电化学电容器电极材料的制备及其电容性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电化学电容器是一种新型储能装置,集高能量密度、高功率密度、长使用寿命等特性于一身,具有十分广泛的应用领域。根据不同的储能机理,其主要可分为建立在界面双电层基础上的双电层电容器以及建立在电极材料氧化还原反应基础上的法拉第赝电容器。其中,电极材料是决定电化学电容器性能的核心因素之一,当前主要可以分为三类:碳材料、金属氧化物和导电聚合物。本论文采用多种方法制备了各种金属氧化物、金属氧化物/碳材料复合物并将其作为电极材料应用于电化学电容器的研究。本论文的主要研究工作如下:
     (1)采用动电位沉积法在无模板条件下成功地在石墨基体上生长了氧化锰纳米线,并将其作为电极材料应用于电化学电容器的研究。纳米线的形貌和晶体结构分别采用扫描电子显微镜和X射线衍射技术进行了表征,其在0.1M Na_2SO_4溶液中的电容性能采用循环伏安法和恒流充放技术进行了研究。结果表明:氧化锰纳米线均匀生长在石墨电极的表面,具有无定形结构。氧化锰纳米线/石墨电极具有良好的电容性能,当充放电电流密度为1 mA cm~(-2),充放电范围为0-1V时,电极的比电容值达到208 F g~(-1)。此外,电极还展示了优异的电化学可逆性和长时间充放电循环稳定性。
     (2)以直接生长在石墨电极上的碳纳米管为载体,以硝酸钴和硝酸镍为前驱物,采用一种简单的高温热解法成功地制备了具有不同镍/钴摩尔比例的钴-镍氧化物/碳纳米管/石墨电极((Co-Ni)O_x/CNTs/G)。复合物电极的形貌和晶体结构分别采用扫描电子显微镜和X射线衍射技术进行了表征,其在1M KOH溶液中的电容性能采用循环伏安法和恒流充放技术进行了研究,并详细考察了(Co-Ni)O_x/CNTs/G电极中不同Ni/Co摩尔比例对于电极电容行为的影响。结果表明:复合物中的钴镍氧化物均匀包覆在碳纳米管的表面,分别以四氧化三钴和氧化镍存在。当镍钴摩尔比为1:1时,(Co-Ni)O_x/CNTs/G电极展示了最佳的电容性能:在10 mA cm~(-2)的充放电电流密度下电极基于(Co-Ni)O_x的比电容值达到569 F g~(-1)。此外,电极还展示了优异的功率特性和长时间充放电循环稳定性,在10 mA cm~(-2)下连续充放电2000次后电极比电容值的衰减仅为3.6%。
     (3)以直接生长在石墨电极上的碳纳米管为载体,以硝酸锰为前驱物,通过简单的高温热解法成功地制备了氧化锰/碳纳米管/石墨电极(MnO_2/CNTs/G)。复合物电极的形貌和结构分别采用扫描电子显微镜和透射电子显微镜进行了表征,其在1M Na_2SO_4溶液中的电容性能采用循环伏安法和恒流充放电技术进行研究,并考察了氧化锰的担载量对复合物电极比电容值的影响。结果表明:氧化锰均匀包覆在碳纳米管表面形成一层连续的薄膜,厚度约20 nm左右。当氧化锰的担载量为36.9μg cm~(-2)时,MnO_2/CNTs/G电极在1 mA cm~(-2)充放电电流下,基于氧化锰的比电容值高达568 F g~(-1)。此外,电极还展示了良好的功率特性和充放电循环稳定性,在10 mA cm~(-2)下循环充放电2500次后电极的比电容值仍保持了最高值的约88%。
     (4)首次采用电化学诱导沉积的方法成功地在石墨电极上制备了纳米结构的多孔氢氧化锰薄膜/石墨电极,并将其应用于电化学电容器的研究。薄膜电极的形貌和晶体结构分别采用扫描电子显微镜和X射线衍射技术进行表征,考察了电解液组成和沉积电流对薄膜形貌和结构的影响,并据此初步探讨了多孔氢氧化锰薄膜的沉积机理。薄膜电极的电容性能通过循环伏安法和恒定充放电技术进行研究,并考察了薄膜的沉积条件对其电容性能的影响。结果表明:薄膜的形貌主要依赖于沉积过程中从石墨电极表面析出的氢气泡的数量和大小,通过改变电解质成分和沉积电流密度可以对薄膜的形貌进行有效调控。电极的电容性能受到沉积参数的影响,最佳的沉积参数为:沉积电流密度iD=23 mA cm~(-2),沉积液添加量SM=1.25 mL,沉积液添加速度SR=16.7 mL min-1。在最佳沉积参数下制备的多孔氢氧化锰薄膜/石墨复合电极展示了优异的电容性能,当充放电电流为1 mA cm~(-2),充放电范围为0-1V时,在0.1M Na_2SO_4溶液中电极的比电容值高达493 F g~(-1)。此外,电极还展示了优异的电化学可逆性和长时间充放电循环稳定性,在10 mA cm~(-2)下连续充放电2000次后电极比电容值的衰减仅为2.2%。
     (5)以直接生长在石墨电极上的无序碳纳米管(CNTs/G)为载体,采用电化学诱导沉积的方法成功地实现了氧化锰在碳纳米管表面的高度分散,制备了氧化锰/碳纳米管/石墨电极(γ?MnO_2/CNTs/G)。采用扫描电子显微镜和X射线衍射技术对γ?MnO_2/CNTs/G电极的形貌和晶体结构进行了表征,电极在0.1M Na_2SO_4溶液中的电容性能采用循环伏安法进行了研究,并对电极的沉积过程进行了探讨。结果表明:氧化锰高度分散且仅沉积在碳纳米管表面形成一层粗糙的薄膜,γ?MnO_2/CNTs/G电极具有与CNTs/G电极类似的三维多孔结构。γ?MnO_2/CNTs/G电极基于氧化锰的最高比电容值达到579 F g~(-1)。此外,电极还展示了良好的功率特性和长时间充放电循环稳定性。通过对γ?MnO_2/CNTs/G电极沉积过程的探讨表明,沉积过程中H2气泡的逸出及其所引起的溶液对流作用,是导致氧化锰在碳管表面高度分散、均匀沉积的关键。
     (6)采用热丝辅助加热直流等离子体化学气相沉积方法,在石墨基体上直接生长高度有序碳纳米管,并将其作为载体,通过电化学诱导沉积的方法成功地实现了氧化锰在有序碳管表面的高度均匀分散,制备了氧化锰/有序碳管/石墨(γ-MnO_2/ACNTs/G)电极,并将其应用于电化学电容器的研究。电极的形貌和晶体结构分别采用扫描电子显微镜、透射电子显微镜和X射线衍射技术进行了表征,其在0.1M Na_2SO_4溶液中的电容性能采用循环伏安法和恒流充放技术进行了研究。结果表明:氧化锰高度均匀地包覆在碳纳米管表面,厚度约为12 nm。γ-MnO_2/ACNTs/G电极展现了优异的电容性能,当充放电电流为1 mA cm~(-2),充放电范围为0-1V时,其比电容(基于氧化锰)高达784 F g~(-1)。此外,电极还具有优异的功率特性、电化学可逆性和长时间充放电循环稳定性,在1 mA cm~(-2)的充放电电流下充放电800个循环后,比电容的衰减仅为0.5%。
     (7)以普通的滤纸为载体,利用高锰酸钾与碳之间的氧化还原反应并辅以高温热处理的方法,成功地制备了具有高比电容和超高功率特性的MnO-C复合物。复合物的形貌和晶体结构分别采用扫描电子显微镜和X射线衍射技术进行了表征,其在1M Na_2SO_4溶液中的电容性能采用循环伏安法和恒流充放电技术进行了研究。结果表明:所制备的复合物中氧化锰以MnO的形态存在,MnO-C复合物具有纳米级的线状或梭形状结构。MnO-C复合物/石墨(MnO-C/G)电极具有十分优异的电容性能:高的比电容值,在扫描速度为50 mV s-1时,MnO-C/G电极基于MnO-C复合物和MnO的比电容值分别达到248 F g~(-1)和636 F g~(-1);超高的功率特性,当扫速由10 mV s-1增加到1000 mV s-1时,MnO-C/G电极比电容值的衰减仅为1.6%。此外,MnO-C/G电极还展示了优异的电化学可逆性和长时间充放电循环稳定性,在10 mA cm~(-2)下连续充放电6000次后电极比电容值的衰减仅为6.4%。
As new energy storage devices, electrochemical capacitors have been applied in many fields because they possess high power density, high energy density, long cycle-life, et al. Two basic types of electrochemical capacitors can be realized using different charge-storage mechanism: electrochemical double-layer capacitors and faradaic pseudocapacitors. The former utilizes the capacitance arising from charge separation at an electrode/electrolyte interface, and the later utilizes the charge transfer pseudocapacitance arising from Faradaic reactions occurring at the electrode surface. The electrode materials are one of the key factors to determine capacitive properties of electrochemical capacitors. There are three kinds of the electrode materials: carbon, metal oxideand conductng polymers. This thesis was focused on the preparation of various metal oxides and metal oxides/carbon composites and their applications as the electrode materials in electrochemical capacitors. The main points of this thesis are summarized as follows:
     (1) Amorphous manganese oxide nanowires were potentiodynamically deposited onto graphite substrate at room temperature without any templates. The morphology and crystal structure of the prepared manganese oxide nanowires were investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. Moreover, the prepared manganese oxide nanowires/graphite (MnO_x-NWs/G) electrode was applied as electrode material for electrochemical capacitors and the corresponding capacitive properties were evaluated by cyclic voltammetrty (CV) and galvanostatic charge-discharge method. The results indicate that the MnO_x-NWs/G electrode has excellent capacitive properties: high specific capacitance (208 F g~(-1) in 0.1M Na_2SO_4 aqueous solutions from 0 to 1 V at a current density of 1 mA cm~(-2)), high electrochemical reversibility and excellent long-term charge-discharge cycle stability.
     (2) The nickel-cobalt oxides/carbon nanotubes/graphite ((Co-Ni)O_x/CNTs/G) electrodes with different Ni/Co molar ratios were prepared by adding and thermally decomposing nickel and cobalt nitrates directly onto the surface of CNTs/G electrode to form nickel and cobalt oxides. CNTs used in this paper were grown directly on graphite substrate by chemical vapor deposition (CVD). The morphology and crystal structure of (Co-Ni)O_x/CNTs/G electrodes were investigated by SEM and XRD, respectively. The capacitive behavior of (Co-Ni)O_x/CNTs/G electrodes were investigated by CV and galvanostatic charge-discharge method in 1M KOH aqueous solutions. Additionally, the effect of Ni/Co molar ratios on capacitive behaviour of the (Co-Ni)O_x/CNTs/G electrode was also investigated. The results show that nickel-cobalt oxides are coated uniformly on the surface of CNTs and exist as NiO and Co3O4. When the Ni/Co molar ratio is 1:1, (Co-Ni)O_x/CNTs/G electrode shows the best capacitive properits: the highest specific capacitance (569 F g~(-1) at 10mA cm~(-2)), excellent power characteristics and good charge-discharge cycle stability (only 3.6% losses of the specific capacitance are found after 2000 charge-discharge cycles at a discharge density of 10 mA cm~(-2)).
     (3) Manganese oxide/carbon nanotubes/graphite (MnO_2/CNTs/G) electrodes were synthesized by thermally decomposing manganese nitrates. CNTs used in this paper were grown directly on graphite disk by CVD. The morphology of MnO_2/CNTs/G electrode was characterized by SEM and transmission electron microscopy (TEM). The capacitive behavior of MnO_2/CNTs/G electrode was investigated by CV and galvanostatic charge-discharge method in 1M Na_2SO_4 aqueous solutions. Moreover, the effect of loading mass of MnO_2 on specific capacitance of the electrode was also investigated. The results show that MnO_2 are covered uniformly on the surface of CNTs and the layer thickness of MnO_2 is about 20 nm. When the loading mass of MnO_2 is 36.9μg cm~(-2), the specific capacitance of MnO_2/CNTs/G electrode (based on MnO_2) at 1 mA cm~(-2) equals 568 F g~(-1). Additionally, good charge-discharge cycle stability (ca. 88% value of specific capacitance is remained after 2500 charge-discharge cycles at a discharge density of 10 mA cm~(-2)) and power characteristics of the MnO_2/CNTs/G electrode can be observed.
     (4) A porous Mn(OH)_2 thin film electrode with nanostructure was prepared successfully by electrochemically induced deposition method. The morphology and crystal structure of the prepared film were investigated by SEM and XRD, respectively. The effects of the composition of electrolyte and the deposition current on the morphology of the Mn(OH)_2 film were investigated and the possible deposition mechanism of the film was discussed. Moreover, the capacitive properties of the Mn(OH)_2 film electrode were evaluated by CV and galvanostatic charge-discharge method. The effects of the deposition condition (the deposition current density (iD), supplied mass (SM) and supplied rate (SR) of the supplied solution) on the capacitive properties of the Mn(OH)_2 film electrode were also examined. The results demonstrate that the morphology of the Mn(OH)_2 film depend on the amount and size of evolved H2 bubbles and can be effectively controlled by changing the composition of electrolyte and the deposition current. The Mn(OH)_2 film electrode prepared under the optimum deposition condition (iD = 23 mA cm~(-2), SM = 1.25 mL and SR = 16.7μL min-1) shows excellent capacitive properties: high specific capacitance (493 F g~(-1) in 0.1M Na_2SO_4 aqueous solution from 0 to 1 V at 1 mA cm~(-2)), high electrochemical reversibility and excellent long-term charge-discharge cycle stability (only 2.2% decreases of the specific capacitance are observed after 2000 cycles at a discharge density of 10 mA cm~(-2)).
     (5) Using carbon nanotubes grown directly on graphite substrate as supporting material, theγ-MnO_2/carbon nanotubes/graphite (γ-MnO_2/CNTs/G) electrode with high dispersibility ofγ-MnO_2 was prepared by electrochemically induced deposition method. The morphology and crystal structure of theγ-MnO_2/CNTs/G electrode were investigated by SEM and XRD, respectively. The capacitive properties of theγ-MnO_2/CNTs/G electrode were investigated by CV and the deposition process ofγ-MnO_2/CNTs/G electrode was also discussed. The results indicate thatγ-MnO_2 is only deposited uniformly on the surface of CNTs and form a rough film, which should attribute to the convection of solution caused by H2 bubble motion. Theγ-MnO_2/CNTs/G electrode has three-dimensional porous structure and shows excellent capacitive properties. A specific capacitance based onγ-MnO_2 as high as 579 F g~(-1) is obtained at a scan rate of 10 mV s-1 in 0.1M Na_2SO_4 aqueous solution. Additionally, theγ-MnO_2/CNTs/G electrode shows good power characteristics and long-term cycle stability.
     (6) The well-aligned carbon nanotube arrays (ACNTs) were grown directly on the graphite substrate by plasma-enhanced hot filament chemical vapor deposition and used as supporting material. Theγ-MnO_2/ACNTs/graphite (γ-MnO_2/ACNTs/G) electrode with high dispersibilty ofγ-MnO_2 has been prepared by electrochemically induced deposition method. The morphology and crystal structure of theγ-MnO_2/ACNTs/G electrode were investigated by SEM, TEM and XRD, respectively. The capacitive properties ofγ-MnO_2/ACNTs/G electrode were characterized by CV and galvanostatic charge-discharge method. The results show thatγ-MnO_2 is coated uniformly on the surface of ACNTs and the layer thickness ofγ-MnO_2 is about 12 nm. Theγ-MnO_2/ACNTs/G electrode has three-dimensional porous structure and shows excellent capacitive properties. The specific capacitance of theγ-MnO_2/ACNT electrode based onγ-MnO_2 is as high as 784 F g~(-1) in 0.1M Na_2SO_4 aqueous solution from 0 to 1 V when the charge-discharge current density is 1 mA cm~(-2). Additionally, the electrode shows excellent power characteristics, high electrochemical reversibility and excellent long-term charge-discharge cycle stability (only 0.5% decreases of the specific capacitance are observed after 800 charge-discharge cycles at a discharge density of 1 mA cm~(-2)).
     (7) Using simple filter paper as supporting material, the MnO-C composite with high power density and energy density was prepared by the redox reaction between potassium permanganate and carbons then heat-treatment at high temperature. The morphology and crystal structure of the MnO-C composite were investigated by SEM and XRD. The capacitive properties of the MnO-C composite were evaluated by CV and galvanostatic charge-discharge method. The results indicate that manganese oxide in the prepared composite exists as MnO and the MnO-C composite has nano-shuttle or nanowire structure. The MnO-C composite/graphite (MnO-C/G) electrode has excellent capacitive properties. The specific capacitance of the MnO-C/G electrode based on MnO-C composite and MnO are as high as 248 F g~(-1) and 636 F g~(-1) at a scan rate of 50 mV s-1, respectively. Additionally, the MnO-C/G electrode has very high power characteristics (only 1.6% decreases in specific capacitance from 10 to 1000 mV s-1), excellent electrochemical reversibility and long-term charge-discharge cycle stability (only 6.4% decreases in specific capacitance for 6000 charge-discharge cycles at a discharge density of 10 mA cm~(-2)).
引文
[1]雷永泉,万群,石永康.新能源材料.天津:天津大学出版社,2000.
    [2] Conway B E. Electrochemical Supercapacitors-Scientific Fundamentals and Technological applications. Kluwer Academic/Plenum Press: New York, 1999.
    [3] K?tz R, Carlen M. Principles and applications of electrochemical capacitors. Electrochim Acta, 2000, 45:2483-2498.
    [4] Burke A. Ultracapacitors: why, how, and where is the technology. J Power Sources, 2000, 9: 37-50.
    [5] Woolf G. The supercap communication challenge. Batteries & Energy Storage Technology, 2006, Winter:107-183
    [6]李国欣.新型化学电源技术概论.上海:上海科学技术出版社, 2007.
    [7] Bruke A. 2005 IEE vehicle power and propulsion conference proceedings. Chicago. Illinois: Illinois Institute of Technology, 2005.
    [8] Bruke A. Supercapacitors for hybrid-electric vehicles: recent test data & future projections. Euro capacitors 2007 conference proceedings. Cologne, Germany: IntertechPira, 2007.
    [9]程立文,汪继强,谭玲生.超级电容器的技术与应用市场发展简评.电源技术,2007,31:921-925.
    [10]张治安.基于氧化锰和碳材料的超级电容器研究:电子科技大学博士学位论文.成都:电子科技大学,2005,9-10.
    [11]谭强强.用于超级电容器的纳米复合碳基材料的制备与性能研究:中科院电工所博士后研究工作报告.北京:中国科学院电工研究所,2005,6-8.
    [12] Sarangalani S, Tilak B V, Chen C P. Materials for electrochemical capacitors theoretical and experimental constraints. J Electrochem Soc, 1996, 143:3791-3799.
    [13] Zheng J P, Jow T R. A new charge storage mechanism for electrochemical capacitors. J Electrochem Soc, 1995, 142:L6-L8.
    [14] Yuan A B, Zhang Q L. A novel hybrid manganese dioxide/activated carbon supercapacitor using lithium hydroxide electrolyte. Electrochem Commun, 2006, 8:1173-1178.
    [15]王晓峰,解晶莹,孔祥华,等.“超电容”电化学电容器研究进展.电源技术,2001,25(增刊):166-170.
    [16]王晓峰,孔祥华,刘庆国,等.新型化学储能器件—电化学电容.化学世界,2001,2:103-108.
    [17] Becker H J, Ferry V. Low voltage electrolytic capacitor. US Patent 2800616, 1957.
    [18] Boos D L. Electrolytic capacitor having carbon paste electrodes. US Patent 353663, 1970.
    [19] Boos D L, Adams H A, Hacha T H, et al. Proceeding 21st electronic components conference, Amsterdam:Elsevier, 1971:336-342.
    [20]张丹丹,姚宗干.大容量高储能密度电化学电容器的进展.电子元件与材料,2000,19:34-37.
    [21] Hadzi J S, Angerstem K H, Conway B E. Surface oxidation and H deposition at ruthenium electrodes: resolution of component processes in the potential-sweep experience. J Electroanal Chem, 1975, 60:359-372.
    [22] Trasatti S, Buzzanca P. Ruthenium dioxide: a new interesting electrode material, solid state structure and electrochemical behavior. J Electroanal Chem, 1971, 29:App.1-5.
    [23] Bullard G L, Sierra-Alcazcar H B, Lee H L, et al. Operating principles of the ultracapacitor. IEEE Trans Magn, 1988, 25:102-106.
    [24] Sarangaponi S, Lessner P M, Laconti A B. Proton exchange membrane electrochemical capacitors. US Patent 5136474, 1992.
    [25] Razoumov S, Klementov A, Litviennko S, et al. Asymmertric electrochemical capacitor and method of making. US Patent 6222723, 2001.
    [26] Ganesh V, Pitchumani S, Lakshminarayaman V. New symmetric and asymmetric supercapacitors based on high surface area porous nickel and activated carbon. J Power Sources, 2006, 158:1523-1532.
    [27] Pasquier A D, Plitz I, Gural J, et al. Power-ion battery: bridging the gap between Li-ion and supercapacitor chemistries. J Power sources, 2004, 136:160-170.
    [28] Delnik F M, Tomkiewicz M. Electrochemical capacitors. The Electrochemical society proceedings series, pv95-29, Pennington: NJ, 1996.
    [29]张治安,邓梅根,胡永达,等.电化学电容器的特点及应用.电子元件与材料,2003, 22: 1-5.
    [30]张琦,王金全.超级电容器及应用探讨.电气技术,2007,8: 67-70.
    [31]周强,王金全,杨波.超级电容器:性能优越的储能器件.电气技术,2006,6: 64-68.
    [32]张文宝,王国庆.发展中的电化学电容器.电池工业,2006,11: 42-49.
    [33] Jung D Y, Kim Y H, Kim S W, et al. Development of ultracapacitor modulesfor 42V Automotive electrical systems. J Power Sources, 2003, 114:366-373.
    [34] Weinstock I B. Recent advances in the US department of energy’s energy storage technology research and development programs for hybrid electric and electric vehicles. J Power Sources, 2002, 110:471-474.
    [35]程夕明,孙逢春.电动汽车能量存储技术概况.电源技术,2001, 25:47-52.
    [36] Cygan P J, Atwter T B, Jarvis L P. Hybrid power sources for military applications. 13th Batery Conference on Applications and Advances, 1998, 1(13-16):85-90.
    [37] Halpin S M, Nelms R M, Schatz J E. Characterization of double-layer capacitor application issues for commercial and military applications. IECON 23rd International, 1997, 3:1074-1079.
    [38]朱磊,吴伯荣,陈晖,等.超级电容器研究及其应用.稀有金属, 2003, 27:385-390.
    [39]王海杰,超级电容器在电力驱动系统中的应用.电气技术,2007,8:62-66.
    [40]韦文生,梁吉,徐才录,等.碳纳米管超大容量电容器在光伏系统中的应用.太阳能学报,2002,23:223-226.
    [41] Nomoto S, Nakata H, Yoshioka K, et al. Advanced capacitors and their application. J Power Sources, 2001, 97-98:807-811.
    [42] Andrieu X, Fauvarque J F. Supercapacitor for telecommunication applications. INTELEC 15th International, 1993, 1(27-30):79-82.
    [43] Sniser M.活性炭.太原:新华化工厂设计研究所,1982.
    [44] Takeuchi M, Koike K, Maruyama T, et al. Electrochemical intercalation of tetraethylammonium tetraflouroborate into KOH-treat carbon of multigraphene sheets for an electric double layer capacitor. Denki Kagaku Oyobi Butsuri Kagaku, 1998, 66:1311-1317.
    [45]刘洪波,常俊玲,张红波.双电层电容器高比表面积活性炭的研究.电子元件与材料,2002,21:19-24.
    [46] Teng H, Chang Y J, Hsieh C T. Performance of electric double-layer capacitors using carbons prepared from phenol-formaldehyde resins by KOH etching. Carbon, 2001, 39:1981-1987.
    [47] Weng T C, Teng H. Characterization of high porosity carbon electrodes derived from mesophase pitch for electric double-layer capacitors. J Electrochem Soc, 2001, 148:A368-A373.
    [48] Endo M, Kim Y J, Ohta H, et al. Morphology and organic EDLC applications of chemically activated AR-resin-based carbons. Carbon, 2002, 40:2613-2626.
    [49]黄小文,谢忠巍,曲晓光,等.以食糖热裂解碳作为电极的双电层电容器的性能.高等学校化学学报,2002,23:291-293.
    [50] Huang X W, Xie Z W, He X Q, et al. Electric double layer capacitors using activated carbon prepared from pyrolytic treatment of sugar as their electrodes. Synth Metals, 2003, 135-136:235-236.
    [51]张玲,常俊玲,刘洪波,等.基于竹节的双电层电容器用高比表面积活性炭的研究.炭素,2002,1:11-15.
    [52] Guo Y P, Qi J R, Jiang Y Q, et al. Performance of electrical double layer capacitors with porous carbons derived from rice husk. Mater Chem Phys, 2003, 80:704-709.
    [53] Babel K, Jurewicz K. Electrical capacitance of fibrous carbon composites in supercapacitors. Fuel Proc Tech, 2002, 77-78:181-189.
    [54] Tanahashi I, Yoshida A, Nishino A. Electrochemical characterization of activated carbon-fiber cloth polarizable electrodes for electric double-layer capacitors. J Electrochem Soc, 1990, 137:3052-3057.
    [55] Miura K, Nakagawa H, Okamoto H. Production of high density activated carbon fiber by a hot briquetting method. Carbon, 2000, 38:119-125.
    [56] Kim C. Electrochemical characterization of electro-spun activated carbon nanofibres as an electrode in supercapacitors. Power Sources, 2005, 3:382-388.
    [57] Hsieh C T, Teng H. Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics. Carbon, 2002, 40: 667-674.
    [58] Pekala R W. Organic aerogels from the polycondensation of resorcinol with formaldehyde. J Mater Sci, 1989, 24:3221-3227.
    [59] Mayer S T, Pekala R W, Kaschimiter J L. The aerocapacitor: an electrochemical double-layer energy-storage device. J Electrochem Soc, 1993, 140:446-451.
    [60] Escribbano S, Berthon S, Ginoux J L, et al. In: Characterization of carbon aerogels-extended abstracts. Eurocarbon’98, France: Strasbourg, 1998, 841-842.
    [61] Salikger R, Fischer U, Herta C, et al. High surface area carbon aerogels for supercapacitors. J Non-Crystalline Solids, 1998, 225:81-85.
    [62] Li W C, Reichenauer G, Fricke J. Carbon aerogels derived from cresol-resorcinol-formaldehyde for supercapacitors. Carbon, 2002, 40:2955-2959.
    [63]孟庆函,刘玲,未怀河,等.炭气凝胶为电极的超级电容器的研究.功能材料,2004,35:457-459.
    [64] Schmitt C, Pr?bstle H, Fricke J. Carbon cloth-reinforced and activated carbon aerogel films for supercapacitors. J Non-Crystalline Solids, 2001, 285:277-282.
    [65] Gouerec P, Miousse D, Tranvan F, et al, Characterization of pyrolized polyacrylonitrile aerogel thin films used in double layer supercapacitors. J New Mater Electrochem Syst, 1999, 2:221-226.
    [66] Miller J M, Dunn B. Morphology and electrochemistry of ruthenium/carbon aerogel nanostructures. Langmuir, 1999, 15:799-806.
    [67]侯朝辉,李新海,何则强,等.炭凝胶的制备及其电化学电容性能.中南大学学报(自然科学版),2004,35:581-586.
    [68]张拴勤,王珏,沈军,等.碳气凝胶/H2SO4双电层电容器的特性.功能材料与器件学报,1999,5:57-60.
    [69]蒋伟阳,孙颖,唐永建,等.碳气凝胶作为电双层电容器电极材料的研究.高压电技术,1997,23:95-96.
    [70] Iijima S. Helical microtubules of graphic carbon. Nature, 1991, 354:56.
    [71]成会明.纳米碳管制备,结构,物性及应用.北京:化学工业出版社,2002.
    [72] Niu C, Sichel E K, Hoch R, et al. High power electrochemical capacitors based on carbon nanotube electrodes. Appl Phys Lett, 1997, 70:1480-1484.
    [73] Frackowiak E, Metenier K, Bertagna V, et al. Supercapacitor electrodes from multiwalled carbon nanotubes. Appl Phys Lett, 2000, 77:2421-2423.
    [74] Ma R Z, Liang J, Wei B Q, et al. Study of electrochemical capacitors utilizing carbon nanotube electrodes. J Power Sources, 1999, 84:126-129.
    [75]马仁志,魏秉庆,徐才录,等.应用于超级电容器的碳纳米管电极的几个特点.清华大学学报(自然科学版),2000,40:7-10.
    [76]王贵欣,瞿美臻,周固民,等.一种估算多壁碳纳米管电化学容量的方法.无机化学学报,2004,20:369-372.
    [77] PineroR E, Amoros C D, Solano L A, et al. High surface area carbon nanotubes prepared by chemical activation. Carbon, 2002, 40:1614-1617.
    [78] Ye H S, Liu X, Cui H F, et al. Electrochemical oxidation of multi-walled carbon nanotubes and its application to electrochemical double layer capacitors. Electrochem Commun, 2005, 7:249-255.
    [79] Chen Q L, Xue K H, Shen W, et al. Fabrication and electrochemical properties of carbon nanotube array electrode for supercapacitors. Electrochim Acta,2004, 49: 4157-4161.
    [80] Frackowiak E, Jurewicz K, Delpeux S, et al. Nanotubular materials for supercapacitors. J Power Sources, 2001, 97-98:822-825.
    [81] Pico F, Rojo J M, Sanjuan M L, et al. Single-walled carbon nanotubes as electrodes in supercapacitors. J Electrochem Soc, 2004, 151:A831-A837.
    [82] An K H, Kim W S, P ark Y S, et al. Supercapacitors using single-walled carbon nanotube electrodes. Adv Mater, 2001, 13:497-500.
    [83] An K H, Kim W S, Park Y S, et al. Electrochemical properties of high-powers upercapacitors using single-walled carbon nanotube electrodes. Adv Funct Mater, 2001, 11:387-392.
    [84] Moon J M, An K H, L ee Y H, et al. High-yield purification process of single-walled carbon nanotubes. J Phys Chem B, 2001, 105:5677-5681.
    [85] Melsheimer J, Ziegler D. Oxygen electrode reaction in acid solutions on RuO2 elecrtode prepared by the thermal decomposition methods. Thin Solid Films, 1998, 163:301-308.
    [86] Zheng J P, Cygan P J, Jow T R. Hydrous ruthenium oxide as an electrode material for electrochemical capacitors. J Elctrochem Soc, 1995, 142:2699-2703.
    [87] Suh D J, Park T J, Kim W I, et al. Synthesis of high-surface-area ruthenium oxide aerogels by non-alkoxide sol–gel route. J Power Sources, 2003, 117:1-6.
    [88] Park B O, Lokhande D C, Park H S, et al. Performance of supercapacitor with electrodeposited ruthenium oxide film electrodes—effect of film thickness. J Power Sources, 2004, 134:148-152.
    [89] Hu C C, Huang Y H. Cyclic voltammetric deposition of hydrous ruthenium oxide for electrochemical capacitors. J Electrochem Soc, 1999, 146:2465-2476.
    [90] Hu C C, Chang K H. Cyclic voltammetric deposition of hydrous ruthenium oxide f or electrochemical capacitors. Electrochim Acta, 2000, 45:2685-2696.
    [91] Zhang F B, Zhou Y K, Li H L. Nanocrystalline NiO as an electrode material for electrochemical capacitor. Mater Chem Phys, 2004, 83:260-264.
    [92] Srinivasan V, Weidner J W. An electrochemical route for making porous nickel oxide electrochemical capacitors. J Elecrtochem Soc, 1997, 144:L210-L213.
    [93]王晓峰,孔祥华.新型氧化镍超电容器电极材料的研究.无机材料学报,2001,16:815-820.
    [94] Liu Y C, Anderson M A. Porous nickel oxide/nickel films for electrochemicalcapacitors. J Electrochem Soc, 1996, 143:124-130.
    [95]闪星,张密林.纳米氧化镍在超大容量电容器中的应用.功能材料与器件学报,2002,8:35-39.
    [96] Nam K W, Kim K B. A study of the preparation of NiOx electrode via electrochemical route for supercapacitor application and their charge storage mechanism. J Electrochem Soc, 2002, 149:A346-A354.
    [97]张密林,杨晨.纳米氧化镍的制备及其电容特性研究.无机化学学报,2004, 20:283-286.
    [98] Lin C, Ritter A J, Popov N B. Characterization of sol-gel-derived cobalt oxide xerogels as electrochemical capacitors. J Elctrochem Soc, 1998, 145:4097-4103.
    [99]张密林,刘志祥.沉淀转化法制备的Co(OH)2的超级电容特性.无机化学学报,2002,18:513-517.
    [100] Liu T C, Pell W G, Conway B E. Stages in the development of thick cobalt oxide films exhibiting reversible redox behavior and pseudocapacitance. Electrochim Acta, 1999, 44:282-284.
    [101] Pang S C, Anderson M A, Chapman T W. Novel electrode material for thin film ultracapacitors: comparison of electrochemical properties of sol-gel derived and electrodeposited manganese dioxide. J Electrochem Soc, 2000, 147:444-450.
    [102]江奇,陈召勇,于作龙,等. LiMnO4用作电化学超级电容器电极材料的性能初探.功能材料,2001,10:1060-1062.
    [103]张治安,杨邦朝,邓梅根,等.超级电容器氧化锰纳米电极材料的合成与表征.化学学报,2004,62:1617-1620.
    [104] Lee H Y, Goodenough J B. Supercapacitor behaviour with KCl electrolyte. J Solid State Chem, 1999, 144:220-223.
    [105] Lee H Y, Manivannan V, Goodenough J B. Electrochemical capacitors with KCl electrolyte. Comptes Rendus Chimie, 1999, 2:565-567.
    [106]刘献明,张校刚.热解温度对MnO2电容行为的影响.无机材料学报,2003, 18:1022-1026.
    [107] Hu C C, Tsou T W. Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition. Electrochem Commun, 2002, 4:105-109.
    [108] Hu C C, Wang C C. Nanostructures and capacitive characteristic of hydrous manganese oxide prepared by electrochemical deposition. J Electrochem Soc, 2003, 150:A1097-A1084.
    [109] Wu M Q, Snook G A, Chen G Z, et al. Redox deposition of manganese oxide on graphite for supercapacitors. Electrochem Commun, 2004, 6:499-504.
    [110]袁中直,周震涛,李伟善,等.α-MnO2纳米棒在1 M KOH溶液中的电容行为.中国锰业,2004, 22:23-30.
    [111] Prasad K R, Miura N. Electrochemical synthesis and characterization of nanostructured tin oxide for electrochemical redox supercapacitors. Electrochem Commun, 2004, 6:849-852.
    [112] Lee H Y, Goodenough J B. Ideal supercapacitor behaviour of amorphous V2O5·H2O in KCl aqueous solution. J Solid State Chem, 1999, 148:81-84.
    [113] Chiang C K, Fincher C R, Pa rk Y W, et al. Electrical conductivity in doped polyacetylene. Phys Rev Lett, 1997, 39:1098-1101.
    [114] Bélanger D, Ren X, Davey J, et al. Characterization and long-term performance of polyaniline-based electrochemical capacitors. J Electrochem Soc, 2000, 147:2923-2929.
    [115] Arbizzani C, Mastragostino M, Meneghello L, et al. Polymer-based redox supercapacitors: a comparative study. Electrochim Acta, 1996, 41:21-26.
    [116] Carlberg J C, Ingan?s O. Poly(3, 4-ethylenedioxythiophene) as electrode material in electrochemical capacitors. J Electrochem Soc, 1997, 144:L61-L64.
    [117] Rudge A, Davey J, Raistrick I, et al. Conducting polymers as active materials in electrochemical capacitors. J Power Sources, 1994, 47:89-107.
    [118] Clemente A, Panero S, Spila E, et al. Solid-state, polymer-based, redox capacitors. Solid State Ionics, 1996, 85:273-277.
    [119] Hashmi S A, Upadhyaya H M. Polypyrrole and poly(3-methyl thiophene)-based solid state redox supercapacitors using ion conducting polymer electrolyte. Solid State Ionics, 2002, 152-153:883-889.
    [120] Mastragstino M, Arbizzani C, Soavi F. Conducting polymers as electrode materials in supercapacitors. Solid State Ionics, 2002, 148:493-498.
    [121] Arbizzani C, Catellani M, Mastragostino M, e t al. N- and p-doped polydithieno(3,4-B:3’,4’-D) thiophene: an arrow band gap polymer for redox supercapacitors. Electrochim Acta, 1995, 40:1871-1876.
    [122] Ferraris J P, Eissa M M, Brotherston I D, et al. Preparation and electrochemical evaluation of poly(3-phenythiophene) derivatives: potential materials for electrochemical capacitor. J Electroanal Chem, 1998, 459:57-59.
    [123] Laforgue A, Simon P, Sarrazin C, et al. Polythiophene-based supercapacitors.J Power Sources, 1999, 80:142-148.
    [124] Kim J Y, Chung I J. An all-solid-state electrochemical supercapacitor based on poly3-(4-fluorophenylthiophene) composite electrodes. J Electrochem Soc, 2002, 149:A1376-Al380.
    [125] Bobacka J, Lewenstam A, Ivaska A. Electrochemical impedance spectroscopy of oxidized poly(3,4-ethylenedioxythiophene) film electrodes in aqueous solutions. J Electroanal Chem, 2000, 489:17-27.
    [126] Li W K, Chen J, Zhao J J, et al. Application of ultrasonic irradiation in preparing conducting polymer as active materials for supercapacitor. Mater Lett, 2005, 59:800-803.
    [127]吕进玉,林志东.超级电容器导电聚合物电极材料的研究进展.材料导报,2007, 21:29-31.
    [128] Naoi K, Suematsu S, Manago A. Elect rochemistry of poly (1,5-diaminoanthraquinone) and its application in electrochemical capacitor materials. J Electrochem Soc, 2000, 147:420-426.
    [129] Naoi K, Suematsu S, Hanada M, et al. Enhanced cyclability ofπ-πstacked supramolecular (1,5-diaminoanthraquinone) oligomer as an electrochemical capacitor material. J Electrochem Soc, 2002, 149:472-477.
    [130] Chen W C, Hu C C, Wang C C, et al. Electrochemical characterization of activated carbon–ruthenium oxide nanoparticles composites for supercapacitors. J Power Sources, 2004, 125: 292-298.
    [131]王晓峰,王大志,梁吉.氧化钌/活性炭超级电容器电极材料的研制.稀有金属材料与工程,2003,32:424-427.
    [132] Hu C C, Chen C W. Effects of substrates on the capacitive performance of RuOx·nH2O and activated carbon-RuOx electrodes for supercapacitors. Electrochim Acta, 2004, 49:3469-3477.
    [133] Ma R Z, Wei B Q, Xu C L, et al. Development of supercapacitors based on carbon nanotubes. Science in China (Series E), 2000, 43:178-182.
    [134] Arabale G, Wagh D, Kulkarni M, et al. Enhanced supercapacitance of multiwalled carbon nanotubes functionalized with ruthenium oxide. Chem Phys Lett, 2003, 376:207-213.
    [135] Qin X, Durbach S, Wu G T. Electrochemical characterization on RuO2·xH2O/carbon nanotubes composite electrodes for high energy density supercapacitors. Carbon, 2004, 42:451- 453.
    [136]刘献明,张校刚,王永刚,等.电化学电容器复合材料MnO2/活性炭的研究.功能材料, 2003, 34:550-552.
    [137] Dong X P, Shen W H, Gu J L, et al. MnO2 embedded in mesoporous carbon wall structure for use as electrochemical capacitors. J Phys Chem B, 2006, 110:6015-6019.
    [138] Fischer A E, Pettigrew K A, Rolison D R, et al. Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: implications for electrochemical capacitors. Nano Lett, 2007, 7:281-286.
    [139] Wu Y T, Hu C C. Effects of electrochemical activation and multiwall carbon nanotubes on the capacitive characteristics of thick MnO2 deposits. J Electrochem Soc, 2004, 151:A2060-A2066.
    [140]梁逵,陈艾,李悦.超大容量离子电容器碳纳米管与氧化镍复合电极材料的研究.硅酸盐学报, 2002, 30:528-531.
    [141] Nam K W, Lee E S, Kim J H, et al. Synthesis and electrochemical investigations of Ni1-xO thin films and Ni1-xO on three-dimensional carbon substrates for electrochemical capacitors. J Electrochem Soc, 2005, 152:A2123-A2129.
    [142] He K X, Wu Q F, Zhang X G, et al. Electrodeposition of nickel and cobalt mixed oxide/carbon nanotube thin films and their charge storage properties. J Electrochem Soc, 2006, 153:A1568-A1574.
    [143]漆海波,周啸,姜翠玲,等.碳纳米管–聚吡咯复合材料在超电容器中的应用.电子元件与材料, 2002, 21:29-32.
    [144] Frackowiak E, Jurewicz K, Szostak K, et al. Nanotubular materials as electrodes for supercapacitors. Fuel Proc Tech, 2002, 77-78:213-219.
    [145] Frackowiak E, Béguin F. Electrochemical storage of energy in carbon nanotubes and nanostructured carbons. Carbon, 2002, 40:1775-1787.
    [146] Frackowiak E, Jurewicz K, Szostak K, et al. Nanotubular materials for supercapacitors. J Power Sources, 2001, 97-98:822-825.
    [147] Lota K, Khomenko V, Frackowiak E. Capacitance properties of poly(3,4-ethylenedioxythiophene)/carbon nanotubes composites. J Phys Chem Solids, 2004, 65:295-301.
    [148] An K H, Jeon K K, Heo J K, et al. High-capacitance supercapacitor using a nanocomposite electrode of single-walled carbon nanotube and polypyrrole. J Electrochem Soc, 2002, 149:A1058-A1062.
    [149] Zhou Y K, He B L, Zhou W J, et al. Electrochemical capacitance ofwell-coated single-walled carbon nanotube with polyaniline composites. Electrochim Acta, 2004, 49:257-262.
    [150] Hughes M, Chen G Z, Shaffer M S P, et al. Electrochemical Capacitance of a Nanoporous Composite of Carbon Nanotubes and Polypyrrole. Chem Mater, 2002, 14:1610-1613.
    [151] Hughes M, Shaffer M S P, Renouf A, et al. Electrochemical capacitance of nanocomposite films formed by coating aligned arrays of carbon nanotubes with polypyrrole. Adv Mater, 2002, 14:382-385.
    [152] Jeong Y U, Manthiram A. Amorphous tungsten oxide/ruthenium oxide composites for electrochemical capacitors. J Electrochem Soc, 2001, 148:A189-A193.
    [153] Jeong Y U, Manthiram A. Amorphous ruthenium-chromium oxides for electrochemical capacitors. Electrochem Solid-State Lett, 2000, 3: 205-208.
    [154] Wohlfahrt-Mehrens M, Schenk J, Wilde P M, et al. New materials for supercapacitors. J Power Sources, 2002, 105:182-188.
    [155] Sugimoto W, Shibutani T, et al. Charge storage capabilities of rutile-type RuO2-VO2 solid solution for electrochemical supercapacitors. Eletrochem Solid-State Lett, 2002, 5:A170-A172.
    [156] Wang Y G, Zhang X G. Preparation and electrochemical capacitance of RuO2/TiO2 nanotubes composites. Electrochem Acta, 2004, 49:1957-1962.
    [157] Yoshi T, Takashi N, Yasushi M. Dip-coated Ru/MoO Ti electrodes for electrodes for electrochemical capacitors. Chem Lett, 1998, 27:1215-1216.
    [158] Yoshi T, Takashi N, Hiroyuki O et al. Dip-coated Ru-V oxide electrodes for electrochemical capacitor. J Electrochem Soc, 1997, 144:2601-2606.
    [159] Kohichi K, Shigeru S, Satashi O et al. Preparation of ultrafine RuO2-TiO2 binary oxide particles by a sol-gel process. J Electrochem Soc, 1993, 140:966-969.
    [160] Minoru I, Yasushi M, Hayto K et al. Surface characterization of RuO2-SnO2 coated titanium electrodes, J Electrochem Soc, 1996, 143:32-36.
    [161] Hu C C, Huang Y H, Chang K H. Annealing effects on the physicochemical characteristics of hydrous ruthenium and ruthenium-iridium oxides for electrochemical supercapacitors. J Power Sources, 2002, 108:117-127.
    [162] Grupioni A A F, Arashiro E, Lassali T A F. Voltammetric characterization of an iridium oxide-based system: the pseudocapacitive nature of the Ir0.3Mn0.7O2 electrode. Electrochim Acta, 2002, 48:407- 418.
    [163] Grupionl A A F, Lassali T A F. Effect of the Co3O4 introduction in the pseudocapacitive behavior of IrO2-based electrode. J Electrochem Soc, 2001, 148:A1015-A1022.
    [164] Souza A R, Arashiro E, Golveia H, et al. Pseudocapacitive behavior of Ti/RhOx + Co3O4 electrodes in acidic medium: application to supercapacitor development. Electrochim Acta, 2004, 49:2015-2023.
    [165]梁逵,陈艾,吴孟强,等.热处理温度及掺杂对氧化镍电极质电容器特性的影响.硅酸盐学报,2002, 30:1-4.
    [166] Hu C C, Cheng C Y. Ideally Pseudocapacitive behavior of amorphous hydrous cobalt-nickel oxide prepared by anodic deposition. Eletrochem Solid-State Lett, 2002, 5:A43-A46.
    [167] Liu X M, Zhang Y H, Zhang X G, et al. Studies on Me/Al-layered double hydroxide (Me = Ni and Co) as electrode materials for electrochemical capacitors. Electrochim Acta, 2004, 49:3137-3141.
    [168] Prasad K R, Miiura N. Electrochemically synthesized MnO2-based mixed oxides for high performance redox supercapacitors. Electrochem Commun, 2004, 6:1004-1008.
    [169] Kim H, Popov B N. Synthesis and characterization of MnO2-Based mixed oxides as supercapacitors, J Electrochem Soc, 2003, 150:D56-D62.
    [170] Jayalakshmi M, Venugopal N, Phani R K, et al. Nano SnO2/Al2O3 mixed oxide and SnO2/Al2O3/carbon composite oxides as new and novel electrodes for supercapacitor applications. J Power Sources, 2006, 158:1538-1543.
    [171] Hong J I, Yeo I H, Wooh K P. Conducting polymer with metal oxide for electrochemical capacitor. J Electrochem Soc, 2001, 148:A156-A163.
    [172] Jang J H, Machida K, Kim Y, et al. Electrophoretic deposition ( EPD) of hydrous Ruthenium oxides with PTFE and their supercapacitor performances. Electrochim Acta, 2006, 52:1733-1741.
    [173] He B L, Zhou Y K, Zhou W J, et al. Preparation and characterization of ruthenium-doped polypyrrole composites for supercapacitor. Mater Sci Eng A, 2004, 374:322-326.
    [174] Ryu K S, Kim K M, Park N G. Symmetric redox supercapacitor with conducting polyaniline electrodes. J Power Sources, 2002, 103:305-309.
    [175] Ryu K S, Kim K M, Park Y J, et al. Redox supercapacitor using polyaniline doped with Li salt as electrode. Solid State Ionics, 2002, 152-153:861-866.
    [176] Prasad K R, Miura N. Polyaniline-MnO2 composite electrode for high energydensity electrochemical capacitor. EIectrochem Solid-State Lett, 2004, 7:A425-A428.
    [177] Nakayama M, Tagashira H, Konishi S, et a1. A direct electrochemical route to construct a polymer/manganese oxide layered structure. Inorg Chem, 2004, 43:8215-8217.
    [178] Chin S F, Pang S C, Anderson M A. Material and electrochemical characterization of tetrapropylammonium manganese oxide thin films as novel electrode materials for electrochemical capacitors. J Electrolchem Soc, 2002, 149:A379-A384.
    [179]罗旭芳,张雪纯,王先友,等.超级电容器用纳米γ-MnO2制备与性能.电池,2004,34:334-336.
    [180]唐致远,耿新,王占良,等. MnO2的制备及其在电化学电容器中的应用.过程工程学报,2003,3:351-355.
    [181] Chen Y S, Hu C C, Wu Y T. Capacitive and textural characteristics of manganese oxide prepared by anodic deposition: effects of manganese precursors and oxide thickness. J Solid State Electrochem, 2004, 8:467-473.
    [182] Wang X Y, Wang X Y, Huang W G, et a1. Sol-gel template synthesis of highly ordered MnO2 nanowire arrays. J Power Sources, 2005, 140:211-215.
    [183] Nam K W, Kim K B. A study of the preparation of NiOx electrode via electrochemical route for supercapacitor applications and their charge storage mechanism. J Electrolchem Soc, 2002, 149:A346-A354.
    [184]王晓峰,王大志,梁吉.碳纳米管表面沉积氧化镍及其超电容器的电化学行为.无机材料学报,2003,18:331-336.
    [185] Trasatti S. Physical chemistry of ceramic oxides. Electrochim Acta, 1991, 36:225-241.
    [186] Trasatti S, Lodi G. Oxygen and chlorine evolution at conductive metallic oxide anodes. In: Electrodes of conductive metal oxides, ed. Trasatti S. Part A and Part B, Amsterdam: elsevier, 1980 and 1981.
    [187] Hu C C, Lee Y S, Wen T C. The physicochemical/electrochemical properties of binary Ni–Co oxides. Meter Chem Phys, 1997, 48:246-254.
    [188] Bouessay I, Rougier A, Tarascon M. Electrochemically inactive nickel oxide as electrochromic material. J Electrochem Soc, 2004, 151:H145-H152.
    [189] Nikolov I, Darkaoui R, Zhecheva E, et al. Electrocatalytic activity of spinel related cobalties MxCo3?xO4 (M = Li, Ni, Cu) in the oxygen evolution reaction. J Electroanal Chem, 1997, 429:157-168.
    [190] Chen J, Bradhurst D H, Dou S X, et al. Nickel hydroxide as an active material for the positive electrode in rechargeable alkaline batteries. J Electrochem Soc, 1999, 146:3606-3612.
    [191] Fan S S, Chapline M G, Franklin N R, et al. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science, 1999, 283:512-514.
    [192] Tans S J, Verschueren A R M, Dekker C. Room-temperature transistor based on a single carbon nanotube. Nature, 1998, 393:49-52.
    [193] Wang J. Carbon nanotube based electrochemical biosensors: a review. Electroanalysis, 2004, 17:7-14.
    [194] Che G L, Lakshmi B B, Fisher E R, et al. Carbon nanotube membranes for electrochemical energy storage and production. Nature, 1998, 393:346-349.
    [195] Baughman R H, Cui C X, Zakhidov A A, et al. Carbon nanotube actuators. Science, 1999, 284:1340-1344.
    [196] Eitan A, Jiang K Y, Dukes D, et al. Surface modification of MWCNT toward the tailoring of the interface in polymer composites. Chem Mater, 2003, 15:3198-3201.
    [197] Zhou Y K, He B L, Zhang F B, et al. Hydrous manganese oxide/carbon nanotube composite electrodes for electrochemical capacitors. J Solid-State Electrochem, 2004, 8:482-487.
    [198] Lee H Y, Kim S W. Expansion of active site area and improvement of kinetic reversibility in electrochemical pseudocapacitor electrode. Electrochem Solid-State Lett, 2001, 4:A19-A25.
    [199] Toupin M, Brousse T, Belanger D. Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem Mater, 2004, 16:3184-3190.
    [200] Hu C C, Tsou T W. The optimization of specific capacitance of amorphous manganese oxide for electrochemical supercapacitors using experimental strategies. J Power Sources, 2003, 115:179-186.
    [201] Hu C C, Tsou T W. Capacitive and textural characteristics of hydrous manganese oxide prepared by anodic deposition. Electrochim Acta, 2002, 47:3523-3532.
    [202] Chang J K, Tsai W T. Material characterization and electrochemical performance of hydrous manganese oxide electrodes for use in electrochemical pseudocapacitors. J Electrochem Soc, 2003,150:A1333-A1338.
    [203] Zhang H, Cao G P, Yang Y S. Electrochemical properties of ultra-long, aligned, carbon nanotube array electrode in organic electrolyte. J Power Sources, 2007, 172:476-480.
    [204] Zhang H, Cao G P, Yang Y S, et al. Capacitive performance of an ultralong aligned carbon nanotube electrode in an ionic liquid at 60℃. Carbon, 2008, 46: 30-34.
    [205] Fang W C, Chyan O, Sun C L, et al. Arrayed CNxNT-RuO2 nanocomposites directly grown on Ti-buffered Si substrate for supercapacitor applications. Electrochem Commun, 2007, 9:239-244.
    [206] Hu C C, Chang K H, Lin M C, et al. Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett, 2006, 6:2690-2695.
    [207] Wang G X, Zhang B L, Yu Z L, et al. Manganese oxide/MWNTs composite electrodes for supercapacitors. Solid State Ionics, 2005, 176:1169-1174.
    [208] Chang J K, Lin C T, Tsai W T. Manganese oxide/carbon composite electrodes for electrochemical capacitors. Electrochem Commun, 2004, 6:666-671.
    [209] Pi?ero E R, Khomenko V, Frackowiak E, et al. Performance of manganese oxide/CNTs composites as electrode materials for electrochemical capacitors. J Electrochem Soc, 2005, 152: A229-235.
    [210] Lee C Y, Tsai H M, Chuang H J, et al. Characteristics and electrochemical performance of supercapacitors with manganese oxide-carbon nanotube nanocomposite electrodes. J Electrochem Soc, 2005, 152: A716-A720.
    [211] Ma S B, Ahn K Y, Lee E S, et al. Synthesis and characterization of manganese dioxide spontaneously coated on carbon nanotubes. Carbon, 2007, 45:375-382.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700