超顺磁γ-Fe_2O_3@SiO_2介孔微球的制备、表征及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁性介孔硅胶微球具有表面积大、表面易于官能团化、生物相容性好且在磁场下易于分离、易于实现分离操作自动化等优点而被广泛应用于催化、固定化酶、核酸提取、细胞筛选,药物缓控释等方面,成为材料化学,分离科学,生物技术和药物研发等多个领域的研究热点。目前磁性硅胶介孔微球主要通过浸渍法、包覆法和模板法制备,所得产品具有较高的残余磁性,在外加磁场撤离后,仍表现出颗粒团聚现象,一定程度上阻碍了微球的反复利用。因此,发展高磁响应性和超顺磁性的的硅胶介孔微球的制备方法,并实施微球的表面官能团化,进一步拓宽磁性材料的应用领域,具有十分重要的科学意义和实用价值。在本论文中,作者通过脲醛树脂缩聚反应诱导纳米粒子团聚生成微米微球的途径,首先制备了具有高磁响应性γ- Fe_2O_3@ SiO_2介孔微球,建立了硅胶基质中由Fe_3O_4相变生成γ- Fe_2O_3粒子的实验条件。接着采用脲醛树脂模板法制备了两种超顺磁性硅胶介孔微球并探讨了它们在固定化酶,核酸纯化,生物样品预处理和手性分离等方面的应用。论文主要内容如下:
     1)采用直接300oC空气中氧化法对以铁溶胶为磁性前体所制备磁性介孔Fe_3O_4@SiO_2微球进行氧化,将室温下长期存放不稳定的Fe_3O_4转化为具有较高磁响应性和化学稳定性的γ- Fe_2O_3,解决了长期放置所带来的磁性降低问题,并将其用于对青霉素酰化酶固定,研究了不同固定化酶方法对固定化酶活力的影响。
     2)以磁流体和硅溶胶为原料通过脲醛树脂模板聚合法,得到Fe_3O_4 @ SiO_2 @UF微球,然后通过高温氧化法直接将模板去除同时转化Fe_3O_4为γ- Fe_2O_3得到了超顺磁性γ- Fe_2O_3@ SiO_2介孔微球。并且以该微球作为磁性固相萃取材料从豌豆和青椒中提取植物基因组DNA,所得到的DNA模板可以通过PCR扩增,用于植物中转基因成分的检测。
     3)所制备的γ- Fe_2O_3@ SiO_2超顺磁介孔微球的孔道约为6 nm,分子量较大物质如蛋白质等难以进入,因此是理想的限进材料基质。通过对其表面进行修饰,制备了孔道内表面键合疏水性烷基而外表面为亲水性二醇基的限进材料,做为牛血清白蛋白溶液中α、β-萘酚的固相萃取剂,用于生物样品的前处理工作。
     4)采用十六烷基三甲基溴化铵(CTAB)和四乙氧基硅烷(TEOS)混合溶液对超顺磁性γ- Fe_2O_3介孔微球进行溶胶-凝胶法处理,得到孔径约60 nm超顺磁性Core-Shell结构的介孔微球。扩孔后的磁性载体增加了固定化脂肪酶的活性,用于医药中间体β-氨基酸对映体的酶拆分制备。
Magnetic mesoporous silica microspheres have drawn considerable attention in recent years owing to their advantageous characteristics such as large surface area, versatile surface functional groups, excellent biocompatibility, ease of separation from solution and being amenable to automation. These magnetic particles can be used in various areas including catalysis, immobilized enzymes, DNA purification, cell separation, and controlled drug delivery. There are a variety of approaches available for the preparation of magnetic mesoporous silica microspheres, including the methods of impregnation, encapsulation and template synthesis. One common problem with all these methods is that they mostly give rise to ferromagnetic microspheres with relatively high residual magnetism that causes particle aggregation even if the external magnetic field is removed. The particle aggregation prevents the recycled uses of these microspheres, thus lowering the performance of these materials in many applications. The objectives of this thesis are to develop new methods for preparation of superparamagnetic mesoporous silica microspheres and to further demonstrate their applications through surface modification. Firstly, ferromagneticγ- Fe_2O_3@ SiO_2 microspheres were prepared by oxidation of Fe_3O_4@ SiO_2 microspheres, which were obtained through urea-formaldehyde resin templated synthesis route. The materials were used as magnetic matrices for immobilization of penicillin acylase. This work was followed by fabrication of two types of suerparamagneticγ- Fe_2O_3@ SiO_2 microspheres through modifications to the templated method developed previously and exploration of their applications in DNA purification, solid-phase extraction, and chiral separation. The detailed contents of this thesis are as follows:
     1) Through oxidation of Fe_3O_4@SiO_2 mesoporous microspheres which were prepared with iron sol as magnetic precursor in 300oC to transform Fe_3O_4 intoγ- Fe_2O_3. Theγ-Fe_2O_3 nanoparticles have similar saturation magnetization but higher chemical stability than Fe_3O_4, implying that the particles could retain their magnetization longer when exposed to air during storage. Futher, we applied the modified microspheres on immobilization of penicillin acylase and studied the effects of immobilization conditions on immobilized enzyme activity.
     2) A modification to the above method was introduced to prepare superparamagn etic mesoporous silica microspheres. Fe_3O_4 @SiO_2 @UF microspheres were prepared by polymerization of magnetic fluid and silica sol with urea-formaldehyde as template. The composite particles were then subject to calcinations for removal of the template and transformation of Fe_3O_4 intoγ-Fe_2O_3 to yield superparamagneticγ-Fe_2O_3@SiO_2 mesoporous microspheres. The prepared microspheres were used for solid phase extraction of genomic DNA from pepper and pea. The DNA templates isolated were amplifiable by polymerase chain reaction (PCR) and therefore potentially applicable for detection of genomic modification organism in plants.
     3) The superparamagneticγ-Fe_2O_3@SiO_2 mesoporous microspheres are ideal to serve as matrix for restricted access materials (RAM) because of their average pore diameters around 6nm allowing discrimination of small molecules from large molecules such as proteins. The internal surface of the above magnetic microspheres was bonded with hydrophobic alky chains whereas the external surface was made hydrophilic by encapsulation with diol groups. The alkyl/diol functionalized magnetic RAM was used for extraction ofα,β-naphthols in the presence of bovine serum albumin (BSA). This type of materials could be used in the pretreatment of biologic samples for clinical applications.
     4) Magnetic mesoporous microspheres with large pore sizes are desirable for enzyme immobilization. A further modification to the templated synthesis method was introduced to prepare the superparamagnetic core-shell mesoporous microspheres with pore diameters in the range around 60 nm. Theγ-Fe_2O_3 mesoporous microspheres were served as the magnetic cores whereas the porous silica shells were formed by sol-gel process involving hydrolysis and condensation of tetraethoxyl silane (TEOS) in the presence of cetyl quaternary amine bromide (CTAB). The removal of the CTAB molecules from the composite particles leaves the material with regular pores of diameter about 60 nm. The prepared core-shell magnetic mesoporous microspheres were superparamagnetic and could be repeatedly used for chiral separation ofβ-amino acids after immobilization with lipase.
引文
[1] J. P. Jolivet, C. Chanéac, E. Tronc. Iron oxide chemistry. From molecular clusters to extended solid networks. Chem. commun. 2004, 5, 481-487.
    [2] M. P. Morales, S.V.Verdaguer, M. I. Montero, etc. Surface and internal spin canting inγ-Fe2O3 nanoparticles. Chem.Mater. 1999, 11, 3058-3064.
    [3] R. M. Cornell, U. Schwertmann. The Iron Oxides; VCH Publishers: Weinheim, Germany, 1996.
    [4] T. Sugimoto. Formation of monodispersed nano-and micro-particles controlled in size, shape, and internal structure. Chem. Eng. Technol. 2003, 26, 313-321.
    [5] H. C. Schwarzer, W. Peukert. Tailoring particle size through nanoparticle precipitation. Chem. Eng. Commun. 2004, 191, 580-606.
    [6] N. M. Gtibanow, E. E. Bibik, O. V.Buzunov, etc. Physico-chemical regularities of obtaining highly dispersed magnetite by the method of chemical condensation J. Magn. Magn. Mater. 1990, 85, 7-10.
    [7] V. K. LaMer, R. H. Dinegar. Theory, production and mechanism of formation of mondispersed hydrosols. J. Am. Chem. Soc. 1950, 72, 4847-4853.
    [8] L. Babes, B. Denizot, G. Tanguy, etc. Synthesis of iron Oxide nanoparticles used as MRI contrast agents: A Parametric Study. J. Colloid.Interface. Sci. 1999, 212, 474-482.
    [9] D. Chen, R. Xu. Hydrothermal synthesis and characterization of nanocrystalline Fe 3 O4 powers. Mater. Res. Bull. 1998, 33, 1015-1021.
    [10] Y. Zheng, Y. Cheng, F. Bao, etc. Syntheis and magnetic properties of Fe 3 O4 nanoparticles. Mater. Res. Bull. 2006, 41, 525-529.
    [11] T. Hyion, S. S. Lee, J. Park, etc. Synthesis of highly crystalline and monodisp erse maghemite nanocrystallites without a size-selection process. J. Am. Chem. Soc. 2001, 123, 12798-12801.
    [12] S. Sato, T. Murakata, H. Yanagi, etc. Hydrothermal synthesis of fine perovskite PbTiO3 powders with a simple mode of size distribution. J. Mater. Sci. 1994, 29, 5657-5663.
    [13] S. Sun, H. Zeng, D. Robinso, etc.Monodisperse MFe2O4 (M = Fe, Co, Mn) na- noparticles. J. Am. Chem. Soc. 2004, 126, 273-279.
    [14] N. R. Jana, Y. Chen, X. Peng. Size and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach. Chem. Mater. 2004, 16, 3931-3935.
    [15] J. Park, K. An, Y.Hwang, etc. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 2004, 3, 891-895.
    [16] Z. Li, C. J. Choi, J. H.You, etc. Nanocrystallineα-Fe andε-Fe3N particles prepared by chemical vapor condensation process. J. Magn. Magn.Mater.2004, 283, 8-15.
    [17] Z. Li, Q. Sun, M.Gao. Preparation of water-soluble magnetite nanocrystals from hydrated ferric salts in 2-Pyrrolidone: mechanism leading.to Fe3 O4. Angew. Chem., Int. Ed. 2004, 44, 123.
    [18] K. Kojima, M. Miyazaki, F.Mizukami, etc. Selective formation of spinel iron oxide in thin films by complexing agent-assisted sol-gel processing. J. Sol-Gel Sci. Technol. 1997, 8, 77-81.
    [19] F. Del Monte, M. P. Morales, D. Levy, etc.Formation ofγ-Fe 2 O3 isolated nanoparticles in a silica. Langmuir .1997, 13, 3627-3634.
    [20] V. K. Tzitzios, D. Petridis, I. Zafiropoulou, etc. Synthesis and characterization of L10 FePt nanoparticles from Pt–Fe 3 O4 core-shell nanoparticles. J. Magn. Magn. Mater. 2005, 294, e95.-e98.
    [21] G. Viau, F. Fiévet-Vincent, F. Fiévet. Monodisperse iron-based particles: precipitation in liquid polyols. J. Mater. Chem. 1996, 6, 1047-1053.
    [22] G .Viau, P. Toneguzzo, A.Pierrard, etc. Heterogeneous nucleation and growth of metal nanoparticles in polyols. Scr. Mater. 2001, 44, 2263-2267.
    [23] C. Feldmann. Preparation of Nanoscale Pigment Particles. Adv. Mater. 2001, 13, 1301-1303.
    [24] G. S. Alvarez, M. Muhammed, A. A. Zagorodni.Novel flowinjection synthesis of iron oxide nanoparticles with narrow size distribution. Chem. Eng. Sci. 2006, 61, 4625-4633.
    [25] M. T. Reetz, W. Helbig, S. A. Quasick, Active Metals, Preparation, Charat erizat ion, Applications. Furster, A., Ed.; VCH: Weinheim, Germany, 1996.
    [26] C. Pascal, J. L Pascal, F. Favier, etc. Electrochemical synthesis for the control ofε-Fe2 O3 nanoparticle size morphology, microstructure, and magnetic behavior.Chem. Mater. 1999, 11, 141-147.
    [27] H. R. Kahn, K. Petrikowski. Anisotropc structural and magnetic properties of array of Fe 26 Ni74 nanowires electrodeposited in the pores of anodic alumina. J. Magn. Magn. Mater. 2000, 215-216, 526-528.
    [28] C. Pecharroman, T.Gonzalez-Carreno, J. E. Iglesias. The Infrared dielectric Properties of maghemite,γ-Fe 2 O3, from reflectance measurement on pressed powders. Phys. Chem. Miner. 1995, 22, 21-29.
    [29] T. Gonzalez-Carreno, M. P.Morales, M.Gracia. Preparation of uniformγ-Fe 2 O3 particles with nanometer size by spray pyrolysis. Mater. Lett. 1993, 18, 151-155.
    [30] S. Veintemillas-Vendaguer, M. P Morales, C. J. Serna. Continuous production ofγ-Fe 2 O3 ultrafine powders by laser pyrolysis. Mater. Lett. 1998, 35, 227-231
    [31] M. P.Morales, O.Bomati-Miguel, R. Perez de Alejo, etc. Contrast agents for MRI based on iron oxide nanoparticles prepared by laser pyrolysis. J. Magn. Magn. Mater. 2003, 266, 102-109.
    [32] R. Alexandrescu, I. Morjan, I. Voicu, etc. Combining resonant/non-resonant processes: Nanometer-scale iron-based material preparation via CO2 laser pyrol ysis. Appl. Surf. Sci. 2005, 248, 138.-146.
    [33] V. F. Puntes, K. M. Krishnan, A. P. Alivisatos. Molecular rulers for scaling down nanostructures. Science. 2001, 291, 1019-1020.
    [34] H. G. Rotstein, R. Tannenbaum. Cluster coagulation and growth limited by surface interactions with polymers. J. Phys. Chem. B .2002, 106, 146-151.
    [35] O. Rozenfeld, Y. Koltypin, H. Bamnolker, etc. Self-assembled monolayer coatings on amorphous iron. Langmuir. 1994, 10, 3919-3921.
    [36] S. J. Park, S. Kim, S. Lee, etc.Synthesis and magnetic studies of uniform iron nanorods and nanospheres. J. Am. Chem. Soc. 2000, 122, 8581-8512.
    [37] R. Abu Mukh-Qasem, A. Gedanken. Sonochemical synthesis of stable hydrosol of Fe 3 O4 nanoparticles. J. Colloid Interface Sci. 2005, 284, 489-494.
    [38] E. H. Kim, H. S.Lee, B. K. Kwak, etc. Synthesis of ferrofluid with magnetic na noparticles by sonochemical method for MRI contrast agent. J. Magn. Magn. Mater. 2005, 289, 328-330.
    [39] D. H. Napper. Flocculation studies of sterically stabilized dispersions. J. Colloid Interface Sci. 1970, 32, 106-114
    [40] G. Fritz, V. Schadler, N. Willenbacher, etc. Electrosteric stabilization of colloidal dispersions. Langmuir. 2002, 18, 6381-6390.
    [41] J. L. Ortega-Vinusea, A. Martin-Rodrigez, R. Hidalgo-Alvarez. Colloidal stabi- lity of polymer colloids with different interfacial properties: mechanisms. J. Colloid Interface Sci. 1996, 184, 259-267.
    [42] M. Kobayashi, M. Skarba, P.Galletto, etc. Effects of heat treatment on the aggr- egation and charging of Stober-type silica. J. Colloid Interface Sci. 2005, 292, 139-147.
    [43] Y. Sahoo, A. Goodarzi, M. T. Swihart, etc. Aqueous ferrofluid of magnetite nanoparticles: Fluorescence labeling and magnetophoretic control. J. Phys. Chem. B. 2005, 109, 3879-3885.
    [44] C. Liu, P. M. Huang. Atomic force microscopy and surface characteristics of iron oxides formed in citrate solutions. Soil Sci. Soc. Am. J. 1999, 63, 65-72.
    [45] H. Kodama, M. Schnitzer. Effect of fulvic acid on the crystallization of iron (III) Geoderma 1977, 19, 279-291.
    [46] D. Portet, B. Denizot, E. Rump, etc. Comparative biodistribution of thin–coated iron oxide nanoparticles TCION: effect of different bisphosphonate coatings. Drug Dev. Res. 2001, 54, 173-181.
    [47] D. I. Kreller, G.Gibson, W. Novak, etc. Competitive adsorption of phosphate and carboxylate with natural organic matter on hydrous iron oxides as inv- estigated by chemical force microscopy. Colloids Surf. A. 2003, 212, 249-264.
    [48] C.Yee, G. Kataby, G. Ulman, etc. Self-assembled monolayers of alkanesulfonic and phosphonic acids on amorphous iron oxide nanoparticles. Langmuir. 1999, 15, 7111-7115.
    [49] Y. Sahoo, H. Pizem, T. Fried, etc. Alkyl phosphonate/phosphate coating on ma gnetite nanoparticles: A comparison with fatty acids. Langmuir 2001, 17, 7907 -7911.
    [50] S. Mohapatra, N. Pramanik, S. K.Ghosh, etc. Synthesis and characterization of ultrafine poly (vinylalcohol phosphate) coated magnetite nanoparticles. J. Nanosci. Nanotechnol. 2006, 6, 823-829.
    [51] C. Zhang, B.Wangler, B. Morgenstern, etc. Silica- and alkoxysilane-coated ultrasmall superparamagnetic iron oxide particles: A promising tool to label cells for magnetic resonance imaging. Langmuir 2007, 23, 1427-1434.
    [52] P. Mulvaney, L. M Liz-Marzan, M.Giersig, etc. Silica encapsulation of quantum dots and metal clusters.J. Mater. Chem. 2000, 10, 1259-1270.
    [53] S. Santra, R.Tapec, N. Theodoropoulou, etc. Synthesis and characterization ofsilica-coated iron oxide nanoparticles in microemulsion: The effect of nonion ic surfactants. Langmuir 2001, 17, 2900-2906.
    [54] H. K.Xu, C. M.Sorensen, K. J. Klabunde, etc. Aerosol synthesis of gadolinium iron garnet particles. J. Mater. Res. 1992, 7, 712-716.
    [55] M. D. Alcala, C. Real. Synthesis based on the wet impregnation method and characterization of iron and iron oxide-silica nanocomposites. Solid. State. Ionics. 2006, 177, 955-960.
    [56] I. J. Bruce, J. Taylor, M. Todd, etc. Synthesis, characterization and application of silica-magnetite nanocomposites. J. Magn. Magn. Mater. 2004, 284, 145-160.
    [57] D. Ma, J.Guan, F. Normandin, etc. Multifunctional nano-architecture for biomedical applications. Chem. Mater. 2006, 18, 1920-1927.
    [58] J. H. Yu, C.-W. Lee, S.-S. Im, etc. Structure and magnetic properties of SiO2 coated Fe2 O3 nanoparticles synthesized by chemical vapor condensation process. Rev. Adv. Mater. Sci. 2003, 4, 55-59.
    [59] F. F. Hahn, D. D. Stark, J. Lewis, etc. First clinical trial of a new superparamagnetic iron oxide for use as an oral gastrointestinal contrast agent in MRimaging .Radiology. 1990, 175, 695-700.
    [60] W. K. Johnson, C. Stoupis, G. M. Torres, etc. Superparamagnetic iron oxide (SPIO) as anoral contrast agent in gastrointestinal (GI) magnetic resonance imaging (MRI): comparison with state-of-the-art computedtomography (CT) R. Magn. Reson. Imaging. 1996, 14, 43-49.
    [61] W. St?ber, A. Fink, E. Bohn. Controlled growth of monodisperse silica spheres in the micron size. J. Colloid Interface Sci. 1968, 26, 62-69.
    [62] S. H. Im, T. Herricks, Y. T. Lee, etc. Synthesis and characterization of monodis- perse silica colloids loaded with superparamagnetic iron oxide nanoparticles. Chem. Phys. Lett. 2005, 40, 19-23.
    [63] P. Tartaj, C. J. Serna. Synthesis of monodisperse superparamagnetic Fe/Silica nanospherical composites. J. Am. Chem. Soc. 2003, 125, 15754-17755.
    [64] J. Lin, W. Zhou, A. Kumbhar, etc. Gold-coated iron (Fe@Au) nanoparticles: synthesis, characterization, and magnetic field-induced self-assembly. J. Solid State Chem. 2001, 159, 26-31.
    [65] S. Palmacci, L. Josephson, E. V.Groman. U.S. Patent 5, 262, 176, 1995; Chem. Abstr. 1996, 122, 309897.
    [66] U. Hafeli, W. Schütt, J. Teller, etc. Clinical Applications of Magnetic Carriers;Plenum Press: New York, 1997.
    [67] L. M. Lacava, Z. G. M. Lacava, M. F. Da Silva, etc. Magnetic resonance of a dextran-coated magnetic fluid intravenously administered in mice. Biophys. J. 2001, 80, 2483-2486.
    [68] C. C. Berry, S. Wells, S. Charles, etc. Dextran and albumin derivatised iron oxide nanoparticles: influence on fibroblasts in vitro. Biomaterials. 2003, 23, 4551-4557.
    [69] M. C. Bautista, O. Bomati-Miguel, M. P. Morales, etc. Surface characterisation of dextran-coated iron oxide nanoparticles prepared by laser pyrolysis and coprecipitation. J. Magn. Magn. Mater. 2005, 293, 20-27.
    [70] L. X. Tiefenauer, A.Tschirky, G. Kühne, etc. In vivo evaluation of magnetite nanoparticles for use as a tumor contrast agent in MRI. Magn. Reson. Imaging 1996, 14, 391-402.
    [71] E. A. Schellenberger, A. J. Bogdanov, D. Hogemann, etc. Annexin V-CLIO: a nanoparticle for detecting apoptosis by MRI. Mol. Imaging 2002, 1, 102-107.
    [72] J. Lee, T. Isobe, M. Senna. Preparation of ultrafine Fe3O4 particles by precipitation in the presence of PVA at high pH. J. Colloid Interface Sci. 1996, 177, 490-494.
    [73] E. H. Kim, H. S. Lee, B. K. Kwak, etc. Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent. J. Magn. Magn. Mater. 2005, 289, 328-330
    [74]丁小斌,孙宗华,万国祥,磁性高分子微球的制备和应用研究进展,化学通报,1997, 1, 1-6
    [75] Z. L. Liu, X. B. Yang, K. L. Yao, etc., Preparation and characterization of magnetic P (St-co-MAA-co-AM) microspheres. J. Magn. Magn. Mater. 2006, 302, (2), 529-535
    [76]王丽娟,刘铮,磁性高分子微球的制备及在分析化学中的应用进展,材料导报,2006, 20, 36-40
    [77] J. Ugelstad, T. Ellingsen, R. Berge, etc. Process for preparing magnetic polymer particles, US Patent 4774265,1988, 9, 27
    [78] R. Shi, Y. Wang, Y. Hu, etc. Preparation of magnetite-loaded silica microsphe res for solid-phase extraction of genomic DNA from soy-based foodstuffs. J. Chromatogr. A. 2009, 1216, 6382-6386.
    [79] Z. Zhang, L. Zhang, L. Chen, etc. Synthesis of novel porous magnetic silicamicrospheres as adsorbents for isolation of genomic DNA. Biotechnol. Prog. 2006, 22, 514-518.
    [80] J. G. Treleaven, F. M. Gibson, J. Ugelstad, etc. Cell labeling and magnetic separation by means of immunoreagents based on polyacrolein microspheres. Cancer Clin. 1982, 54, 341-352.
    [81] C. Knobloch, U. Spadinger, E. Rueber, etcl, Cell depletion from human bone marrow using beads, B.M.T., 1990, 6, 21-26.
    [82] A. Frenzel, C. Bergenann, G. K?hl, etc. Novel purification system for 6xHi s-tagged proteins by magnetic affinity separation. J. Chromatogr. B. 2003, 793, 325-329.
    [83] Y. Zhu, S. Kaskel, J. Shi, etc. Immobilization of Trametes versicolor Laccase on magnetically separable mesoporous silica spheres. Chem. Mater. 2007, 19, 6408-6413.
    [84] H. P. Zhang, S. Bai, L. Xu, etc. Fabrication of mono-sized magnetic anion exchange beads for plasmid DNA purification. J. Chromatogr. B. 2009, 127-133.
    [85] D. Shao, A. Xia, J. Hu, etc. Monodispersed magnetite/silica composite microspheres: Preparation and application for plasmid DNA purification. Colloids and Surfaces A: Physicochem. Eng. Aspects. 2008, 322, 61-65.
    [86] M. Arruebo, M. Galán, N. Navascués, etc. Devalopment of magnetic nanostructured silica-based materials as potential vectors for drug-delivery application. Chem. Mater. 2006, 18, 1911-1919.
    [87] C. Alexiou, R. J. Schmid, R. Jurgons, etc. Targeting cancer cells: magnetic nanoparticles as drug carriers. Eur. Biophys. J. 2006, 35, 446-450.
    [88] J. M. Gallo, P.Varkonyi, E. E.Hassan, etc. Targeting anticancer drugs to the brain: II Physiological pharmacokinetic model of oxantrazole following intraarterial administration to rat glioma-2 (RG-2) bearing rats. J. Pharmac okinet. Biopharm. 1993, 21, 575-592.
    [89] A. Jordan, P. Wust, H. Fahling, etc. Inductive heating of ferrimagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia. Int. J. Hyperthermia 1993, 9, 51-68.
    [90] A. Hu, G. T. Yee, W. Lin, etc. Magnetically recoverable chiral catalysts immo bilized on magnetite nanoparticles for asymmetric hydrogenation of Aromatic Ketones. J. Am. Chem. Soc. 2005, 127, 12486-12487
    [91] K. Mori, Y. Kondo, S. Morimoto, etc. A multifunctional heterogeneous catalyst: Titanium-containing mesoporous silica material encapsulating magnetic iron oxide nanoparticles. Chem. Lett. 2007, 36, 1068-1069.
    [92] P. J. Qunin, A. A. Boldyrev, V. E. Formazuyk, etc. Carnosine: Its properties, functions and protential therapeutic applications. Mol. Aspects. Med. 1992, 13: 379-444.
    [93] S. Shinagawa, T. Kanamaru, S. Harada, etc. Chemistry and inhibitory activity of long chain fatty acid oxidation of emariamine and its analogues. J. Med. Chem. 1987, 30, 1458-1463.
    [94] M. Seki, T. Shimizu, K. Matsumoto. Stereoselective synthesis ofβ-benzyl-α-alkyl-β-amino acids from L-aspartic acid. J. Org. Chem. 2000, 65, 1298-1304.
    [95] S. Gedey, A. Liljeblad, F. Fül?p, etc. Sequential resolution of ethyl 3-aminobutyrate with carboxylic acid esters by Candida antarctica lipase B Tetrahedron: Asymmetry. 1999, 10, 2573-2581.
    [96] M. V. Sànchez, F. Rebolledo, V. Gotor. Candida antarctic lipase catalyzed resolution of ethyl (±)-3-aminobutyrate. Tetrahedron. Asymmetry. 1997, 8: 37-40.
    [97]蔡亚岐,牟世芬,限进介质固相萃取及其应用,分析化学,2005, 33, 1647-1652.
    [98] I. H. Hagestam, T. C. Pinketon. Inter surface reversed-phase silica supports for liquid chromatography. Anal. Chem.1985, 57, 1757-1763.
    [99] P. Sadílek, D. ?atínsky, P. Solich. Using restricted-access materials and column switching in high-performance liquid chromatography for direct analysis of biologically-active compounds in complex matrices. Trend. Anal. Chem. 2007, 26, 375-384.
    [100] S. Vielhauer, A. Rudolphi,K .S. Boos etc. Evaluation and routine application of the novel restricted-access precolumn packing material Alkyl-Diol Silica: coupled-column high-performance liquid chromatographic analysis of the photoreactive drug 8-methoxypsoralen in plasma. J. Chromatogr. B. 1995,666, 315-322.
    [101] R. A. M. Vander Hoven, A. J. P. Hofte, M. Frenay, etc. Liquid chromatograp hy-mass spectrometry with on-line solid-phase extraction by a restricted-access C18 precolumn for direct plasma and urine injection. J. Chromatogr. A. 1997, 762, 193-200.
    [102] C.Y.K. Tan, D. F. Weaver. One pot synthesis of 3-amino-3-arylpropionic acids. Tetrahedron. 2002, 58, 7449-7461.
    [103] R. Abu-Reziq, H. Alper, D. Wang, etc. Metal Supported on Dendronized Magnetic Nanoparticles: Highly Selective Hydroformylation Catalysts. J. Am. Chem. Soc. 2006,128, 5279-5282.
    [104] T. Valdes-Solis, A.F. Rebolledo, M. Sevilla, etc. Preparation, Characterization, and enzyme immobilization capacities of superparamagnetic silica/iron oxide nanocomposites with mesostructured porosity. Chem. Mater. 2009, 21, 1806-1814.
    [105] W. Zhao, J.Gu, L. Zhang, etc. Fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure. J. Am. Chem. Soc. 2005, 127, 8916-8917.
    [106] M. Froba, R. Kohn, G. Bouffaud, etc. Fe2 O3 nanoparticles within mesoporous MCM-48 Silica:In Situ Formation and Characterization.Chem. Mater. 1999, 11, 2858-2865.
    [107] D. Barreca, W. J. Blau, C. M. Croke, etc. Iron oxide nanoparticle impregnated mesoporous silicas as platforms for the growth of carbon nanotubes Microporous Mesoporous Mater. 2007, 103 ,142-149
    [108] C. Garcia, Y Zhang, F. DiSalvo, etc. Asymmetric Catalytic Aza-Henry Reactions Leading to 1, 2-Diamines and 1,2-Diaminocarboxylic Acids. Angew. Chem. Int. Ed. 2003, 42, 152-153.
    [109] Y. Sun, M. Ma, Y. Zhang, etc. Synthesis of nanometer-size maghemite particles from magnetite. Colloid. Surf. A. 2004, 245, 15–19.
    [110] M. Terrenib, G. Pagani. Evaluation of different enzymes as catalysts for the production ofβ-lactam antibiotics following a kinetically controlled strategy. Enzyme Microb. Technol. 1999, 25, 336–343.
    [111]王敏,新型磁性微球的制备与应用,天津大学硕士学位论文,2008
    [112] B.Gao, X. Wang, Y. Shen. Studies on characters of immobilizing penicillin G acylase on a novel composite support PEI/SiO2. Biochem. Eng. J. 2006, 28, 140-147.
    [113] T. Sugimoto. Prepration of monodispersed colloidal particles. Adv. Colloid Interface Sci. 1987, 28 , 65
    [114] R.M. Cornell, U. Schertmann, Iron Oxides in the Laboratory: Preparation and Characterization, VCH, Weinheim, 1991.
    [115] K. S. W. Sing, D. H. Everett, R. A. W. Haul etc. Reporting physisorption data for gas/solid systems with Special Reference to the Determination of Surface Area and Porosity. Pure. Appl. Chem. 1985, 57, 603-619..
    [116] K. Kluohova, R. Zboril, J. Tucek, etc. Superparamagnetic maghemite nanoparticles from solid-state synthesis-Their functionalization towards peroral MRI contrast agent and magnetic carrier for trypsin immobilization. Biomaterials. 2009, 30, 2855-2863.
    [117]夏百根,孟磊,王彩霞等,烷基-二醇基硅胶填料的合成及对莠去净类除草剂的在线分离,中国农学通报,23,94-97.
    [118] R. Preuss, J. Anerer. Simultaneous determination of 1- and 2-naphthol in human urine using on-line clean-up column-switching liquid chromatography–fluoresc ence detection. J. Chromatogr. B. 2004, 801, 307–316.
    [119] P. Wu, J. Zhu, Z. Xu. Template-assisted synthesis of mesoporous magnetic nanocomposite particles. Adv. Funct. Mater. 2004, 14, 345-351.
    [120] W. St?ber, A. Fink, E. Bohn. Controlled growth of monodisperse dilica spheres in the micro size range. J. Collid. Inerf. Sci. 1968, 26, 62-69.
    [121] C. C. Berry, A. S. G. Curtis.Functionalisation of magnetic nanoparticles for applications in biomedicine. J. Phys. D: Appl. Phys. 2003, 36 , R198-R206.
    [122] D. J. Anderson.High-performance liquid chromatography (Direct Injection Technique). Anal. Chem. 1993, 65, 434R-443R.
    [123] A. Dyal, K. Loos, M. Noto, etc. Activity of Candida rugosa lipase immobilized onγ-Fe2O3 magnetic nanoparticles. J. Am.Chem. Soc. 2003, 125, 1684-1685.
    [124] Z. Guo, S. Bai, Y, Sun. Preparatioin and characterization of immobilized lipase on magnetic hydrophobic microsphers. Enzyme Microb. Technol. 2003, 776-782.
    [125] S. J. Faulconbridge, K. E. Holt, L. G. Sevillano, etc. Preparation of enantiomerically enriched aromaticβ-amino acids via enzymatic resolution. Tetrahedron Lett.. 2000, 41, 2679-2681.
    [126] A. Bee, R. Massart, S. Neveu. Synthesis of very fine maghemite particles. J. Magn. Magn. Mater. 1995, 149, 6-9. .

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700