基于金属、磁性、半导体、二氧化硅的多功能复合纳米材料的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近二十年来,由于金属纳米颗粒、半导体量子点和磁性纳米颗粒等纳米材料独特的物理和化学性质,受到了全世界研究人员的极大关注。基于这些特殊性质,它们被广泛地运用到社会各个领域,比如材料科学,生物医学,环境能源科技等。虽然现在对单种纳米颗粒的制备和对它们应用的开拓仍然是近年来科学研究的热点,但是对这些纳米颗粒进行复合,制备得到一种由多种纳米颗粒组成的复合纳米材料越来越受到人们的关注。这种复合材料同时具有两种或者两种以上纳米颗粒的性质,在同一种材料中实现了双功能或者多功能的同时又能保证其各自的特性不受大的影响,从而更加拓展了复合纳米颗粒在各个领域的应用。因此,除了制备各种高质量的纳米颗粒外,本论文将着重研究不同复合纳米颗粒的制备和表征。本论文的主要研究内容和成果如下:
     在第一章中,我们简要综述了贵金属纳米颗粒、半导体量子点、磁性纳米颗粒,以及它们复合的纳米颗粒基本性质、制备及其应用。
     在第二章中,主要研究各种尺寸及形貌的金属纳米颗粒的制备方法,并在此基础上制备了金属/量子点复合纳米颗粒。采用籽晶生长法,通过控制籽晶的量制备出大尺寸范围内可调的金纳米球形颗粒和形状可控的铂纳米颗粒。通过模板表面活性剂CTAB和AgNO3对生长共同的控制作用,采用籽晶生长法得到了具有多个枝权结构的金纳米星状颗粒。通过PVP的选择吸附以及Na2S对反应的催化作用在乙二醇溶液中成功制备了银立方体,并利用牺牲模板置换反应,将银纳米立方体颗粒转化为金纳米笼状结构,并将其吸收峰调至近红外窗口附近,从而为它们应用于光热疗提供材料基础。我们采用了一种新的二氧化硅包裹金纳米颗粒的方式,即将MPS和TEOS共同加入到溶液中水解,同时实现二氧化硅包裹和巯基功能化,这种功能化的二氧化硅能被分散到油相溶剂中,并与半导体量子点相互结合而得到金属/量子点的复合纳米颗粒。
     在第三章中,分别采用热分解油酸铁和羰基铁的方法,制备出高质量的Fe304和尺寸可调的yFe2O3磁性纳米颗粒。并利用籽晶外延生长法,在Au纳米颗粒上通过羰基铁的热分解外延生长Fe304而制备出了Au-Fe3O4异质二聚体结构。研究了颗粒浓度、超声乳液时间对磁性纳米颗粒yFe2O3在微乳液体系中形成团簇的影响。分别采用溶胶凝胶和反相微乳液的方法将这些油相中制备出来的Fe304,Au-Fe异质二聚体,γFe2O3,γFe2O3纳米团簇进行了二氧化硅包裹,该二氧化硅层不仅可以稳定其中的纳米颗粒,表现出良好的生物相容性,而且其表面容易被其它基团功能化,从而为它们在生物医学中的应用打下了基础。在成功地制备出高亮度的水溶性量子点的基础上,将磁性纳米颗粒/二氧化硅的核壳结构的纳米颗粒进行氨基化,并通过静电相互作用将量子点自组装在其表面上,从而制备出具有磁性和荧光双重功能的纳米复合探针,给生物医学成像技术带来更多的信息。
     在第四章中,我们首先优化Si02纳米管合成参数,将其产率提高到10克量级。具有空腔结构的二氧化硅,不仅可以携带各种药物和纳米颗粒,其表面良好的生物相容性还有利于功能化基团的修饰,从而为靶向标定和治疗提供方向。我们以Si02纳米管为模板成功制备得到了光催化效果较好的Ti02纳米管和无生物毒性的Au纳米棒。
     在第五章中,我们对本论文进行了概括性的总结和展望。
Metallic nanoparticles, semiconductor quantum dots (QDs) and magnetic nanoparticles have been acquired great attention in recent20years because of their extraordinary physical and chemical properties, and more and more synthesis methods have been explored. Their applications have also been extensively explored in various fields, such as materials, biomedical, environmental and energy technology etc. Despite the nanoparticle synthesis and application are still the hot research topics recently, people are trying to integrate the different nanomaterials attaining different properties into a nanocomposite system, which consequently will produce a nanocomposite nanoparticle possessing two or more than two functions simultaneously. These bifunctional or multifunctional nanocomposite materials hold great potential to be further explored in applications. In addition to prepare various nanoparticles in high quality, we would like to focus on the preparation of different composite nanomaterials and their characterization in this thesis. The contents of this thesis are listed as following:
     In chapter1, we briefly introduced the basic knowledge of noble nanoparticles, semiconductor QDs and magnetic nanoparticles, and their synthesis methods as well as their applications were also reviewed.
     In chapter2, we successfully prepared broad size tunable gold nanospheres and shape tunable platinum nanoparticles using a seed mediated growth method. Because of the selective suppressed growth effect to nanocrystals, gold seed with the presence of CTAB and silver nitrate would grow into a star shaped nanoparticle containing branches. We also successfully prepared silver nanocubes in ethylene glycol with the presence of PVP as surfactant and Na2S. These high quality silver nanocubes have been further scarified as template and transformed into gold nanocages, which have near infra-red extinction and pave the way for photothermal therapy in biomedical area. We explored a new method for the silica coating on gold nanoparticles, where we added MPS and TEOS together into an alkaline gold colloidal solution and allow hydrolyzation. This method will produce silica shell as well as functionalize the shell with great amount of thiol groups, which will benefit for their dispersion in an oil phased solution and the binding with semiconductor QDs. A metallic/semiconductor QDs composite nanosystem is readily prepared.
     In chapter3, we prepared high quality Fe3O4and size tunable γFe2O3magnetic nanoparticles through thermo-decomposition of Fe (oleate)3and Fe (CO)5. Au- heterostructure could epitaxially grow from gold seed nanoparticle by adding Fe precursor. We also investigated the effect of nanoparticle concentrations, sonic duration and surfactants to the formation of γFe2O3cluster in microemulsion system. Then, all the nanosystems, including as prepared Fe3O4,Au-Fe3O4heterostructure, yFe2O3, and yFe2O3cluster, have been coated with silica shell, which can stabilize the system as well as provide a biocompatible surface for functionalization. Then, water-soluble quantum dots could firmly self-assemble on the amine functionalized magnetic nanoparticle/silica core/shell structures, and produce bifunctional nanoprobes with magnetic and fluorescent properties, which could bring more detailed information from the tissues using the modern biomedical imaging technology.
     In chapter4, we firstly improved the productivity of SiO2nanotubes to10grams in a single batch through optimizing the experimental conditions. Owing to their specical geometry, silica nanotubes could not only act as carriers for drugs and nanoparticles, their biocompatible surface would also allow the easy functionalization. Both of them prove that our silica nanotubes could be used in biomedical field as the probes for targeted diagnosis and therapy. Then, these silica nanotubes could be sacrificed as template for the growth of TiO2nanotubes, which performed quite good photocatalysis effect. Finally, these silica nanotubes had been used as the template chamber for directional growth of clean gold nanorods without any surfactant, which would be poisonless to biological tissues.
     In chapter5, we presented a general summary of this thesis and some potential topics for future.
引文
[1]Y. Xiong, I. Washio, J. Chen, M. Sadilek, Y. Xia, Angew. Chem. Int. Ed.,2007,46, 4917.
    [2]T. K. Sau, C. J. Murphy, Philos. Mag.,2007,87,2143
    [3]T. K. Sau, C. J. Murphy, J. Am. Chem. Soc.,2004,126,8648
    [4]T. K. Sau, C. J. Murphy, Langmuir,2004,20,6414
    [5]F. Kim, S. Connor, H. Song, T. Kuykendall, P. Yang, Angew. Chem. Int. Ed.,2004, 43,3673
    [6]J. Burgin, M. Liu, P. Guyot-Sionnest, J. Phys. Chem. C,2008,112,19279
    [7]A. Sanchez-Iglesias, I. Pastoriza-Santos, J. Perez-Juste, B. Rodriguez-Gonzalez, F.□J. Garcia□de□Abajo, L.□M. Liz-Marzan, Adv. Mater.,2006,18,2529
    [8]J. A. Ascencio, M. Perez, M. Jose-Yacaman, Surf. Sci.,2000,447,73.
    [9]D. Aherne, D. M. Ledwith, M. Gara, J. M. Kelly, Adv. Funct. Mater.,2008,18, 2005.
    [10]Gasser, U., E. R. Weeks, A. Schofield, P.N. Pusey, D. A. Weitz, Science,2001, 292,258.
    [11]A. C. Hillier and M. D. Ward, Science,1994,263,1261.
    [12]V.K. Lamer and R.H. Dineger, J. Am. Chem. Soc,1950,724847.
    [13]Y.N. Xia, Y. J. Xiong, B. Lim, S. E. Skrabalak, Angew. Chem. Int. Ed.2009,48, 60.
    [14]F.Baletto, C. Mottet, R. Ferrando, Phys. Rev. B,2001,63,155408.
    [15]B.Wiley, T. Herricks, Y. Sun, Y. Xia, Nano Lett.,2004,4,2057
    [16]Y.Sun, B. Mayers, T. Herricks, Y. Xia, Nano Lett.,2003,3,955
    [17]S.Link, M. Mohamed, M. J. El-Sayed, Phys. Chem. B 1999,103,3073.
    [18]N.Nath, A. Chilkoti, Anal.Chem.,2002,74,504
    [19]Y.W. Cao, R. Jin, C.A. Mirkin, Science,2002,297,1536.
    [20]A.I. Ekimov, A. A. Onushchenko, Semiconductors 1982,16,1215
    [21]R.Rosseti, S. Nakahara, L.E. Brus, J. Chem. Phys.1983,79,1086
    [22]V.I. Klimov, D. W. McBranch, C. A. Leatherdale, M. G. Bawendi, Phys. Rev. B:
    Condens. Matter,1999,60,13740
    [23]C.B. Murray, D. J. Norris, M.G. Bawendi, J. Am. Chem. Soc.,1993,115,8706
    [24]P.Zhang, L. Gao, Langmuir,2003,19,208
    [25]X.G. Peng, Adv. Mater.,2003,15,459
    [26]S.E. Lee, S. N. Cho, J. Cheon, Adv. Mater.,2003,15,441
    [27]H.Zhang, L. Wang, H. Xiong, L. Hu, B. Yang, W. Li, Adv. Mater.,2003,15, 1712
    [28]Y.D. Li, H. W. Liao, Y. Ding, Y. T. Qian, L. Yang, G. E. Zhou, Chem. Mater., 1998,10,2301.
    [29]N.Gaponik, I. L. Radtchenko, G. B Sukhorukov, H. Weller, Adv. Mater.,2002, 14,879
    [30]J.K. Jaiswal, H. Mattoussi, J.M. Mauro, S.M. Simon, Nat. Biotechnol.2003,21, 47
    [31]M.P. Bruchez, M. Moronne, P. Gin, S. Weiss, A. P. Alivisatos, Science,1998, 281,2013
    [32]A.Smith, S. M. Nie, The analyst,2004,129,672
    [33]Q.Sun, Y. A. Wang, L. S. Li, D. Y. Wang, T. Zhu, J. Xu, C.H. Yang, Y. F. Li, Nature Photonics,2007,1,717
    [34]O.E. Semonin, J. M. Luther, S. Choi, H. Chen, J. Gao, A. J. Nozik, M. C. Beard, Science,2011,334,1530
    [35]Y.W. Jun, J.W. Seo, J.W. Cheon, Acc. Chem. Res.,2008,41,179
    [36]M.P. Morales, S. Veintemillas-Verdaguer, M. I. Montero, C. J. Serna, Chem. Mater.1999,11,3058.
    [37]J.I. Park, J. Cheon, J. Am. Chem. Soc.2001,123,5743
    [38]J.I. Park, M. G. Kim, Y. Jun, J. S. Lee, W. R. Lee, J. Cheon, J. Am. Chem. Soc. 2004,126,9072
    [39]J.H. Lee, Y. M. Huh, Y. Jun, J. W. Seo, J. T. Jang, H. T. Song, S. J. Kim, E. J.
    Cho, H.G. Yoon, J. S. Suh, J. Cheon, Nat. Med.2007,13,95.
    [40]A.Bee, R. Massart, S. Neveu, J. Magn. Magn. Mater.1995,149,6.
    [41]W.Wu, Q. He,R. Hu, J.Huang, H. Chen, Rare Metal Mater. Eng.,2007,36,238
    [42]C.B. Murray, D. J. Norris, M. G. Bawendi, J. Am. Chem. Soc.1993,115,8706.
    [43]X.Peng, J. Wickham, A. P. Alivisatos, J. Am. Chem. Soc.1998,120,5343.
    [44]L.H. Qu, Z.A. Peng, X.G Peng, Nano. Lett.2001,1,333
    [45]Z.A. Peng, X. Peng, J. Am. Chem. Soc.2001,123,183
    [46]S. O'Brien, L. Brus, C. B. Murray, J. Am. Chem. Soc.2001,123,12085.
    [47]S. Sun, H. Zeng, D. B. Robinson, S. Raoux, P. M. Rice, S. X. Wang, G Li, J. Am. Chem. Soc.2004,126,273.
    [48]F. X. Redl, C. T. Black, G C. Papaefthymiou, R. L. Sandstrom, M. Tin, H. Zeng, C. B. Murray, S. P. O'Brien, J. Am. Chem. Soc.2004,126,14583.
    [49]T. Hyeon, S. S. Lee, J. Park, Y. Chung, H. B. Na, J. Am. Chem. Soc.2001,123, 12798
    [50]J. Park, K. An, Y. Hwang, J. G. Park, H. J. Noh, J. Y. Kim J.H. Park, N.M. Hwang, T. Hyeon, Nature mater.,2004,3,891
    [51]S. Sun, H. Zeng J. Am. Chem. Soc.,002,124,8204.
    [52]K. Woo, H. J. Lee, J. P. Ahn, Y. S. Park, Adv. Mater.,2003,15,1761
    [53]H. Deng, X. L. Li, Q. Peng, X. Wang, J. P. Chen, Y. D. Li, Angew. Chem.,2005, 117,2842
    [54]H. Kim, J. Ge, J. Kim, S. E. Choi, H. Lee, W. Park, Y. Yin, S. Kwon, Nature Photonics,2009,3,534
    [55]R. Weisslender, M. J. Pittet, Nature,2008,452,580
    [56]C. Sun, J. S. H. Lee, M. Q. Zhang, Adv. Drug Deliv. Rev.,2008,60,1252
    [57]Y. W. Jun, J. H. Lee, J. Cheon, Angew. Chem. Int. Ed.,2008,47,5122.
    [58]R. R Qiao, C.H. Yang, M. Y. Gao, J Mater. Chem.,2009,19,6274
    [59]R.Y. Hong, B. Feng, L.L. Chen, GH. Liu, H.Z. Li, Y. Zheng, D. G Wei, Biochem. Eng. J.2008,42,290
    [60]Chem. Soc. Rev.,2012,41,2656-2672
    [61]I.C. Sun, D. K. Eun, H. Koo, C. Y. Ko, H. S. Kim, D. K. Yi, K. Choi, I. C. Kwon, K. Kim and C. H. Ahn, Angew. Chem., Int. Ed.,2011,50,9348
    [62]J. H. Park, G. Maltzahn, L. L. Ong, A. Centrone, T. A. Hatton, E. Ruoslahti, S. N. Bhatia, M. J. Sailor, Adv. Mater.,2010,22,880
    [63]L. Josephson, M. F. Kircher, U. Mahmood, Y. Tang, R. Weissleder, Bioconjugate Chem.,2002,13,554
    [64]M. Benezra, O. Penate-Medina, P. B. Zanzonico, D. Schaer, H. Ow, A. Burns, E. DeStanchina, V. Longo, E. Herz, S. Iyer, J. Wolchok, S.M. Larson, U. Wiesner, M. S. Bradbury, J. Clin. Invest,2011,121,2768
    [65]T. Wang, L. Zhang, Z. Su, C. Wang, Y. Liao, Q. Fu, ACS Appl. Mater. Interfaces, 2011,3,2479
    [1]N. L. Rosi, C. A. Mirkin, Chem. Rev.,2005,105,1547
    [2]R. Jin, Y. C. Cao, E. Hao, G. S. Metraux, G. C. Schatz, C. A. Mirkin, Nature,2003, 425,487.
    [3]P. Alivisatos, Nat. Biotechnol.,2004,22,47.
    [4]R. Jin, Y.Cao, C. A. Mirkin, K. L.Kelly, G. C. Schatz, J. Zheng, Science,2001,294, 1901.
    [5]T. K. Sau, C. J. Murphy, J. Am. Chem. Soc.,2004,126,8648.
    [6]U.Kreibig, M. Springer Vollme, New York,1995.
    [7]El-Sayed, M. A. Acc. Chem. Res.,2001,34,257
    [8]M. Hu, J. Chen, Z. Y. Li, L. Au, G V. Hartland, X. Li, M. Marquez, Y. Xia, Chem. Soc. Rev.,2006,35,1084.
    [9]M. A. El-Sayed, Acc. Chem. Res.,2001,34,257.
    [10]U. Kreibig, L. Genzel, Surf. Sci.,1987,156,678.
    [11]B. Wiley, Y. Sun, Y. Xia, Acc. Chem. Res.2007,40,1067.
    [12]C. Noguez, J. Phys. Chem. C 2007,111,3806.
    [13]B. J. Wiley, S. H. Im, Z. Y. Li, J. McLellan, A. Siekkinen, Y. Xia, J. Phys. Chem. B 2006,110,15666
    [14]A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James,; A. Rebekah, R. A. Drezek, J. L. West, Nano Lett.2007,7,1929.
    [15]J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z.Y. Li, H. Zhang, Y. Xia, X. Li, Nano Lett.2007,7,1318-1322.
    [16]Y.G Sun and Y. N. Xia, Nano Lett.2003,3,1570
    [17]J.G Morton, E.S. Day, N.J. Halas, J.L. West, Methods Mol. Biol.,2010,624,101
    [18]M.J. Bruchez, M. Moronne, P. Gin, S. Weiss, A.P. Alivisatos, Science,1998,281, 2013
    [19]A.M. Derfu, W.C.W. Chan, S.N. Bhatia, Adv. Matter.,2004,16,961
    [20]X.H. Gao, Y.Y. Cui, R.M. Levenson, L.W.K. Chung, S.M. Nie, Nat. Biotechnol. 2004,22,969
    [21]V. Biju, D. Muraleedharan, K. Nakayama, Y. Shinohara, T. Itoh, Y. Baba, M. Ishikawa, Langmuir,2007,23,10254
    [22]H. Duan, S. Nie, J. Am. Chem. Soc.2007,129,3333
    [23]Y. S. Liu, Y. H. Sun,; Vernier, P. T.; Liang, C. H.; Chong, S. Y. C. Gundersen, M. A. J. Phys. Chem. C 2007,111,2872.
    [24]D. M. Willard, A. Van Orden, Nat. Mater.,2003,2,575.
    [25]M. Bruchez, M. Moronne, P. Gin,; S. Weiss, A. P. Alivisatos, Science 1998,281, 2013.
    [26]V. Biju, T. Itoh, A. Anas, A. Sujith, M. Ishikawa, Anal. Bioanal. Chem.,2008, 391,2469.
    [27]K. R. Choudhury, Y. Sahoo, T. Y. Oh μLchanskyy, P. N. Prasad, Appl. Phys. Lett. 2005,87,073110.
    [28]D. L. Klein, R. Roth, A. K. L. Lim, A. P. Alivisatos, P. L. McEuen, Nature 1997, 389,699.
    [29]J. R. Lakowicz, Y. B. Shen, S. D'Auria,; J. Malicka, J. Y. Fang,; Z. Gryczynski, I. Gryczynski, Anal. Biochem.2002,301,261.
    [30]Y. Matsumoto, R. Kanemoto, T. Itoh, S. Nakanishi, M. Ishikawa, V. Biju, J. Phys. Chem. C,2008,112,1345.
    [31]A. G. Brolo, S. C. Kwok, M. D. Cooper, M. G. Moffitt, C. W. Wang,; R. Gordon, J. Riordon, K. L. Kavanagh, J. Phys. Chem. B,2006,110,8307.
    [32]R. A. Sperling, P. R. Gil, F. Zhang, M. Zanella, W. J. Parak, Chem. Soc. Rev., 2008,37,1896.
    [33]M. C. Daniel and D. Astruc, Chem. Rev.,2003,104,293.
    [34]G. Frens, Nature (London) Phys. Sci.,1973,241,20.
    [35]J. Turkevich, P. C. Stevenson, J. Hillier, Discuss. Faraday Soc,1951,11,55.
    [36]M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, R. Whyman, J. Chem. Soc. Chem. Commun.,1994,801.
    [37]K. R. Brown, D. G. Walter and M. J. Natan, Chem. Mater.,1999,12,306.
    [38]N. R. Jana, L. Gearheart, C. J. Murphy, Chem. Mater.,2001,13,2313.
    [39]N. R. Jana, L. Gearheart, C. J. Murphy, Langmuir,2001,17,6782.
    [40]C. Ziegler and A. Eychm€ μLler, J. Phys. Chem. C,2011,115,4502.
    [41]J. Rodriguez-Fernandez, J. Perez-Juste, F. J. Garcia de Abajo, L. M. Liz-Marzan, Langmuir,2006,22,7007.
    [42]N. G Bastus, J. Comenge,V. Puntes, Langmuir,2011,27,11098.
    [43]S. D. Perra μLt and W. C. W. Chan, J. Am. Chem. Soc.,2009,131,17042.
    [44]J. Niu, T. Zhu, Z. Liu Nanotechnology,2007,18,325607.
    [45]Y. Huang and D. H. Kim, Langmuir,2011,27,13861.
    [46]Y. Sun and Y. Xia, Science,2002,298,2176
    [47]S. E Skrabalak, L. Au, X. Li, Y. Xia, Nature Protocols,2007,2,2182
    [48]S. E. Skrabalak, B. J. Wiley, M. Kim, E.V. Formo, Y. Xia, Nano Lett.,2008,8, 2077
    [49]S. T. Selvan, P. K. Patra, C. Y. Ang, J. Y. Ying, Angew. Chem. Int. Ed.,2007,46, 2448.
    [50]Z. Lu, C. Gao, Q. Zhang, M. Chi, J. Y. Howe, Y. Yin, Nano Lett.2011,11,3404
    [1]F. C. Meldrum, B. R. Heywood, S. Mann, Science,1992,257,522.
    [2]M. G. Harisinghani, J. Barentsz, P. F. Hahn, Engl. J. Med.,2003,348,2491.
    [3]S. Sun, C. B. Murray, D. Weller, L. Folks, A. Moser, Science,2000,287,1989.
    [4]J. H. Yang, S. C. Ma, Y. Xu, Chin. Phys. B,2008,17,1674
    [5]A. Jordan, R. Scholz, P. Wust, J. Magn. Magn. Mater.,1999,194,185
    [6]J. K. Jaiswal, H. Mattoussi, J. Matthew, S. M. Simon, Nat. Biotechnol.,2003,21,47
    [7]N. Pailhe, J. Majimel, S. Pechev, P. Gravereau, M. Gaudon, A. Demourgues, J. Phys. Chem. C,2008,112,19217
    [8]P. Qiu, C. Jensen, N. Charity, R. Towner, C. Mao, J. Am. Chem. Soc,2010,132,17724.
    [9]J. Ma, J. Lian, X. Duan, X. Liu, W. Zheng, J. Phys. Chem. C 2010,114,10671.
    [10]L. Huo, Q. Li, H. Zhao, L. Yu, S. Gao, J. Zhao, Sens. Actuators, B 2005,107,915
    [11]L. L. Wang, J. S. Jiang, Physica B,2007,390,23
    [12]E. Lee, B. Kim, G. Jang, Thin Solid Films,1999,341,73
    [13]E. Darezereshki, Mater. Lett.,2011,65,642
    [14]K. C. Souza, N. D. S. Mohallem, E. M. B. Sosusa, J. Sol-Gel. Sci. Technol.,2010,53,418
    [15]J. Kim, J. E. Lee, J. Lee, J. Am. Chem. Soc.,2006,128,688
    [16]D. K. Yi, S. T. Selvan, S. S. Lee, G. C. Papaefthymiou, D. Kundaliya, J. Y. Ying, J. Am. Chem. Soc.2005,127,4990
    [17]F. Erogbogbo, K. T. Yong, R. Hu, W. C. Law, H. Ding, C. W. Chang, P. N. Prasad, M. T. Swihart, ACS nano,2010,4,5131
    [18]Y. Xu, A. Karmakar, D. Y. Wang, M. W. Mahmood, F. Watanabe, Y. B. Zhang, A. Fejleh, P. Fejleh, Z. R. Li, G Kannarpady, S. Ali, A. R. Biris, A. S. Biris, J. Phys. Chem. C,2010,114,5020
    [19]V. Salgueirifio-Maceira, M. A. Correa-Duarte, M. Spasova, L. M. Liz-Marzan, M. Farle, Adv. Funct. Mater.,2006,16,509.
    [20]P. Sun, H. Y. Zhang, C. Liu, J. Fang, M. Wang, J. Chen, J. P. Zhang, C. B. Mao, S. K. Xu Langmuir,2010,26,1278
    [21]J. Kim, J. E. Lee, J. Lee, J. H. Yu, B. C. Kim, K. An, Y. Hwang, C. Shin, J. Park, J. Kim, T. Hyeon, J. Am. Chem. Soc,2006,128,688
    [22]M. A. L6pez-Quintela, J. Rivas, J. Colloid Interface Sci.,1993,158,446
    [23]J. Xu, H. B Yang, W. Y. Fu, J. Magn. Magn. Mater.,2007,309,307
    [24]J. Park, K. An, Y. Hwang, Nat. Mater.,2004,3,891
    [25]Y. Lu, Y. D. Yin, B. T. Mayers, Y. N. Xia, Nano Lett.,2002,2,183
    [26]D K Yi, T. Selvan, S. S. Lee, J. Am. Chem. Soc,2005,127,4990
    [27]L. M. Bronstein, X. L. Huang, J. Retrum, Chem. Mater.,2007,19,3624
    [28]C. L. Lin, C. F. Lee, W. Y. Chiu, J. Colloid Interface Sci.,2005,291,411
    [29]F. Soederlind, H. Pedersen, J. Colloid Interface Sci.,2005,288,140
    [30]L. Zhang, R. He, H. C. Gu, App. Surf. Sci.,2006,253,2611
    [31]K. Tao, H. J. Dou, K. Sun, Chem. Mater.,2006,18,5273
    [32]R. D. Waldron, Phys. Rev.,1955,99,1727
    [33]H. X. Wu, T. J. Wang, Y. Jin, Ind. Eng. Chem. Res.,2007,46,761
    [34]T. R. Zhang, J. P. Ge, Y. X. Hu, Y. D. Yin, Nano Lett.,2007,7,3203
    [35]Y. Hu, L. He, Y. Yin, Angew. Chem. Int. Ed.2011,50,3747
    [1]A. Fujishima, K.Honda Nature,1972,238,37
    [2]M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Chem. Rev.1995,95,69.
    [3]M. Gratzel, Nature 2001,414,338.
    [4]A. Mills and S. L. Hunte, J. Photochem. Photobio. A,1997,108,1.
    [5]A. L. Linsebigler, G. Q. Lu, J. J. T. Yates, Chem. Rev.1995,95,735.
    [6]Q. Zhang, J.-B. Joo, Z. Lu, M. Dahl, D. Oliveira, M. Ye and Y. Yin, Nano Res.,2011,4,103.
    [7]H. J. Yun, H. Lee, J. B. Joo, N. D. Kim, M. Y. Kang and J. Yi, Appl.Catal., B,2010,94,241.
    [8]A. Kudo and Y. Miseki, Chem. Soc. Rev.,2009,38,253.
    [9]M. Ye, Q. Zhang, Y. Hu, J. Ge, Z. Lu, L. He, Z. Chen and Y. Yin, Chem.-Eur. J.,2010,16, 6243.
    [10]J. Muscat, V. Swamy, N. M. Harrison, Phys. Rev. B 2002,65,224112.
    [11]T.Mitsuhashi and O.J.KlePPa,J.Cera.Soe.1979,62,356—357.
    [12]L. E. Brus, J. Chem. Phys.1984,80,4403.
    [13]P. Salvador, M. L. Garcia Gonzalez, F. Munoz, J. Phys. Chem,1992,96,10349
    [14]K. Shaw, P. Christensen, A. Hamnett Electrochemica Acta 1996,41,719.
    [15]Y. M. Chen, Y. A. Cao, Y. B. Bai, W. S. Yang, J. H. Yang, H. Y. Jin, T. J. Li, J. Vacu. Sci. Techno. B 1997,940,1442
    [16]S. Monticone, R. Thfeu, A. V. Kanaev, E. Scolan, C. Sanchez, J. Appl. Sur. sci,2000,162, 565.
    [17]E. Sanchez, T Lopez, R. Gomez, Bokhimi, A. Morales, O.Novaro, J. Sol. Sta. Chem.1996. 122,309
    [18]S. U. M. Khan and T. S μLtana, Sol. Energy Mater. Sol. Cells 2003,76,211
    [19]K. X. Wang, M. D. Wei, M. A. Morris, Adv. Mater.,2007,19,3016
    [20]J.B. Joo, Q. Zhang, M. Dahl, I. Lee, J. Goebl, Fr. Zaera, Y. Yin, Energy Environ. Sci.,2012, 5,6321.
    [21]J.B. Joo, Q. Zhang, I. Lee, M. Dahl, Fr. Zaera, Y. Yin, Adv. Funct. Mater.,2012,22,166.
    [22]T. Sano, N. Negishi, K. Koike, K. Takeuchi, S. Matsuzawa, J. Mater. Chem.,2004,14,380.
    [23]C. Gao, Z. Lu, Y. Yin, Langmuir,2011,27,12201
    [24]L.H. Xue, K. Kajiyoshi, H. Sasaoka, K. Nishimura, Thin Solid Films,2008,516,4833

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700