GARCIA-RUIZ A, et al. Structural and Vibrational Properties of Hydrothermally Grown ZnO2 Nanoparticles [J]. J. Cryst. Growth,2011,316(1): 37-41.
    [197]ZENG H C. Synthetic Architecture of Interior Space for Inorganic Nanostructures [J]. J. Mater. Chem.,2006,16(7):649-662.
    [198]LIU B, ZENG H C. Symmetric and Asymmetric Ostwald Ripening in the Fabrication of Homogeneous Core-Shell Semiconductors [J]. Small,2005,1(5):566-571.
    [199]SEBOK D, SZABO T, DEKANY I. Optical Properties of Zinc Peroxide and Zinc Oxide Multilayer Nanohybrid Films [J]. Appl. Surf. Sci.,2009.255(15):6953-6962.
    [200]SUN M, HAO W C, WANG C Z, et al. A Simple and Green Approach for Preparation of ZnO2 and ZnO under Sunlight Irradiation [J]. Chem. Phys. Lett.,2007,443(4-6):342-346.
    [201]LIU M. XUE D. Amine-Assisted Route to Fabricate LiNbO3 Particles with a Tunable Shape [J]. J. Phys. Chem. C,2008,112(16):6346-6351.
    [202]ZENG H B, CAI W P, LIU P S, et al. ZnO-Based Hollow Nanoparticles by Selective Etching: Elimination and Reconstruction of Metal-Semiconductor Interface. Improvement of Blue Emission and Photocatalysis [J]. ACS Nano,2008,2(8):1661-1670.
    [203]CHEN H Y, KUANG D B, SU C Y. Hierarchically Micro/Nanostructured Photoanode Materials for Dye-Sensitized Solar Cells [J]. J. Mater. Chem.,2012,22(31):15475-15489.
    [204]WEI Y C, LIU J, ZHAO Z, et al. Highly Active Catalysts of Gold Nanoparticles Supported on Three-Dimensionally Ordered Macroporous LaFeO3 for Soot Oxidation [J]. Angew. Chem. Int. Ed.,2011,50(10):2326-2329.
    [205]YU Y, GU L, ZHU C B, et al. Reversible Storage of Lithium in Silver-Coated Three-Dimensional Macroporous Silicon [J]. Adv. Mater.,2010,22(20):2247-2250.
    [206]PENG Q, DONG Y J, LI Y D. ZnSe Semiconductor Hollow Microspheres [J]. Angew. Chem. Int. Ed.,2003,42(26):3027-3030.
    [207]LOU X W, ARCHER L A, YANG Z C. Hollow Micro-/Nanostructures:Synthesis and Applications [J]. Adv. Mater.,2008,20(21):3987-4019.
    [208]TOMIOKA T, FUJI M. TAKAHASHI M. et al. Hollow Structure Formation Mechanism of Calcium Carbonate Particles Synthesized by the CO2 Bubbling Method [J]. Cryst. Growth Des.. 2012,12(2):771-776.
    [209]HE Q G, WU Z H, HUANG C Y. Dual Gas-Bubble-Assisted Solvothermal Synthesis of Magnetite with Tunable Size and Structure [J]. J. Nanosci. Nanotechnol.,2011,11(10): 8568-8575.
    [210]LIU J, XUE D. Solvothermal Synthesis of CuS Semiconductor Hollow Spheres Based on a Bubble Template Route [J]. J. Cryst. Growth,2009,311(3):500-503.
    [211]YAN C, XUE D. Polyhedral Construction of Hollow ZnO Microspheres by CO2 Bubble Templates [J]. J. Alloy. Compd.,2007,431(1-2):241-245.
    [212]ZHOU W Z, CAO J, LIU W C, et al. How Rigid Rods Self-Assemble at Curved Surfaces [J]. Angew. Chem. Int. Ed.,2009,48(2):378-381.
    [213]DAMASCENO P F. ENGEL M, GLOTZER S C. Predictive Self-Assembly of Polyhedra into Complex Structures [J]. Science,2012,337(6093):453-457.
    [214]XU J, Xue D. Hydrothermal Synthesis of Lindgrenite with a Hollow and Prickly Sphere-Like Architecture [J]. J. Solid State Chem.,2007.180(1):119-126.
    [215]DEBREGEAS G. DE GENNES P G, BROCHARD-WYART F. The Life and Death of "Bare" Viscous Bubbles [J]. Science,1998,279(5357):1704-1707.
    [216]LIU J, XUE D. Solution-Based Route to Semiconductor Film:Well-Aligned ZnSe Nanobelt Arrays [J]. Thin Solid Films.2009.517(17):4814-4817.
    [217]FUJISHIMA A. HONDA D. Electrochemical Photolysis of Water at a Semiconductor Electrode [J]. Nature,1972,238(5358):37-38.
    [218]KAMEGAWA T, SHIMIZU Y, YAMASHITA H. Superhydrophobic Surfaces with Photocatalytic Self-Cleaning Properties by Nanocomposite Coating of TiO2 and Polytetrafluoroethylene [J]. Adv. Mater.,2012,24(27):3697-3700.
    [219]TAN S J, FENG H, JI Y F, et al. Observation of Photocatalytic Dissociation of Water on Terminal Ti Sites of TiO2(110)-1 ×1 Surface [J]. J. Am. Chem. Soc.,2012,134(24):9978-9985.
    [220]Chung I, Lee B, He J Q, et al. All-Solid-State Dye-Sensitized Solar Cells with High Efficiency [J]. Nature,2012,485(7399):486-489.
    [221]LIU S H, JIA H P, HAN L, et al. Nanosheet-Constructed Porous TiO2-B for Advanced Lithium Ion Batteries [J]. Adv. Mater.,2012,24(24):3201-3204.
    [222]LIU S W, YU J G, JARONIEC M, et al. Anatase TiO2 with Dominant High-Energy{001} Facets:Synthesis, Properties, and Applications [J]. Chem. Mater.,2011,23(18):4085-4093.
    [223]JOO J J, ZHANG Q, LEE I, et al. Mesoporous Anatase Titania Hollow Nanostructures though Silica-Protected Calcination [J]. Adv. Funct. Mater.,2012,22(1):166-174.
    [224]LI H X, BIAN Z F, ZHU J, et al. Mesoporous Titania Spheres with Tunable Chamber Stucture and Enhanced Photocatalytic Activity [J]. J. Am. Chem. Soc,2007.129(27):8406-8407.
    [225]CHENG F Y, ZHAO J Z, SONG W, et al. Facile Controlled Synthesis of MnO2 Nanostructures of Novel Shapes and Their Application in Batteries [J]. Inorg. Chem.,2006,45(5):2038-2044.
    [226]GUO C X, WANG M, CHEN T, et al. A Hierarchically Nanostructured Composite of MnO2/Conjugated Polymer/Graphene for High-Performance Lithium Ion Batteries [J]. Adv. Energy Mater.,2011.1(5):736-741.
    [227]LEE H Y, GOODENOUGH J B. Supercapacitor Behavior with KC1 Electrolyte [J]. J. Solid State Chem.,1999,144(1):220-223.
    [228]XU C J, KANG F Y, LI B H, et al. Recent Progress on Manganese Dioxide based Supercapacitors [J]. J. Mater. Res.,2010,25(8):1421-1432.
    [229]KIM I Y, HA H W, KIM T W et al. Origin of Improved Electrochemical Activity of (3-MnO2 Nanorods:Effect of the Mn Valence in the Precursor on the Crystal Structure and Electrode Activity of Manganates [J]. J. Phys. Chem. C,2009,113(51):21274-21282.
    [230]JIANG H, ZHAO T, MA J, et al. Ultrafine Manganese Dioxide Nanowire Network for High-Performance Supercapacitors [J]. Chem. Commun.,2011,47:1264-1266.
    [231]LI J G, TANG C C, LI D, et al. Monodispersed Spherical Particles of Brookite-Type TiO2: Synthesis, Characterization, and Photocatalytic Property [J]. J. Am. Ceram. Soc.,2004,87(7): 1358-1361.
    [232]BUONSANTI R, GRILLO V, CARLINO E, et al. Nonhydrolytic Synthesis of High-Quality Anisotropically Shaped Brookite TiO2 Nanocrystals [J]. J. Am. Chem. Soc.,2008,130(33): 11223-11233.
    [233]LIU F, XUE D. Assembly of Nanoscale Building Blocks at Solution/Solid Interfaces [J]. Mater. Res. Bull.,2010,45(3):329-332.
    [234]ZHANG Y, WU L Z, ZENG Q H, et al. An Approach for Controllable Synthesis of Different-Phase Titanium Dioxide Nanocomposites with Peroxotitanium Complex as Precursor [J]. J. Phys. Chem. C,2008,112(42):16457-16462.
    [235]LIU S W, YU J G, JARONIEC M. Tunable Photocatalytic Selectivity of Hollow TiO2 Microspheres Composed of Anatase Polyhedra with Exposed{001} Facets [J]. J. Am. Chem. Soc.,2010,132(34):11914-11916.
    [236]MURAKAMI N. KURIHARA Y, TSUBOTA T. et al. Shape-Controlled Anatase Titanium (Ⅳ) Oxide Particles Prepared by Hydrothermal Treatment of Peroxo Titanic Acid in the Presence of Polyvinyl Alcohol [J]. J. Phys. Chem. C.2009.113(8):3062-3069.
    [237]JEON S, YONG K. A Novel Composite Hierarchical Hollow Structure:One-Pot Synthesis and Magnetic Properties of WigO49-WO2 Hollow Nanourchins [J]. Chem. Commun..2009,45: 7042-7044.
    [238]ZHANG Y Z, KUAI S L, WANG Z C, et al. Preparation and Electrochromic Properties of Li-Doped MoO3 Films Fabricated by the Peroxo Sol-Gel Process [J]. Appl. Surf. Sci.,2000, 165(1):56-59.
    [239]ZHENG L, XU Y. JIN D. et al. Novel Metastable Hexagonal MoO3 Nanobelts:Synthesis, Photochromic. and Electrochromic Properties [J]. Chem. Mater.,2009,21(23):5681-5690.
    [240]HU B, MAI L, CHEN W. et al. From MoO3 Nanobelts to MoO2 Nanorods:Structure Transformation and Electrical Transport [J]. ACS Nano,2009,3(2):478-482.
    [241]SUN Y M. HU X L. LUO W. et al. Self-Assembled Hierarchical MoO2/Graphene Nanoarchitectures and Their Application as a High-Performance Anode Material for Lithium-Ion Batteries [J]. ACS Nano.2011,5(9):7100-7107.
    [242]ZHOU Y. LEE C W, YOON S. Development of an Ordered Mesoporous Carbon/MoO2 Nanocomposite for High Performance Supercapacitor Electrode [J]. Electrochem. Solid State Lett.,2011,14(10):A157-A160.
    [243]RAJESWARI J. KISHORE P S, VISWANATHAN B. et al. One-Dimensional MoO2 Nanorods for Supercapacitor Applications [J]. Electrochem. Commun.,2009,11(3):572-575.
    [244]LIU F, SONG S, XUE D, et al. Selective Crystallization with Preferred Lithium-Ion Storage Capability of Inorganic Materials [J]. Nanoscale Res. Lett.,2012,7:149.
    [245]WANG X, LI Y D. Selected-Control Hydrothermal Synthesis of Alpha-and Beta-MnO2 Single Crystal Nanowires [J]. J. Am. Chem. Soc.,2002,124(12):2880-2881.
    [246]GATES B, MAYERS B, GROSSMAN A, et al. A Sonochemical Approach to the Synthesis of Crystalline Selenium Nanowires in Solutions and on Solid Supports [J]. Adv. Mater.,2002, 14(23):1749-1752.
    [247]JUNG Y, VACIC A, PEREA D E. et al. Minority Carrier Lifetimes and Surface Effects in VLS-Grown Axial p-n Junction Silicon Nanowires [J]. Adv. Mater.,2011,23(37):4306-4311.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700