基于极性面和非极性面GaN/AlN模板上ZnO薄膜材料生长研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界信息化技术的迅速发展,新型半导体材料取得了重大的进展,也促进了各种光电技术的飞速发展。由于光电子器件潜在的巨大市场,使得宽禁带半导体材料成为研究的重点。氧化锌(ZnO)薄膜作为一种宽禁带、光学透明的薄膜,可以制作太阳能电池的透明电极;另外,ZnO薄膜激子束缚能高,在室温下可以实现光的受激发射,可以方便制作紫外激光器,因此,ZnO薄膜材料在制作光电器件方面有着巨大的应用前景。另外,ZnO原料易得、价廉、毒性小,是最有开发潜力的光电薄膜材料之一。
     ZnO薄膜一般是采用异质外延的方式获得,晶体质量有待提高。由于III-V族AlN、GaN和II-VI族ZnO都是六角密排结构,晶格常数相近,因此,AlN和GaN都可以作为ZnO材料生长的缓冲层,通过降低与衬底材料的晶格失配来提高ZnO材料的晶体质量。因此,如何生长出高质量的AlN、GaN缓冲层,以及如何利用缓冲层提高ZnO薄膜质量一直是国际研究的热点。
     ZnO基材料与器件的研究工作大多是在极性面(c面)材料上开展的。ZnO材料在常温下具有稳定的纤锌矿结构,不具有中心反演对称性,导致ZnO及其异质结在c方向具有很强的自发极化和压电极化效应。为了消除极化效应对器件发光波长及发光效率的影响,最根本方法是以非极性面AlN、GaN作为缓冲层来生长非极性面ZnO薄膜及其异质结构。目前生长高质量的非极性面GaN、ZnO材料正成为国际上宽禁带半导体领域的研究热点之一,美国、日本、欧洲等多个研究小组一直从事于这一领域的研究。
     本论文使用蓝宝石衬底,将AlN及GaN作为中间过渡层,采用脉冲激光沉积法(PLD)及磁控溅射等方法分别在其极性面c面和非极性面a面上生长出了高质量ZnO薄膜,对生长工艺及生长条件进行了深入研究,并对材料表面形貌及晶体质量进行分析。具体分为以下三部分:
     (1)采用缓冲层插入技术,优化成核层的生长参数,在蓝宝石衬底上利用MOCVD技术生长出了高质量的极性面c面AlN和非极性面a面GaN薄膜。
     (2)采用磁控溅射方法,在高质量非极性面a面GaN模板上生长非极性面ZnO薄膜。通过改变主要生长参数,利用各类测试手段对生长的非极性面ZnO进行表征,对比研究在非极性面a面GaN上生长高质量非极性面ZnO的最佳条件。
     (3)采用脉冲激光沉积(PLD)方法,在高质量极性面c面AlN模板上生长极性面c面ZnO薄膜,研究最佳生长条件。其次,采用在蓝宝石表面镀镍作为缓冲层生长ZnO薄膜的方法生长高质量ZnO薄膜,降低工艺难度。最后,研究了非极性面a面GaN上生长高质量非极性面ZnO薄膜的优化条件。
     本文主要获得了以下有意义和有创新性的研究结果:
     (1)通过在低温成核层上混合使用脉冲原子层外延(PALE)和高温连续生长两种方法进行高质量AlN的MOCVD生长。这种方法既调控低温成核密度以降低位错密度,又能以较高速率进行高晶体质量AlN外延生长,同时通过对MOCVD生长条件的优化来调节应力和抑制位错,得到的AlN薄膜表面平整光滑,其表面均方根粗糙度(RMS)为1.4nm同时高分辨X射线衍射仪(HRXRD)测试结果表明其(002)和(102)面半高宽(FWHM)分别为82arcsec和575arcsec。
     (2)基于磁控溅射技术,采用晶格匹配度高的a-GaN/r-Al_2O_3作为模板,进行非极性a面ZnO薄膜生长。比较研究结果表明,同直接在r-Al_2O_3衬底外延的ZnO薄膜质量相比,在a-GaN/r-Al_2O_3模板更容易获得a面取向的ZnO薄膜。测试结果表明当生长温度为300℃时,ZnO薄膜的结晶性能最好,其高分辨X射线衍射仪的FWHM为0.51°(1836arcsec)。
     (3)采用PLD,研究了AlN缓冲层厚度对极性面ZnO质量的影响。研究结果表明,在c面蓝宝石衬底上进行极性面ZnO薄膜生长时,AlN作为缓冲层可以提高晶体成核密度。而且当AlN缓冲层的厚度为150nm时,采用PLD生长ZnO薄膜的结晶性能最好,其高分辨X射线衍射仪的FWHM为0.09°(324arcsec)。此外,以a-GaN/r-Al_2O_3作为模板,采用PLD优化了非极性面ZnO材料的生长,优化后ZnO薄膜高分辨X射线衍射仪的FWHM为0.28°(1008arcsec),其质量高于采用磁控溅射生长的非极性面ZnO薄膜。
The development and breakthrough of new semiconductor materials have brought thenew technology revolution and the development of emerging industry, as well as promotedthe rapid development of information technology. Because of the potential huge market ofoptoelectronic devices, wide bandgap seconductor materials have become the focus ofresearches. ZnO thin film is a transparent optical thin film with wide bandgap and highexciton binding energy, which can realize the ultraviolet stimulated emission at roomtemperature. These excellent properties make it very large applications in optoelectronicdevices such as solar cells, light emitting diodes, gas sensors, and so on. Furthermore,ZnO material is easy to get, cheap, low toxicity, and one of the most potential thin filmmaterials for the development of optoelectronic.
     ZnO thin film is generally obtained by heteroepitaxial, whose crystal quality stillneeds to be improved. Because the group III-V AlN, GaN, and the group II-VI ZnO arehexagonal close-packed structure, the lattice constants are similar. Therefore, AlN andGaN can be used as the buffer layers for the growth of ZnO material. Through reducingthe lattice mismatch with the substrate material, the crystal quality of ZnO material can beimproved. Therefore, how to grow high-quality AlN, GaN buffer layers and how to takeuse of those buffer layers to improve the quality of ZnO thin film have been the hotspot ofinternational research.
     The researches of ZnO-based materials and devices have been carried out mostly inthe polar plane (c-plane) material. However, at room temperature, ZnO materials have astable wurtzite structure without the center of inversion symmetry, resulting in the strongspontaneous polarizations in the c direction in ZnO and its heterojunctions. This can leadto the decrease of the ZnO light emission efficiency and red shift of the peak wavelength.In order to eliminate the influence of polarization effect on the luminescence efficiencyand emission wavelength, the most fundamental method is growth of non-polar plane ZnOthin film and its heterostructures on non-polar plane AlN or GaN buffer layers. Currently,growths of high quality non-polar plane GaN and ZnO materials are becoming one of theinternational research focuses in the field of the wide bandgap semiconductor. Several research groups from the United States, Japan, and Europe have been engaged in theresearches of this field.
     In this paper, high quality ZnO thin films have been grown on the polar c-plane andnonpolar a-plane by using pulsed laser deposition (PLD) and magnetron sputteringmethod with sapphire used as substrate, AlN and GaN as the buffer layers. Growth processand conditions have been studied, and the material surface morphology and defects havebeen analyzed. Contents are divided into the following three parts:
     (1) Through inserting of buffer layer and optimizing the growth of nucleation layer,high quality c-plane and a-plane AlN and GaN films have been grown on the sapphiresubstrates by metalorganic chemical vapor deposition (MOCVD).
     (2) High quality non-polar plane ZnO thin films have been grown on non-polara-plane GaN templates by magnetron sputtering. Through changing the main growthparameters and using many methods to characterize the non-polar plane ZnO, theoptimization condition of non-polar a-plane ZnO thin films have been achieved.
     (3) Polar c-plane ZnO thin films have been grown on high quality c-palne AlNtemplate by pulsed laser deposition (PLD) and the optimized growth conditions have beenresearched. Furthermore, we explored the method to use nickel plated sapphire as thebuffer layer to growth ZnO thin films, which can make the process simple. Finally, theoptimization conditions of non-polar plane ZnO thin films grown on non-polar plane GaNbuffer layer have been studied.
     In this paper, we obtained the following significant and innovative results:
     (1) High quality AlN thin films have been grown by mix using of pulsed atomic layerepitaxy (PALE) and high temperature continuous growth on low temperature nucleationlayer by MOCVD. This method can not only decrease the dislocation density by tuningthe nucleation density at low temperature, but also realize high quality AlN thin films witha high growth rate. At the same time, adjusting the stress and inhibition of dislocation canbe realized by optimizing the MOCVD growth conditions, which can lead to AlN thinfilms with smooth surface. The RMS is1.4nm. The XRC results show that the FWHMs of(002) and (102) are82arcsec and575arcsec, respectively.
     (2) The better lattice matched a-GaN/r-Al_2O_3template has been proposed as thesubstrate for the growth of nonpolar a-ZnO thin film by magnetron sputtering. The results show that it is easy to obtain a-plane oriented ZnO thin films on a-GaN/r-Al_2O_3templatethan on r-Al_2O_3. It is also shown that when the growth temperature is300℃, thecrystallization of ZnO thin film is best, and the high resolution X-ray diffractometerFWHM is0.51°(1836arcsec).
     (3) The influences of thickness of AlN buffer layer on the polar plane ZnO have beenstudied by PLD. The results show AlN buffer layer can improve the crystal nucleationdensity when ZnO thin films are grown on the c-plane sapphire substrate. Furthermore,when the thickness of AlN is150nm, the crystal quality of ZnO is the best with theFWHM of (002) plane XRC is0.09°(324arcsec).In addition, the process of non-polarplane ZnO growth by PLD has been optimized. After optimization, the XRC of ZnO is0.28°(1008arcsec), better than the films grown by magnetron sputtering.
引文
[1] Z. K. Tang, G. K. Wong, P. Yu, et al. Room-temperature ultraviolet laser emissionfrom self-assembled ZnO microcrystallite thin films. Appl. Phys. Lett.,1998,72:3270-3275
    [2] F. Benharrats, K. Zitouni, A. Kadri, et al. Determination of piezoelectric andspontaneous polarization fields in quantum wells grown along the polar <0001>direction. Superlattices and Microstructures,2010,47:592-596
    [3] J. M. Chauveau, M. Laügt, P. Venneguès, et al. Non-polar a-plane ZnMgO/ZnOquantum wells grown by molecular beam epitaxy. Semicond. Sci. Technol,2008,23:035005-035006
    [4] P. Pant, J. D. Budai, R. Aggarwal, et al. Thin film epitaxy and structure propertycorrelations for non-polar ZnO films. Acta Materialia,2009,57:4426-4431
    [5] S. K. Han, S. K. Hong, J. W. Lee, et al. Structural and optical properties ofnon-polar A-plane ZnO films grown on R-plane sapphire substrates byplasma-assisted molecular-beam epitaxy. J. Cryst Growth,2007,309:121-127
    [6] J. H. Kim, S. K. Han, S. I. Hong, et al. Growth and structural properties of ZnOfilms on m-plane sapphire substrates by plasma-assisted molecular beam epitaxy. J.Vac. Sci. Technol. B,2009,27:1625-1629
    [7] F. Decremps, F. Datchi, A. M. Saitta, et al. Pressure Dependence of Wurtzite ZnOStructure. High Pressure Research,2002,22:365-367
    [8] S. Takta, T. Minani, H. Nanto. Highly conductive and transparent aluminum dopedzinc oxide thin films prepared by RF magnetron sputtering. Jpn. J. Appl. Phys.,1981,20:1759-1763
    [9]沈学础.半导体光谱和光学性质.第二版.北京:科学出版社,2002:120-125
    [10] D. Li, Y. H. Leung, A. B. Djurisic. Different origins of visible luminescence in ZnOnanostructures fabricated by the chemical and evaporation methods. Appl. Phys.Lett.,2004,85:1601-1605
    [11] B. Lin, Z. Fu, Y. Jia. Green luminescent center in undoped zinc oxide filmsdeposited on silicon substrates. Appl. Phys. Lett.,2001,79:943-946
    [12] T. Nagase, T. Ooie, J. Sakakibara. A novel approach to prepare zinc oxide films:excimer laser irradiation of sol–gel derived precursor films. Thin Solid Films,1999,357:151-158
    [13] K. G. Gopchandran, B. Joseph, J. T. Abraham, et al. The preparation of transparentelectrically conducting indium oxide films by reactive vacuum evaporation.Vacuum,1997,48:547-550
    [14] T. Schuler, M. A Aegerter. Optical, electrical and structural properties of sol gelZnO: Al coatings. Thin Solid Films,1999,351:125-131
    [15] H. Zeng, G. Duan, Y. Li, et al. Blue Luminescence of ZnO Nanoparticles Based onNon-Equilibrium Processes: Defect Origins and Emission Controls. Adv. Funct.Mater,2010,20:561-572
    [16] F. Oba, S. R. Nishitani, S. Isotani, et al. Energetics of native defects in ZnO. J. Appl.Phys.,2001,90:824-828
    [17] D. C. Look, J. W. Hemsky, J. R. Sizelove. Residual native shallow donor in ZnO.Phys. Rev. Lett.,1999,82:2552-2558
    [18] T. L. Tansley, C. P. Foley. Optical band gap of indium nitride. J. Appl. Phys.,1986,59:3241-3243
    [19] J. M. Bian, X. M. Li, C. Y. Zhang, et al. Synthesis and characterization of two layerstructured ZnO p-n homojunctions by ultrasonic spray pyrolysis. Appl. Phys. Lett.,2004,85:4070-4075
    [20] J. Hu, R. G. Gordo. Textured fluorine-doped ZnO films by atmospheric pressurechemical vapor deposition and their use in amorphous silicon solar cells. Solar Cells,1991,30:437-439
    [21] M. L. Olvera, A. Maldonado, R. Asomoza, et al. Characteristics of ZnO: F thinfilms obtained by chemical spray. Thin Solid Films,2001,394:242-249
    [22] B. M. Ataev, A. M. Bagamadova, V. V. Mamedov, et al. Highly conductive andtransparent thin ZnO films prepared in situ in a low pressure system. J. Cryst.Growth,1999,198:1222-1226
    [23] F. X. Xiu, Z. Yang, L. J. Mangalapu, et al. Photoluminescence study of Sb-dopedp-type ZnO films by molecular-beam epitaxy. Appl. Phys. Lett.,2005,87:1-5
    [24] F. X. Xiu, Z. Yang, L. J. Mangalapu, et al. p-type behavior from Sb-doped ZnOheterojunction photodiodes. Appl. Phys. Lett.,2006,88:1-4
    [25] K. K. Kim, H. S. Kim, D. K. Hwang, et al. Realization of p-type ZnO thin films viaphosphorus doping and thermal activation of the dopant. Appl. Phys. Lett.,2003,83:63-69
    [26] M. Joseph, H. Tabata, T. Kawai, et al. p-type electrical conduction in ZnO thinfilms by Ga and N codoping. J. Appl. Phys.,1999,38:1205-1207
    [27] K. Minegishi, Y. Koiwai, Y. Kikuchi, et al. Growth of p-type zinc oxide films bychemical vapor deposition. Jpn. Appl. Phys.,1997,36: L1453-L1456
    [28] P. Mitra, A. P. Chatterjee, H. S. Maiti. ZnO thin film sensor. Materials Letters,1998,35:33-38
    [29] Y. Kim, W. D. Hunt, F. S. Hickernell, et al. ZnO films on {001}-cut<110>-propagating GaAs substrates for surface acoustic wave device applications. IEEETrans.,1995,42(3):351-355
    [30] F. S. Hickernell. Microstructure of ZnO films used for acoustic surface-wavegeneration. J. Vac. Sci. Tech.,1975,12(4):879-886
    [31] T. Inukai, M. Matsuoka, K. Ono. Characteristics of zinc oxide thin films preparedby RF magnetron-mode electron cyclotron resonance sputtering. Thin Solid Films,1995,257(1):22-28
    [32] S. B. Krupanidhi, M. Sayer. Position and pressure effects in rf magnetron reactivesputter deposition of piezoelectric zinc oxide. J. Appl. Phys.,1984,56(11):3308-3312
    [33] T. Shiosaki, A. Kawabata. Low-frequency piezoelectric-transducer applications ofZnO film. Appl. Phys. Lett.,1974,25(1):10-15
    [34] Y. Igasaki, M. Ishikawa, G. Shimaoka. Some properties of Al-doped ZnOtransparent conducting films prepared by RF reactive sputtering. Applied SurfaceScience.1988,34:926-933
    [35] T. Itoh, T. Suga. Force sensing microcantilever using sputtered zinc oxide thin film.Jpn. J. Appl. Phys.,1994,33(1):334-337
    [36] R. Service. Will UV laser beat the blue? Science,1997,276:895-995
    [37] Y. Segawa, A. Ohtomo, et al. Growth of ZnO film by laser MBE: lasing of excitionat room temperature. Phys Stat Solid (b),1997,202:669-672
    [38] T. Sekiguchia, S. Miyashitaa, K. Obaraa, et al. Hydrothermal growth of ZnO singlecrystals and their optical characterization. J. Cryst. Growth,2000,2141215:72-76
    [39] D. C Look, G. M Renlund, R. H Burgener, et al. As-doped p-type ZnO produced byevaporation/sputtering process. Appl. Phys. Lett.,2004,85(22):5269-5271
    [40] V. Vaithianathan, B. T Lee, S. S Kim. Preparation of As-doped p-type ZnO filmsusing a Zn3As2/ZnO target with pulsed laser deposition. Appl. Phys. Let.,2005,86:062101-062104
    [41] J. M. Bian, X. M. Li, C. Y. Zhang, et al. p-type ZnO films by monodoping ofnitrogen and ZnO-based p-n homojunctions. Appl. Phys. Lett.,2004,85(18):4070-4072
    [42] A. Tsukazaki, M. Kubota, et al. Blue light-emitting diode based on ZnO. Jpn. J.Appl. Phys.,2005,44: L643-L647
    [43]张德恒.用射频偏压溅射制备的具有快速紫外光响应的ZnO薄膜.半导体学报,1995,16(10):779-782
    [44]李建光,叶志镇.制备块体纳米材料的新工艺.第五届全国薄膜学术会议论文集,1997:256-259
    [45] Z. X. Fu. Effect of Lattice Mismatch On Luminescence of ZnO/Si Hetero-Structure.Chin. PhyS. Lett,1998,15(6):457-460
    [46]王金忠,闰玮,王新强等. XRD对ZnO薄膜生长条件和退火工艺的优化.半导体光电,2001,22(3):169-172
    [47] W. Yang, R. D. Vispute, et al. Ultraviolet photoconductive detector based onepitaxial Mg0.34Zn0.66O thin films. Appl. Phys. Lett.,2001,78(18):2787-2789
    [48]季振国,宋永梁,杨成兴等.溶胶-凝胶法制备ZnO薄膜及表征.半导体学报,2004,25(1):52-55
    [49] L. L. Chen, Z. Z. Ye, J. G. Lu, et al. Control and improvement of p-typeconductivity in indium and nitrogen co-doped ZnO thin films. Applied physicsletters,2006,89:252113-252119
    [50] J. C. Sun, J. Z. Zhao, H. W. Liang, et al. Realization of ultravioletelectroluminescence from ZnO homojunction with n-ZnO/p-ZnO: As/GaAsstructure. Appl. Phys. Lett.,2007,90:121128-121132
    [51]王经纬,边继明,孙景昌等. Ag掺杂p型ZnO薄膜及其光电性能研究.物理学报,2008,57(8):5212-05
    [52] C. Morhain, T. Bretagnon, P. Lefebvre, et al. Internal electric field in wurtziteZnO/Zn0.78Mg0.22O quantum wells, Phys. Rev. B,2005,72:241305(1-4)
    [53] F. Benharrats, K. Zitouni, A. Kadri, et al. Spontaneous polarization fields inCdxZn1-xO/ZnO quantum wells grown along the polar <0001> direction.Superlattices and Microstructures,2010,47:592-596
    [54] A. V. Thompson, C. Boutwell, J. W. Mares, et al. Thermal stability of CdZnO/ZnOmulti-quantum-wells. Appl. Phys. Lett.,2007,91:201921(1-3)
    [55] S. Sadofev, S. Kalusniak, J. Puls, et al. Visible-wavelength laser action ofZnCdO∕(Zn, Mg)O multiple quantum well structures. Appl. Phys. Lett.,2007,91:231103(1-3)
    [56] J. M. Chauveau, D. A. Buell, M. Laugt, et al. Growth of non-polar ZnO/(Zn, Mg)Oquantum well structures on R-sapphire by plasma-assisted molecular beam epitaxy.J. Cryst Growth.,2007,301-302:366-369
    [57] M. Liang, Y. Ho, Wei. Wang, et al. Growth of ZnMgO/ZnO films on r-planesapphires by pulsed laser deposition. J. Cryst. Growth,2008,310:1847-1852
    [58] J. Chauveau, M. Laügt, P. Venneguès, et al. Non-polar a-plane ZnMgO/ZnOquantum wells grown by molecular beam epitaxy, Semicond. Sci. Technol.,2008,23:035005(1-7)
    [59] P. Pant, J. D. Budai, R. Aggarwal, et al. Thin film epitaxy and structure propertycorrelations for non-polar ZnO films. Acta Materialia,2009,57:4426-4431
    [60] S. K. Han, S. K. Hong, J. W. Lee, et al. Structural and optical properties ofnon-polar A-plane ZnO films grown on R-plane sapphire substrates byplasma-assisted molecular-beam epitaxy. J. Cryst Growth,2007,309:121-127
    [61] J. W. Lee, S. K. Han, S. K. Hong, et al. Investigation of initial growth and very thin(11-20) ZnO films by cross-sectional and plan-view transmission electronmicroscopy. Applied Surface Science,2010,256:1849-1854
    [62] H. Lin, S. Zhou. H. Teng, J. Wang. Growth and in-plane optical anisotropy ofcrystalline quality enhanced non-polar m-plane ZnO(GaN) films on trenched (100)LiAlO2substrates. J. Cryst Growth,2009,311:456-458
    [63]周健华,周圣明,黄涛华等. γ-LiAlO2上非极性ZnO薄膜制备及其光谱性质研究.物理学报,2007,56:4044-4048
    [64] R. Deng, B. Yao, Y. F. Li, et al. Surface morphology, structural and opticalproperties of polar and non-polar ZnO thin films: A comparative study. J. CrystGrowth,2009,311:4398-4401
    [65] M. C. Mitch, L. Chang, H. Y. Chung, et al. Growth and characterization of nonpolarZnO (1010) epitaxial flm on-LiAlO2substrate by chemical vapor deposition. J.Cryst Growth,2007,308:412-416
    [66] T. Abe, Y. Kashiwaba, S. Onodera, et al. Growth, optical, and electrical propertiesof nonpolar m-plane ZnO on p-Si substrates with Al2O3buffer layers. J. CrystGrowth,2007,298:457-460
    [67] J. P. Jung, J. B. Lee, J. S. Kim, et al. Fabrication and characterization of highfrequency SAW device with IDT/ZnO/AlN/Si configuration: role of AlN buffer.Thin Solid Films,2004,447-448:605-609
    [68] S. H. Park, T. Hanada, D. C. Oh, et al. Lattice relaxation mechanism of ZnO thinfilms grown on c-Al2O3substrates by plasma-assisted molecular-beam epitaxy.Appl. Phys. Lett.,2007,91:231904-231907
    [69] Bin Chena, Hirofumi Matsuhataa, Takashi Sekiguchib, et al. Surface defects andaccompanying imperfections in4H-SiC: Optical, structural and electricalcharacterization. Acta Materialia,2012,60:51-58
    [70] F. Decremps, J. Pellicer-Porres, F. Datchi, et al. Trapping of cubic ZnOnanocrystallites at ambient conditions. Appl. Phys. Lett.,2002,81:4820-4822
    [71] L. Petrov, E. Mojab, R. C. Powell, et al. Synthesis of metastable epitaxialzinc-blende structure AlN by solid-state reaction. Applied Physics Letters,1992,60(20):2491-2493
    [72] X. H. Xu, H. S. Wu, C. J. Zhang, et al. Morphological properties of AlNpiezoelectric thin films deposited by DC reactive magnetron sputtering. Thin SolidFilms,2001,388:62-67
    [73] Q. Xia, H. Xia, A. L. Ruoff. Pressure-induced rock slate phase of Aluminum nitridemetastable structure at ambient condition. Journal of Applied Physics,1993,73(12):8198-8201
    [74] D. Brunner, H. Anger, E. Bustarret, et al. Optical constants of epitaxial AlGaNfilms and their temperature dependence. Journal of Applied Physics,1997,82:5090-5093
    [75] W. M Yim, E. J Stofko, P. J Zanzucchi, et al. Epitaxially grown AlN and its opticalband gap. Journal of Applied Physics,1973,44:292-295
    [76] X. F Ni, L. P Zhu, Z. Z Ye, et al. Growth and characterization of GaN films onSi(111) substrate using high-temperature AlN buffer layer. Surface and CoatingsTechnology,2005,1998:350-353
    [77] H. Mendel, S. B. Aldabergenova, R. Weingartner, et al. Annealing of amorphousand nanocrystalline AlN and GaN films and photoluminescence of Tb3+centers.Optical Materials,2006,28:794-796
    [78] Y. Y. Song, P. H. Quang, V. T. Pham, et al. Change of optical band gap andmagnetization with Mn concentration in Mn-doped AlN films. Journal ofMagnetism and Magnetic Materials,2005,290:1375-1378
    [79] A. R. Smith, R. M. Feenstra, D. W. Greve, et al. Reconstructions of the GaNSurface. Phys. Res. Lett.,1997,79:3934-3938
    [80]梁春广,张翼. GaN-第三代半导体的曙光.半导体学报,1999,20(2):89-93
    [81] A. Chitnis, C. Chen, V. Adivarahan, et al. Visible light-emitting diodes usinga-plane GaN-InGaN multiple quantum wells over r-plane sapphire. Appl. Phys.Lett.,2004,84:3663-3665
    [82] B. A. Haskell, S. Nakamura, S. P. Denbaars, et al. Progress in the growth ofnonpolar gallium nitride. Phys. Stat. Sol. B.,2007,244:2847-2858
    [83] Z. H. Wu, A. M. Fischer, F. A. Ponce, et al. Structural and optical properties ofnonpolar GaN thin films. Appl. Phys. Lett.,2008,92:171904-171906
    [84] M. D. Craven, S. H. Lim, F. Wu, et al. Threading dislocation reduction via laterallyovergrown nonpolar (110) a-plane GaN. Appl. Phys. Lett.,2002,81:1201-1203
    [85] C. Q. Chen, J. Zhang, J. Yang, et al. A New Selective Area Lateral EpitaxyApproach for Depositing a-Plane GaN over r-Plane Sapphire. Jpn. J. Appl. Phys.,2003,42:818-820
    [86] Z. Bougrioua, M. Laügt, P. Vennéguès, et al. Reduction of stacking faults in (110)and (112) GaN films by ELO techniques and benefit on GaN wells emission. Phys.Stat. Sol.,2007,204:282-289
    [87] D. Iida, M. Iwaya, S. Kamiyama, et al. One-sidewall-seeded epitaxial lateralovergrowth of a-plane GaN by metalorganic vapor-phase epitaxy. J. Cryt. Growth,2009,311:2887-2890
    [88] O. Ambacher, J. Smart, J. R. Shealy, et al. Two-dimensional electron gases inducedby spontaneous and piezoelectric polarization changes in N-and Ga-faceAlGaN/GaN heterostructures. J. Appl. Phys.1999,85:3222-3234
    [89] I. Daumiller, C. Kirchner, M. Kamp, et al. Evaluation of AlGa/GaN HFETs up to750℃. Device Res. Conf. Dig.,1998:114-115
    [90] A. Guillén-Cervantesa, Z. Rivera-álvareza, M. López-Lópeza, et al. Structural andoptical properties of GaN thin films grown on Al2O3substrates by MOCVD atdifferent reactor pressures. Applied Surface Science,2011,258:1267-1271
    [91] G. Q. Hu, X. Kong, L. Wan, et al. Defects in GaN films grown on Si(111)substrates by metal-organic chemical vapour deposition. Chinese Physics Letters,2003,20(10):1811-1814
    [92] K. Shiojima, N. Shigekawa. Thermal stability of electrical properties inAlGaN/GaN heterostructures. Japanese Journal of Applied Physics,2004,43(1):100-105
    [93] M. A. Mckee, P. E. Norris, R. A. Stall, et al. Growth of highly uniform,reproducible InGaAs films in a mutiwafer rotating disk reactor by MOCVD. JCrystal Growth,1991,107(1-4):445-451
    [94] S. C. Jain, M. Willander, J. Narayan, et al. III-nitrides: Growth, characterization,and properties. J. Appl. Phys,2000,87(3):965-1006
    [95] Tai-Chang Chen, Mike Johnson, Kunakorn Poochinda, et al. A systematic study ongroup III-nitride thin films with low temperature deposited via MOCVD. J. Cryst.Growth,2004,26(4):417-420
    [96] M. Imura, K. Nakano, N. Fujimoto, et al. High-Temperature Metal-Organic VaporPhase Epitaxy Growth of AlN on Sapphire by Multi Transitioin Growth ModeMethod Varying V/III Ratio. Jpn. J. Appl. Phys,2006,45(3):8639-8643
    [97] Z. Chen, R. S. Qhalid Fareed, M. Gaevski, et al. Pulsed lateral epitaxial overgrowthof aluminum nitride on sapphire substrates. Appl. Phys. Lett,2006,89(8):081905-081905-3
    [98] B. N. Pantha, R. Dahal, M. L. Nakarmi, et al. Correlation between optoelectronicand structural properties and epilayer thickness of AlN. Appl Phys Lett,2007.90(24):241101-241101-3
    [99] Senoh, Masayuki, Nagahama, Shinichi, Iwasa, Naruhito, et al. InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on anepitaxially laterally overgrown GaN substrate, Applied Physics Letters,1998,72:211-213
    [100] T. Azuhata, T. Sota, K. Suzuki, and S. Nakamura. Polarized Raman spectra in GaN.Journal of Physics: Condensed Matter,1995,7: L129-L134
    [101] I. Akasaki, H. Amano, Y. Koide, et al. Effects of ain buffer layer oncrystallographic structure and on electrical and optical properties of GaN andGa1xAlxN (0    [102] S. Nakamura. Introduction to Nitride Semiconductor Blue Lasers and LightEmitting Diodes. New York: Taylor and Francis,1999.105-150
    [103] C. Merz, M. Kunzer, U. Kaufmann, et al. Free and bound excitons in thin wurtziteGaN layers on sapphire. Semiconductor Science and Technology,1996,11:172-175
    [104] Y. L. Hu, S. Kraemer, P. T. Fini, et al. Extended defect structure of a-plane GaNproduced by sidewall lateral epitaxial overgrowth. Journal of Crystal Growth,2011,331:49-55
    [105] Z. H. Wu, A. M. Fischer, F. A. Ponce, et al. Structural and optical properties ofnon-polar GaN thin films. Applied Physics Letters,2008,92:171904-171910
    [106] V. Yu. Davydov, N. S. Averkiev, I. N. Goncharuk, et al. Raman andphotoluminescence studies of biaxial strain in GaN epitaxial layers grown on6H-SiC. J. Appl. Phys.1997,82:5097-5092
    [107] H. Y. Gao, F. W. Yan, J. M. Li, et al. Temperature dependence of the Raman-activemodes in the nonpolar a-plane GaN film. Phys. Stat. Sol.(a),2006,203:3788-37922
    [108] P. S. Nayar, A. Catalano. Zinc phosphide-zinc oxide heterojunction solar cells.Appl. Phys. Lett.,1981,39:105108-105112
    [109] T. Minami, H. Nanto, S. Takata. Highly Conductive and Transparent AluminumDoped Zinc Oxide Thin Films Prepared by RF Magnetron Sputtering. Jpn. J. Appl.Phys.,1984,23: L280-L282
    [110] M. Futsuhara, K. Yoshioka, O. Takai. Structural, electrical and optical properties ofzinc nitride thin films prepared by reactive rf magnetron sputtering. Thin SolidFilms,1998,322:274-281
    [111] Y. J. Kim, Y. T. Kim, H. K. Yang, et al. Epitaxial growth of ZnO thin films onR-plane sapphire substrate by radio frequency magnetron sputtering. J. Vac. Sci.Technol., A,1997,15:1103-108
    [112] T. Yanagitani, M. Matsukawa, Y. Watanabe, et al. Formation of uniaxially texturedZnO films on glass substrates. J. Cryst. Growth,2005,276:424-430
    [113] B. Lin, Zhuxi Fu, Yunbo Jia. Green luminescent center in undoped zinc oxide filmsdeposited on silicon substrates. Appl. Phys. Lett.,2001,79:943-947
    [114] H. P. He, F. Zhuge, Z. Z. Ye, et al. Strain and its effect on optical properties ofAl-N codoped ZnO films. J. Appl. Phys.,2006,99:023503-023508
    [115] K. A. Alim, V. A. Fonoberov, Alexander A. Balandin. Origin of the optical phononfrequency shifts in ZnO quantum dots. Appl. Phys. Lett.,2005,86:053103-3
    [116] T. Miyata, Y. Honlna, T. Minami. Preparation of transparent conducting B-dopedZnO films by vacuum arc plasma evaporation. J. Vae. Sci. Teehnol. A,2007,25(4):93-119
    [117] S. P. Liu, D. S. Wuu, S. L. Ou, et al. Highly Ultraviolet-Transparent ZnO: AlConducting Layers by Pulsed Laser Deposition. Journal of The ElectrochemicalSociety,2011,158(5): k127-k131
    [118] J. N. Dai, Z. H. Wu, C. H. Yu, et al. Comparative study on MOCVD growth ofa-plane GaN films on r-plane sapphire substrates using GaN, AlGaN, and AlNbuffer layers. J. Electron. Mater,2009,38:1938-1943
    [119] J. N. Dai, X. Y. Han, Z. H. Wu, et al. Effects of Growth Temperature on Propertiesof Nonpolar a-Plane ZnO Films on GaN Templates by Pulsed Laser Deposition.Journal of Eletronic Materials,2011,40:4-9
    [120] F. Decremps, J. Pellicer-Porres, A. M. Saitta, et al. High-pressure Ramanspectroscopy study of wurtzite ZnO. Phys. Rev. B,2002,65:092101-092110
    [121] T. Y. Kim, J. Y. Kim, S. H. Lee, et al. Characterization of ZnO needle-shapednanostructures grown on NiO catalyst-coated Si substrates. Synthetic Metals,2004,144:61-668
    [122] W. D. Yu, X. M. Li, X. D. Gao. Synthesis and structural characteristics of highquality tetrapodlike ZnO nanocrystals on ZnO and NiO nanocrystal substrates.Journal of Crystal Growth,2004,270:92-97
    [123] W. T. Lim, C. H. Lee. Highly oriented ZnO thin films devosited on Ru/Si substrates.Thin Solid Films,1999,353:12-15
    [124] J. N. Dai, Z. H. Wu, C. H. Yu, et al. Comparative Study on MOCVD Growth ofa-Plane GaN Films on r-Plane Sapphire Substrates Using GaN, AlGaN, and AlNBuffer Layers. J. Electronic Materials,2009,38:1938-1943
    [125] T. Moriyama, S. Fujita. Growth Behavior of Nonpolar ZnO on M-plane andR-plane Sapphire by Metalorganic Vapor Phase Epitaxy. Jpn. J. Appl. Phys.,2005,42:7919-7921
    [126] S. K. Han, S. K. Hong, J. W. Lee, et al. Structural and optical properties ofnon-polar A-plane ZnO films grown on R-plane sapphire substrates byplasma-assisted molecular-beam epitaxy. J. Cryst. Growth,2007,309:121-127
    [127] B. X. Lin, Z. X. Fu, Y. B. Jia. Green luminescent center in undoped zinc oxidefilms deposited on silicon substrates, Appl. Phys. Lett.,2001,79:943-950
    [128] D. C. Look, C. Coskun, B. Claflin, G. C. Farlow, Electrical and optical properties ofdefects and impurities in ZnO. Physica B,2003,32:340-342
    [129] B. Liu, R. Zhang, Z. L. Xie, et al. Anisotropic crystallographic properties, strain,and their effects on band structure of m-plane GaN on LiAlO2(100), Appl. Phys.Lett.,2008,92:261906-261909
    [130] M. Schirra, R. Schneider, A. Reiser, et al. Stacking fault related3.31-eVluminescence at130-meV acceptors in zinc oxide. Phys. Rev. B,2008,77:125215-125225
    [131] C. Klingshirn. The Luminescence of ZnO under High One‐and Two-QuantumExcitation. Phys. Stat. Solidi (b),1975,71:547-550
    [132] J. M. Calleja, M. Cardona. Resonant Raman scattering in ZnO, Phys. Rev. B,1977,16:3753-3759
    [133] G. J. Exarhos, S. K. Sharma. Influence of processing variables on the structure andproperties of ZnO films, Thin Solid Films,1995,270:27-31
    [134] S. Tripathy, S. J. Chua, P. Chen, et al. Micro-Raman investigation of strain in GaNand AlGaN/GaN heterostructures grown on Si (111). J. Appl. Phys.,2002,92:3503-3508
    [135] K. A. Alim, V. A. Fonoberov, A. A. Balandin. Origin of optical phonon frequencyshifts in ZnO quantum dots. Appl. Phys. Lett.,2005,86:053103-05108
    [136] F. Decremps, J. Pellicer-Porres, A. M. Saitta, et al. Stability of rocksalt phase ofzinc oxide under strong compression. Phys. Rev. B,2002,65:092101-092106

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700