纳米晶TiO_2多孔薄膜的模板组装制备、表征及DSSC应用中的性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米晶TiO_2多孔薄膜作为重要的半导体材料,其光电化学性质研究已得到人们的广泛关注,在太阳能转换、光电子器件及光催化等方面具有重要的应用。本文采用浸渍-提拉和原位蒸发两种方法进行了PS胶晶阵列的自组装制备。通过提拉法制备PS微球胶晶时,发现升高乳液温度可以促进动态提拉下阵列的有序生长。而且适当温度时,提高乳液中PS球的体积分数可使阵列层数和有序度得到提高并抑制阵列中断裂线的产生。原位蒸发的胶晶组装是多核过程,经历了四方排列到密堆积的转变。当通过降低压强加速蒸发时,自组装更加稳定,可以在较宽压强范围内得到有序胶晶。
     以Ti(OBu)4为原料,P123为模板剂,HCl为水解抑制剂制备了前驱体溶胶,通过浸渍-提拉制膜后,450℃热处理3h得到介孔结构的锐钛矿相纳米晶TiO_2薄膜,晶粒尺寸~10nm。样品的BET比表面积和总孔体积分别为89.6m2/g和0.18cm3/g,平均孔径5.7nm。通过改变水解抑制剂,研究了介孔TiO_2的微结构特征。结果表明,在HCl或AcAc-HCl双抑制剂的作用下,样品的比表面积和孔隙率较大,分别为176.3m2/g,139.2m2/g和60%,57%,证实HCl对钛源具有较强的水解抑制作用,可形成钛低聚物小团簇,从而有利于其和PEO基团的键合,形成较有序的介孔结构TiO_2。
     采用PS胶晶/P123双模板,通过浸渍-提拉/溶胶-凝胶法成膜,450℃热处理后制备了有序大孔-介孔锐钛矿TiO_2薄膜,晶粒尺寸7.4nm,光学带隙3.00eV。浸渍-提拉法灌注PS模板时,有序大孔结构的形成明显依赖于溶胶浓度。较低浓度的溶胶对PS润湿性差,导致灌注孔壁不完整。当浓度为0.13-0.15M时,大的表面张力和较小的润湿角有利于溶胶灌注,大孔结构有序度高。当浓度继续升高时,溶胶流动性变差,不利于其在PS上的铺展而导致结构有序度降低。
     对介孔TiO_2进行金属元素Nb、Sb、Ge、Zn和Sn的掺杂,并考察其作为染料敏化太阳电池(DSSCs)n-电极的光伏性能。结果表明,与未掺杂介孔TiO_2相比,Ge掺杂阳极的电池开路电压升高;Nb和Sb的施主掺杂有利于TiO_2阳极中的电子传输,使短路电流增大;Sb掺杂薄膜具有较大的比表面积,有利于提高光吸收率。Ge掺杂TiO_2的DSSC光电转换效率最大,为2.95%。
Porous nanocrystalline TiO_2 (nc-TiO_2) film is an important semiconductor material. Recently, its photoelectrochemical properties have attracted much attention for research works, which are desired for many applications, such as solar energy converters, optoelectronic devices and photocatalysts.
     In this paper, two methods (dip-drawing and in-situ solvent evaporation) were employed for preparing PS colloidal crystal array. In self-assembly of PS colloidal crystal by dip-drawing method, the elevated emulsion temperature could promote ordered arrangement of PS spheres during the dynamic drawing process. At proper temperature, the array thickness and orderliness can be enhanced by increasing the PS volume fraction of emulsion, meanwhile which obviously reduced the fracture lines in array. In in-situ evaporation process for preparing PS colloidal crystal, self-assembly behaves a multi-nucleus site evolution, and undergoes the transformation from square to close packing arrangement. Technique of decreasing atmospheric pressure was adopted for accelerating evaporation so as for a more stable arrangement and wider range of pressure for ordered colloidal crystal.
     The mesoporous TiO_2 precusor sol was prepared using tetrabutyl orthotitanate (Ti(OBu)4) as titanium source, P123 as template and HCl as hydrolysis inhibitor. With film fabrication by dip-drawing and then calcining at 450℃for 3h, mesoporous anatase nc-TiO_2 film was obtained with grain size of ~10nm. The Brunauer-Emmett-Teller surface area (SBET), total pore volume and average mesoporous size is 89.6m2/g, 0.18cm3/g and 5.7nm, respectively. Through using different hydrolysis inhibitors, the microstructure of mesoporous TiO_2 was researched. Results show that under effect of inhibitor HCl or acetylacetone-HCl, higher SBET and porosity of 176.3m2/g, 139.2m2/g and 60%, 57% respectively, were obtained. Because the additive HCl possesses strong inhibiting effect for hydrolysis, which results in small size of Ti oligomers that favors connection with PEO moieties for formation of more ordered mesoporous structure of TiO_2 film.
     Using PS colloidal crystal/P123 as bitemplate through dip-drawing/sol-gel for film fabrication, ordered macro-mesoporous anatase TiO_2 film was prepared after calcining at 450℃, with grain size of 7.4 nm and band gap of 3.00eV. The perfection of inverse opal structure mainly depends on the precursor sol concentration. Under low sol concentrations, worse wetting ability of sol to PS spheres led to incomplete TiO_2 inorganic wall. In concentration range of 0.13-0.15M, more ordered macroprous structure were fabricated, resulting from big surface tension and small contact angle that both favor the permeation of sol into PS template. Along with increase of sol concentration, fluidity of sol could not match the spread in gaps among PS spheres well, leading to worse orderliness of macroporous structure.
     Mesoporous nc-TiO_2 films were doped by metal element of Nb、Sb、Ge、Zn and Sn, and its photovoltaic performance was studied as n-electrode of dye-sensitized solar cells (DSSCs). The results show that when using Ge doped TiO_2 film as anode, open-circuit photovoltage of DSSC increases comparing with pure TiO_2. The short-circuit photocurrent of DSSCs based on Nb or Sb doped anode rise, since Nb and Sb are both donor for Ti that favors transfer of electron received from dye in the TiO_2 electrode. Larger SBET of Sb doped TiO_2 film raises the light absorptivity. And Ge doped DSSC possesses the highest conversion efficiency of 2.95%.
引文
[1]张招贤,钛电极工学,北京:冶金工业出版社,2000
    [2] Buchanan R C, Park T, Materials crystal chemistry, New York: Marcel Dekker Inc., 1997
    [3]刘昭麟,张志焜,纳米TiO2的结构相变和光学性能,青岛科技大学学报,2004,25:26-8
    [4]高濂,郑珊,张青红,纳米氧化钛光催化材料及应用,北京:化学工业出版社,2002
    [5] Leland J K, Bard A J, Photochemistry of colloidal semiconducting iron oxide polymorphs, Journal of Physical Chemistry, 1987, 91: 5076-83
    [6] Farin D, Kiwi J, Avnir D, Size effects in photoprocesses on dispersed catalysts, Journal of Physical Chemistry, 1989, 93: 5851-4
    [7] Gr?tzel M, Sol-gel processed TiO2 films for photovoltaic applications, Journal of Sol-Gel Science and Technology, 2001, 22: 7-13
    [8] Regan B O’, Gr?tzel M, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 1991, 353: 737-40
    [9] Stephen D, Donald F, Preparation and characterization of transparent nanocrystalline TiO2 films possessing well-defined morphologies, Journal of Physical Chemistry, 1996, 100: 10732-70738
    [10] Nicholas A K, Fiona C M, Janos H F, Monoparticulate layers of titanium dioxide nanocrystallites with controllable interparticle distances, Journal of Physical Chemistry, 1994, 98: 8827-30
    [11]程黎放,王瑜,戴松元,等,纳米晶体TiO2多孔膜的制备、性能及其在太阳能电池中的应用,材料研究学报,1996,10:404-8
    [12]刘永兴,尚华美,于玲,等,溶胶―凝胶法制备稀土掺杂多孔TiO2薄膜的表面形貌及性能研究,材料导报,2001,15:64-6
    [13] Nazeemuddin M K, Kay A, Rodicio I, et al. Conversion of light to electricity by cis-X2Bis (2,2'-bipyridyldicarboxylate) rutheniyum (II) charge-transfer sensitizers (X = Cl-,Br-,I-, CN-,and SCN-) on nanocrystalline TiO2 electrodes, Journal of the American Chemical Society, 1993, 115: 6382-90
    [14]王维波,李学萍,肖绪瑞,TiO2多孔薄膜电极的制备、微结构及光电化学性能研究,感光科学与光化学,1997,15:161-4
    [15]雅菁,徐明霞,溶胶-凝胶技术在氧化物薄膜制备方面的应用,材料工程,1996,5:21-3
    [16] Kato K, Tsuzuki A, Torii Y, et al. Morphology of thin antase coatings prepared from alkoxide solutions containing organic polymer, affecting the photocatalytic decompositionof aqueous acetic acid, Journal of Materials Science, 1995, 30: 837-41
    [17]陈文梅,赵修建,溶胶凝胶法制备TiO2多孔纳米薄膜,武汉工业大学学报,2000,22:6-9
    [18] Scherer G W, Stress and fracture during drying of gels, Journal of Non-Crystalline Solids, 1990, 121: 104-9
    [19] Sakka S, Kamiya K, Makita K, et al. Formation of sheets and coating films from alkoxide solutions, Journal of Non-Crystalline Solids, 1984, 63: 223-35
    [20]胡勇胜,陈文,徐庚,溶胶―凝胶在薄膜制备技术的研究,陶瓷工程,2000,34:7-9
    [21]罗瑾,周静,祖延兵,等,电沉积二氧化钛纳米微粒膜的光电化学性能和表面形貌研究,高等学校化学学报,1998,19:1484-7
    [22] Karuppuchamy S, Nonomura K, Yoshida T, et al. Cathodic electrodeposition of oxide semiconductor thin films and their application to dye-sensitized solar cells, Solid State Ionics, 2002, 151: 19-21
    [23] Zhang D S, Yoshida T, Minoura H, Low temperature synthesis of porous nanocrystalline TiO2 thick film for dye-sensitized solar cells by hydrothermal crystallization, Chemistry Letters, 2002, 31: 874-5
    [24] Lao C F, Chuai Y T, Su L, et al. Mix-solvent-thermal method for the synthesis of anatase nanocrystalline titanium dioxide used in dye-sensitized solar cell, Solar Energy Materials and Solar Cells, 2005, 85: 457-65
    [25]曹亚安,沈东方,张昕彤,等,Sn4+掺杂对TiO2纳米颗粒膜光催化降解苯酚活性的影响,高等学校化学学报,2001,22:1910-2
    [26]孙一军,张志峰,用MOCVD方法制备TiO2薄膜:工艺及进展,硅酸盐通报,1997,2:37-40
    [27] Weinberger B R, Garber R B, Titanium dioxide photocatalysts produced by reactive magnetron sputtering, Applied Physics Letters, 1995, 66: 2409-11
    [28] Nagayama H, Honda H, Kawahara H, Physical and chemical properties of silicon dioxide film deposited by new process, Journal of The Electrochemical Society, 1998, 135: 2013-6
    [29] Tsukuma K, Akiyama T, Imai H, Liquid phase deposition film of tin oxide, Journal of Non-Crystalline Solids, 1997, 210: 48-54
    [30] Deki S, Aoi Y, Kajinami A, A novel wet process for the preparation of vanadium dioxide thin film, Journal of Materials Science, 1997, 32: 4269-73
    [31] Deki S, Aoi Y, Hiroi O, et al. Titanium (IV) oxide thin films prepared from aqueous solution, Chemistry Letters, 1996, 294: 433-4
    [32] Baskaran L, Song J, Liu Y L, et al. Titanium oxide thin films on organic inter-faces through biomimetic processing, Journal of the American Ceramics Society, 1998, 81: 401-8
    [33] Baskaran L, Song J, Liu Y L, et al. Low-temperature synthesis of anatase thin films on glass and organic substrates by direct deposition from aqueous solutions, Thin Solid Films, 1999, 351: 220-4
    [34] Hirashima H, Imai H, Balek V, Preparation of meso-porous TiO2 gels and their characterization, Journal of Non-Crystalline Solids, 2001, 285: 96-100
    [35] Nazeeruddin M K, Pechy P, Gr?tzel M, Photocapacitance of nanocrystalline oxide semiconductor films: band-edge movement in mesoporous TiO2 electrodes during UV illumination, Chemical Communications, 1997, 10: 1705-6
    [36] Bach U, Lupo D, Comte P, et al. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies, Nature, 1998, 395: 583-5
    [37] Nogueira A F, Paoli D M A, Electron transfer dynamics in dye sensitized nanocrystalline solar cells using a polymer, Journal of Physical Chemistry B, 2001, 105: 7517-24
    [38] Asbury J B, Ellingson R, Ghosh H N, et al. Femtosecond IR study of excited-state relaxation and electron-injection dynamics of Ru(dcbpy)2(NCS)2 in solution and on nanocrystalline TiO2 and Al2O3 thin films, Journal of physical Chemistry B, 1999, 103: 3110-9
    [39]戴松元,王孔嘉,邬钦崇,等,NPC电池高光电转化效率的原因探讨,太阳能学报,1996,6:220-5
    [40] Dai S Y, Wang K J, Optimum nanoporous TiO2 film and its application to dye-sensitized solar cells, Chinese Physics Letters, 2003, 20: 953-5
    [41] Mohammad K, Nazeeruddin P P, Thierry R, et al. Engineering of efficient panchromatic sensitized for nanocrystalline TiO2-based solar cells, Journal of the American Chemical Society, 2001, 123: 1613-24
    [42] Gr?tzel M, Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells, Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164: 3-14
    [43] Nazeeruddin M K, De Angelis F, Fantacci S, et al. Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers, Journal of the American Chemical Society, 2005, 127: 16835-47
    [44] Zaban A, Aruma S T, Tirosh S, et al. Effect of the preparation condition of TiO2 colloids on their surface structures, Journal of Physical Chemistry B, 2000, 104: 4130-3
    [45]李晓平,徐宝琨,刘国范,等,纳米TiO2光催化降解水中有机污染物的研究与发展,功能材料,1999,30:242-5
    [46] Yamashita H, Ichihashi Y, Anpo M, et al. Photocatalycic decomposition of NO at 275K on titanium oxides included within Y-zeolites, Journal of Physical Chemistry, 1996, 100: 16041-4
    [47]祖庸,雷闫盈,李晓娥,等,纳米TiO2―一种新型的无机抗菌剂,现代化工,1999,19:46-8
    [48] Khalil L B, Mourad W E, Rophael M W, Photocatalytic reduction of environmental pollutant Cr(VI) over some semiconductors under UV/visible light illumination, Applied Catalysis B: Environmental, 1998, 17: 267-73
    [49] Fujishima A, Honda K, Electrochemical photolysis of water at a semiconductor electrode, Nature, 1972, 238: 37-8
    [50] Gao L, Li Q, Song Z, et al. Preparation of nano-scale titania thick film and its oxygen sensitivity, Sensors and Actuators B: Chemical, 2000, 71: 179-83
    [51]余家国,赵修建,多孔TiO2薄膜自洁净玻璃亲水性和光催化活性,高等学校化学学报,2000,21:1437-40
    [52] Pieranski P, Colloidal crystals, Contemporary Physics, 1983, 24: 25-73
    [53]陈祖耀,郝凌云,江万权,等,单分散胶粒、胶态晶体和三维有序周期性材料的研究进展,微纳电子技术,2002,39:22-8,45
    [54] Klein J, Kumacheva E, Confinement-induced phase transitions in simplel iquids, Science, 1995, 269: 816-9
    [55] Zhu J X, Li M, Rogers R, et al. Crystallization of hard-sphere colloids in microgravity, Nature, 1997, 387: 883-5
    [56] Holgado M, Santamaria F G, Blanco A, et al. Electrophoretic deposition to control artificial opal growth, Langmuir, 1999, 15: 4701-4
    [57] Rogach A L, Kotov N A, Koktysh D S, et al. Electrophoretic deposition of latex-based 3D colloidal photonic crystals: a technique for rapid production of high-quality opals, Chemistry of Materials, 2000, 12: 2721-6
    [58] Tessier P M, Velev O D, Kalambur A T, et al. Structured metallic films for optical and spectroscopic applications via colloidal crystal templating, Advanced Materials, 2001, 13: 396-400
    [59] Leiderer P, Palberg T, Finite-size effects on the closest packing of hard spheres, Physical Review Letters, 1997, 79: 2348-51
    [60] Yablonovitch E, Inhibited spontaneous emission in solid-state physics and electronics, Physical Review Letters, 1987, 58: 2059-62
    [61] John S, Strong localization of photons in certain disordered dielectric superlattices, Physical Review Letters, 1987, 58: 2486-9
    [62] Soukoulis C M, Photonic band gap materials, Dordrecht: Kluwer, 1996
    [63] Ho K M, Chan C T, Soukoulis C M, et al. Photonic band gaps in three dimensions: New layer-by-layer periodic structures, Solid State Communications, 1994, 89: 413-6
    [64] Rundquist P A, Photinos P, Jagannathan S, et al. Dynamical Bragg diffraction from crystalline colloidal arrays, Journal of Chemical Physics, 1989, 91: 4932-41
    [65] Busch K, John S, Photonic band gap formation in certain self-organizing systems, Physical Review E, 1998, 58: 3896-908
    [66] Berger L I, Semiconductor materials, Boca Raton, FL: CRC Press, 1997
    [67] Blanco A, Chomski E, Grabtehak S, et al. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres, Nature, 2000, 405: 437-40
    [68] Vlasov Y A, Bo X, Sturm J C, et al. On-chip natural assembly of silicon photonic bandgap crystals, Nature, 2001, 414: 289-93
    [69] Kubo S, Gu Z Z, Ahashi K, et al. Control of the optical band structure of liquid crystal infiltrated inverse opal by a photoinduced nematic-isotropic phase transition, Journal of the American Chemical Society, 2002, 124: 10950-1
    [70] Shen Y Z, Christopher S F, Jiang Y, et al. Nanophotonics: interactions, materials, and applications, Journal of Physical Chemistry B, 2000, 104: 7577-87
    [71] Fischer U C, Zingsheim H P, Submicroscopic pattern replication with visible light, Journal of Vacuum Science and Technology, 1981, 19: 881-5
    [72] Denkov N D, Velev O D, Kralchevsky P A, et al. Mechanism of formation of two-dimensional crystals from latex particles on substrates, Langmuir, 1992, 8: 3183-90
    [73] Hulteen J C, Van Duyne R P, Nanosphere lithography: a materials general fabrication process for periodic particle array surfaces, The Journal of Vacuum Science and Technology A, 1995, 13: 1553-9
    [74] Haynes C L, Van Duyne R P, Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics, Journal of Physical Chemistry B, 2001, 105: 5599-611
    [75] Reeso C E, Bahusavieh M E, Keim J P, et al. Development of an intelligent polymerized crystalline colloidal array: colorimetric reagent, Analytical Chemistry, 2001, 73: 5038-42
    [76] Fudouzi H, Xia Y, Photonic papers and inks: color writing with colorless materials, Advanced Materials, 2003, 15: 892-6
    [77] Gates B, Yin Y, Xia Y, Fabrication and characterization of porous membranes with highly ordered three-dimensional periodic structures, Chemistry of Materials, 1999, 11: 2827-36
    [78] Johnson S A, Ollivier P J, Mallouk T E, Ordered mesoporous polymers of tunable pore size from colloidal silica templates, Science, 1999, 283: 963-5
    [79] Holland B T, Blanford C F, Do T, et al. Synthesis of highly ordered, three-dimensional, macroporous structures of amorphous or crystalline inorganic oxides, phosphates, and hybrid composites, Chemistry of Materials, 1999, 11: 795-805
    [80] Yin J S, Wang Z L, Template-assisted self-assembly and cobalt doping of ordered mesoporous titania nanostructures, Advanced Materials, 1999, 11: 469-72
    [81] Yan H, Blanford C F, Holland B T, et al. A chemical synthesis of periodic macroporous NiO and metallic Ni, Advanced Materials, 1999, 11: 1003-6
    [82] Vlasov Y A, Yao N, Norris D J, Synthesis of photonic crystals for optical wavelengths from semiconductor quantum dots, Advanced Materials, 1999, 11: 165-9
    [83] Braun P V, Wiltzius P, Electrochemically grown photonic crystals, Nature, 1999, 402: 603-4
    [84] Blanford C F, Yan H, Schroden R C, et al. Gems of chemistry and physics: macroporous metal oxides with 3D order, Advanced Materials, 2001, 13: 401-7
    [85] Velev O D, Jede T A, Lobo R F, et al. Porous silica via colloidal crystallization, Nature, 1997, 389: 447-8
    [86] Yan H W, Blandford C F, Holland B T, et al. General synthesis of periodic macroporous solids by templated salt precipitation and chemical conversion, Chemistry of Materials, 2000, 12: 1134-41
    [87] Wijndhoven J E G J, Vos W L, Preparation of photonic crystals made of air spheres in titania, Science, 1998, 281: 802-4
    [88] Sumloka K, Kayashlma H, Tsutsui T, Tuning the optical properties of inverse opal photonic crystals by deformation, Advanced Materials, 2001, 14: 1284-l286
    [89] Cassagneau T, Caruso F, Inverse opals for optical affinity biosensing, Advanced Materials, 2002, 14: 1629-33
    [90] Kresge C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism, Nature, 1992, 359: 710-2
    [91]徐如人,庞文琴,分子筛与多孔材料化学,北京:科学出版社,2004
    [92] Beck J S, Vartuli J C, Roth W J, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates, Journal of the American Chemical Society, 1992, 114: 10834-43
    [93] Chen C Y, Li H X, Davis M E, Studies on mesoporous materials, Microporous Materials, 1993, 2: 17-34
    [94] Firouzi A, Kumar D, Bull L M, et al. Cooperative organization of inorganic-surfactant and biomimetic assemblies, Science, 1995, 267: 1138-43
    [95] Huo Q S, Margolese D I, Ciesla U, et al. Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays, Chemistry of Materials, 1994, 6: 1176-91
    [96] Monnier A, Shuth F, Huo Q, et al. Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructure, Science, 1993, 261: 1299-303
    [97] Chen H X, Wang Y C, Preparation of MCM-41 with high thermal stability and complementary textural porosity, Ceramics International, 2002, 28: 541-7
    [98] Bai N, Chi Y, Zou Y, et al. Influence of high pressure on structural property of mesoporous materials MCM-41: study of mechanical stability, Materials Letters, 2002, 54: 37-42
    [99] Huo Q, Margolese D I, Clesla U, et al. Generalized synthesis of periodic surfactant/inorganic composite materials, Nature, 1994, 368: 317-21
    [100] Zhao D, Sun J, Li Q, et al. Morphological control of highly ordered mesoporous silica SBA-15, Chemistry of Materials, 2000, 12: 275-9
    [101] Park S E, Kim D S, Synthesis of MCM-41 using microwave heating with ethylene glycol, Catalysis Today, 1998, 44: 301-8
    [102]陶涛,姜廷顺,微波法合成Co-MCM-41介孔分子筛,非金属矿,2006,29:37-9
    [103] Soler-Illia G J de A A, Sanchez C, Lebeau B, et al. Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures, Chemical Review, 2002, 102: 4093-138
    [104] Antonelli D M, Ying J Y, Synthesis of hexagonally packed mesoporous TiO2 by a modified sol-gel method, Angewandte Chemie International Edition in English, 1995, 34: 2014-7
    [105] Khalil K M S, Zaki M I, Preparation and characterization of sol-gel derived mesoporous titania spheroids, Powder Technology, 2001, 120: 256-63
    [106] Kambe S, Murakoshi K, Kitamura T, et al. Mesoporous electrodes having tight agglomeration of single-phase anatase TiO2 nanocrystallites: Application to dye-sensitized solar cells, Solar Energy Materials and Solar Cells, 2000, 61: 427-41
    [107] Yu J C, Yu J G, Zhang L Z, et al. Enhancing effects of water content and ultrasonic irradiation on the photocatalytic activity of nano-sized TiO2 powders, Journal of Photochemistry and Photobiology A: Chemistry, 2002, 148: 263-71
    [108] Alberius P C A, Frindell K L, Hayward R C, et al. General predictive syntheses of cubic, hexagonal, and lamellar silica and titania mesostructured thin films, Chemistry of Materials, 2002, 14: 3284-94
    [109] Grosso D, Soler-Illia G J de A A, Babonneau F, et al. Highly organized mesoporous titania thin films showing mono-oriented 2D hexagonal channels, Advanced Materials, 2001, 13: 1085-90
    [110] Yusuf M M, Imai H, Hirashima H, Preparation of porous titania film by modified sol-gel method and its application to photocatalyst, Journal of Sol-Gel Science and Technology, 2002, 25: 65-74
    [111] Crepaldi E L, Soler-Illia G. J de A A, Grosso D, et al. Nanocrystallised titania and zirconia mesoporous thin films exhibiting enhanced thermal stability, New Journal of Chemistry, 2003, 27: 9-13
    [112] Soler-Illia G J de A A, Louis A, Sanehez C, Synthesis and characterization of mesostructured titania-based materials through evaporation-induced self-assembly, Chemistry of Materials, 2002, 14: 750-9
    [113] Yang P D, Zhao D Y, Margolese D I, et al. Generalized syntheses of large-pore mesoporous metal oxide with semicrystalline frameworks, Nature, 1998, 396: 152-5
    [114]郑金玉,丘坤元,危岩,有机小分子模板法合成二氧化钛中孔材料,高等学校化学学报,2000,21:647-9
    [115] Tiemann M, Froba M, Mwsostructured aluminophosphates synthesized with supramolecular structure directors, Chemistry of Materials, 2001, 13: 3211-7
    [116] Braun P V, Osinar P, Stupp S I, Semiconducting superlattices templated by molecular assemblies, Nature, 1996, 386: 692-5
    [117] Ryoo R, Joo S H, Kruk M, et al. Ordered mesoporous Carbons, Advanced Materials, 2001, 13: 677-81
    [118] Ryoo R, Joo S H, Kruk M, et al. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles, Nature, 2001, 412: 169-73
    [119] Zukalova M, Zukal A, Kavan L, et al. Organized mesoporous TiO2 films exhibiting greatly enhanced performance in dye-sensitized solar cells, Nano Letters, 2005, 5: 1789-92
    [120] Malfatti L, Falcaro P, Amenitsch H, et al. Mesostructured self-assembled titania films for photovoltaic applications, Microporous and Mesoporous Materials, 2006, 88: 304-11
    [121] Wei M D, Konishi Y, Zhou H S, et al. Highly efficient dye-sensitized solar cells composed of mesoporous titanium dioxide, Journal of Materials Chemistry, 2006, 16: 1287-93
    [122] Gr?tzel M, Mesoporous oxide junctions and nanostructured solar cells, Current Opinion in Colloid & Interface Science, 1999, 4: 314-21
    [123]曾垂省,陈晓明,闫玉华,等,介孔材料及其应用进展,化工科技,2004,12:48-52
    [124] Ackerson B J, Sch?tzel K, Classical growth of hard-sphere colloidal crystals, Physical Review E, 1995, 52: 6448-60
    [125] Flaugh P L, O' Donnell S E, Asher S A, Development of a new optical wavelength rejection filter: demonstration of its utility in raman spectroscopy, Applied Spectroscopy, 1984, 38: 847-50
    [126] Holland B T, Blanford C F, Stein A, Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids, Science, 1998, 281: 538-40
    [127] Biswas R, Sigalas M M, Subramania G, et al. Photonic band gaps of porous solids, Physical Review B, 2000, 61: 4549-53
    [128] Jiang P, Bertone J F, Hwang K S, et al. Single-crystal colloidal multilayers of controlled thickness, Chemistry of Materials, 1999, 11: 2132-40
    [129] Gu Z Z, Fujishima A, Sato O, Fabrication of high-quality opal films with controllable thickness, Chemistry of Materials, 2002, 14: 760-5
    [130] Míguez H, Meseguer F, López C, et al. Evidence of FCC crystallization of SiO2 nanospheres, Langmuir, 1997, 13: 6009-11
    [131] Fu Y N, Jin Z G, Liu Z F, et al. Preparation of ordered porous SnO2 films by dip-drawing method with PS colloid crystal templates, Journal of the European Ceramic Society, 2007, 27: 2223-8
    [132] Deegan R D, Bakajin O, Dupont T F, et al. Contact line deposits in an evaporating drop, Physical Review E, 2000, 62: 756-65
    [133] Fudouzi H, Fabricating high-quality opal films with uniform structure over a large area, Journal of Colloid and Interface Science, 2004, 275: 277-83
    [134] Kuai S L, Hu X F, Hache A, et al. High-quality colloidal photonic crystals obtained by optimizing growth parameters in a vertical deposition technique, Journal of Crystal Growth, 2004, 267: 317-24
    [135] Im S H, Kim M H, Park O O, Thickness control of colloidal crystals with a substrate dipped at a tilted angle into a colloidal suspension, Chemistry of Materials, 2003, 15: 1797-802
    [136] Liu Z F, Ya J, Xin Y, et al. Assembly of polystyrene colloidal crystal templates by a dip-drawing method, Journal of Crystal Growth, 2006, 297: 223-7
    [137] Woodcock l V, Entropy difference between the face-centred cubic and hexagonal close-packed crystal structures, Nature, 1997, 385: 141-3
    [138] Jarai-Szabo F, Astilean S, Neda Z, Understanding self-assembled nanosphere patterns, Chemical Physics Letters, 2005, 408: 241-6
    [139] Ying J Y, Mehnert C P, Wong M S, Synthesis and applications of supramolecular-templated mesoporous materials, Angewandte Chemie International Edition in English, 1999, 38: 56-77
    [140] Tolbert S H, Landry C C, Stucky G D, et al. Phase transitions in mesostructured silica/surfactant composites: surfactant packing and the role of charge density matching, Chemistry of Materials, 2001, 13: 2247-56
    [141] Hsien Y H, Chang C F, Chen Y H, et al. Photodegradation of aromatic pollutants in water over TiO2 supported on molecular sieves, Applied Catalysis B: Enviromental, 2001, 31: 241-9
    [142] Schindler K M, Kunst M, Charge-carrier dynamics in titania powders, Journal of Physical Chemistry, 1990, 94: 8222-6
    [143]黄艳娥,贾静娴,纳米TiO2的晶型、粒径与光催化活性,河北工业科技,2001,18:6-9,21
    [144] Yu J C, Zhang L, Yu J, Direct sonochemical preparation and characterization of highly active mesoporous TiO2 with a bicrystalline framework, Chemistry of Materials, 2002, 14: 4647-53
    [145]步绍静,靳正国,杨立荣,等,纳米氧化钛多孔薄膜的溶胶-凝胶法制备及其结构特征,硅酸盐学报,2003,31:848-52
    [146] Arici E, Sariciftci N S, Meissner D, Encyclopedia of nanoscience and nanotechnology, California: American Scientific Publishers, 2004
    [147] Yang P, Zhao D, Margolese D I, et al. Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework, Chemistry of Materials, 1999, 11: 2813-26
    [148] Armstrong J, Chowdhry B, Mitchell J, et al. Effect of cosolvents and cosolutes upon aggregation transitions in aqueous solutions of the poloxamer F87 (Poloxamer P237): A high sensitivity differential scanning calorimetry study, Journal of Physical Chemistry, 1996, 100: 1738-45
    [149] Kwon K W, Park M J, Hwang J, et al. Effects of alcohol addition on gelation in aqueous solution of poly (ethylene oxide)-poly (propylene oxide)-poly (ethylene oxide) triblock copolymer, Polymer Journal, 2001, 33: 404-10
    [150] Su Y l, Wei X F, Liu H Z, Influence of 1-pentanol on the micellization of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymers in aqueous solutions, Langmuir, 2003, 19: 2995-3000
    [151] Choi S Y, Mamak M, Coombs N, et al. Thermally stable two-dimensional hexagonal mesoporous nanocrystalline anatase, meso-nc-TiO2: Bulk and crack-free thin film morphologies, Advanced Functional Materials, 2004, 14: 335-44
    [152] Holmqvist P, Alexandridis P, Lindman B, Modification of the microstructure in block copolymer-water-"oil" systems by varying the copolymer composition and the "oil" type: Small-angle X-ray scattering and deuterium-NMR investigation, Journal of Physical Chemistry B, 1998, 102: 1149-58
    [153] Bu S J, Jin Z G, Liu X X, et al. Synthesis of TiO2 porous thin films by polyethylene glycol templating and chemistry of the process, Journal of the European Ceramic Society, 2005, 25: 673-9
    [154] Negishi N, Takeuchi K, Structural changes of transparent TiO2 thin films with heat treatment, Materials Letters, 1999, 38: 150-3
    [155] Velev O D, Lenhoff A M, Colloidal crystals as templates for porous materials, Current Opinion in Colloid & Interface Science, 2000;5:56-63
    [156] Searson P C, Porous silicon membranes, Applied Physics Letters, 1991, 59: 832-3
    [157] Even W, Gregory D, Emulsion-derived foams: preparation, properties and application, MRS Bulletin, 1994, XIX: 29-33
    [158] Widawski G, Rawiso M, Francüois B, Self-organized honeycomb morphology of star-polymer polystyrene films, Nature, 1994, 369: 387-9
    [159] Velev O D, Kaler E W, Structured porous materials via colloidal crystal templating: from inorganic oxides to metals, Advanced Materials, 2000, 12: 531-4
    [160] Kulinowski K M, Jiang P, Vaswani H, Porous metals from colloidal templates, Advanced Materials, 2000, 12: 833-8
    [161] Miguez H, Meseguer F, Lopez C, et al. Synthesis and photonic bandgap characterization of polymer inverse opals, Advanced Materials, 2001, 13: 393-6
    [162] Kang S, Yu J S, Kruk M, et al. Synthesis of an ordered macroporous carbon with 62 nm spherical pores that exhibit unique gas adsorption properties, Chemical Communications, 2002: 1670-1
    [163] Grosso D, Soler-Illia G. J de A A, Crepaldi E L, et al. Nanocrystalline transition-metal oxide spheres with controlled multi-scale porosity, Advanced Functional Materials, 2003, 13: 37-42
    [164] Yuan Z Y, Ren T Z, Su B L, Hierarchically mesostructured titania materials with an unusual interior macroporous structure, Advanced Materials, 2003, 15: 1462-5
    [165] Kuang D, Brezesinski T, Smarsly B, Hierarchical porous silica materials with a trimodal pore system using surfactant templates, Journal of the American Chemical Society, 2004, 126: 10534-5
    [166] Fei H L, Liu Y P, Li Y P, et al. Selective synthesis of borated meso-macroporous and mesoporous spherical TiO2 with high photocatalytic activity, Microporous and Mesoporous Materials, 2007, 102: 318-24
    [167] Wang X C, Yu J C, Hou C, et al. Photocatalytic activity of a hierarchically macro/mesoporous titania, Langmuir, 2005, 21: 2552-9
    [168]付亚楠,PS胶晶模板制备及组装SnO2多孔膜的研究:[硕士学位论文],天津:天津大学,2006
    [169] Alam M J, Cameron D C, Optical and electrical properties of transparent conductive ITO thin films deposited by sol-gel process, Thin Solid Films, 2000, 348: 455-9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700