聚合物微热压过程理论及其装备技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物微热压成型技术作为一种成本低、效率高、质量优的微细加工方法,已成为微纳机电系统加工技术中的一种重要方法也是目前的研究热点。本学位论文结合国家863计划项目“面向微流控芯片的微模具制造装备研究”(No.2002AA421150)及教育部博士点基金“聚合物三维微流体芯片制造新方法及工艺研究”(No.20030335091)对微热压成型过程理论及其装备技术进行了研究。针对项目的研究任务和国内外研究现状,本论文积极吸收相关学科的新思想、新技术,采用理论研究、计算机仿真与实验研究相结合的方法,以微热压技术中亟需解决的问题为研究对象,通过对聚合物微热压成型的机理及微热压装备关键技术的研究,建立了压印过程模型、揭示了微压印过程中聚合物流变特性与压印质量及压印效率间的内在关系、提出了模具拓扑优化策略、优化了压印工艺、研发了热压装备。论文的主要工作如下:
     第一章,阐述了本学位论文的研究背景与意义,详细介绍了国内外在热压成型技术机理、工艺及成型装备等领域的研究现状。在此基础之上,提出了论文的主要研究内容。
     第二章,阐述微热压中聚合物从宏观力学表征到微观结构变化的变形机理,引入了聚合物微加工中宏观力学表征的三种现象,时间依赖性、温度依赖性及时温等效转换性。基于聚合物的网络理论及分子理论,从微观角度解释了聚合物压印过程的流变行为及聚合物分子运动机理,为后续章节的理论、仿真及实验研究奠定理论基础。
     第三章,通过对微流控芯片热压过程进行受力分析,建立了基于流变理论的微流控芯片热压过程模型。为了更好地表征压印过程的粘弹性力学行为,将聚合物的材料常数n修正为时间的函数。基于流体NS方程对压印过程进行了推导,所得结论和基于流变理论的结果吻合,从另一方面验证了模型的正确性。在微流控芯片热压过程模型的基础上,对常规微热压过程进行了建模研究,通过对两组流动进行耦合建立了微热压过程模型,获得了压印完成所需时间及聚合物微结构高度和时间的变化关系。
     第四章,对模具拓扑结构与聚合物流动特性间的关系进行了系统的研究。采用DEFORM软件分析了热压过程聚合物流动的影响要素,揭示了模具占空比、模具深宽比、模具宽厚比、模具位姿变化时所呈现出不同的流动形貌及流动特性。解释了不等温压印过程和等温压印过程流动行为不同的原因。针对压印过程易出现的填充效率不佳以及热压过程本质上是一个模腔非封闭的聚合物流动问题,提出了模具结构拓扑优化策略,通过在模具边缘布置一些流动坝,达到降低边界处聚合物流动率、促进聚合物有效填充的目的。仿真结果表明优化策略对促进聚合物填充具有很好的效果。
     第五章,系统的分析了热压成型过程缺陷产生原因,使用ANSYS软件对冷却及脱模阶段聚合物的受力状况进行了有限元模拟分析。分析结果显示冷却阶段一直保持的压印力会造成模具及聚合物微结构应力集中,是形成模具断裂、微结构破损等现象的一个重要原因。首次研究了脱模方向对脱模质量的影响,由于微小的脱模方向偏差就可能引入很大的切向力而导致微结构的破坏。为了确保正确的脱模方向,设计了新型的自动脱模机构。提出了压印过程优化工艺,通过在冷却过程中缓慢减少压印力,直至冷却到脱模温度时释放完毕。该优化工艺不但可以有效的降低压印力造成的应力集中,还可以避免由于过早释放压印力而导致结构回弹及变形。
     第六章,在理论及仿真研究的基础上,针对现有压印装备中存在的一些问题,自行设计了基于帕尔帖效应的聚合物微热压装备。采用半导体制冷片进行升降温,在降温时辅助以水流带走半导体制冷片表面热量,设计了精密温控的模糊PID控制器,使得热压装备的温度控制精度达到0.2℃,升降温速率达1℃/s,能大幅度提高压印效率。使用液压方式施加压强,降低了压印过程的压力不均匀分布,提高了压印品质。
     第七章,为了验证自行设计的微热压装备的性能,进行了温度、压力及真空度控制精度的实验研究,实验结果表明热压装备能较好的满足设计要求。选择两种典型的微结构,微流控芯片及液晶导光板进行了压印实验研究,分析了各个工艺参数对成型后质量的影响。通过分析微流控芯片尺寸误差,得出在低温下压印所产生的回弹是微流道尺寸误差的主要原因。采用正交表分析了导光板热压时工艺参数对压印质量的影响,获得了优化的压印参数。
     第八章,对论文的主要研究工作和创新点作了总结,并对未来的研究工作进行了展望。
Fabrication of micro structures with hot embossing is an important technology due to its numerousadvantages such as low cost, high efficiency and parallel operation. Supported by the National Hi-TechResearch and Development Program (863) of China—"Research on the manufacturing device of the micromold used in microfluidic chips" (No. 2002AA421150) and the Research Foundation of DoctorialProject—"Study of new methods and process of manufacturing of 3D polymer microfluidic chips"(RFDP20030335091), actively absorbed the original thoughts, new theories and technologies of correlativesubjects, the model in embossing process was established, the rheological character of polymer with respectto the imprint quality and the imprint efficiency was expounded, the strategy of mold topology optimizationof structures was proposed and hot embossing process was optimized with theoretical analysis, numericalsimulation and experiments.
     In chapter 1, the background and significance of the research are introduced, the development trend andthe current research situations of hot embossing mechanism, hot embossing process and the device of hotembossing were expatiated, and then the study contents of this dissertation were proposed.
     In chapter 2, the flow mechanism of the polymer in hot embossing was described from the mechanicalbehavior in macroscopy to the evolvement of structure in microscopy. Three phenomena in macroscopy,dependency of time, dependency of temperature and time temperature equivalence principle were imported.Based on the polymer network theories and the molecule theories, the rheological behavior of polymer and itsmolecule movement were explained, which established the theoretical base of the theorical analysis,numerical simulation and experiment study in the following chapters.
     In chapter 3, the mechanical model of microfluidic chip in hot embossing based on the rhologicalanalysis was established with theoretical analysis and numerical simulation. For better describing theviscoelastic behavior in hot embossing process, the rule of the polymer material's constant n changing withtime was acquired. The result deducted from the Navier-Stokes (NS) equation accords with that of rhologicalanalysis, which proves the right of this model on the other hand. Based on the hot embossing model ofmicrofluidic chips, normal hot embossing process was modeled with the coupling of two flow fields. Thetime required for completely filling and the time development of micro pattern height were got.
     In chapter 4, the change of mold structures with respect to flow behavior in the embossing step wasstudied systematically. The factors influencing the polymer flow were analyzed with the DEFORM code. Thedifferent flow profile and flow character with the different mold duty ratio, aspect ratio, width to thicknessratio and the mold attitude were expounded. The difference of flow character between isothermal hotembossing process and non-isothermal hot embossing process was investigated and the reason was analyzed.The strategy of topology optimization of mold structures was proposed to improve the filling efficiency in hot embossing process. With the arrangement of some flow barriers at the mold boundary, the flow speed at theboundary can be decreased and the filling efficiency can be accelerated. Numerical simulation results showthat this strategy has better effect on the accelerating filling speed.
     In chapter 5, the reason that caused the defects in hot embossing was studied systemically. The finiteelement method (FEM) was used to analyze the cooling step and the demolding step. The numericalsimulation results show that profile precision is largely influenced by the topology of mold structures duringthe embossing step. Inadequate holding time will result in low pattern fidelity. Inapposite demoldingtemperature could induce large thermal stress at the bottom of the micro pattern, while keeping imprintpressure during the cooling step will aggravate this phenomenon. The demolding direction with respect to theproduct quality was studied in the first time, and the large lateral stress will be induced by the little error ofthe demolding direction, then the fracture and other defects would happen. To keep the right demoldingdirection, a new pneumatic demolding device was designed. The optimization process of hot embossing wasproposed with the decreasing the imprint pressure in the cooling step until rearching the demoldingtemperature. This optimized process can not only reduce the stress concentration, but also avoid the recoveryand the distortion of micro structures induce by releasing the imprint pressure too early.
     In chapter 6, a hot embossing system based on the Peltier effect was designed to improve some problemsthat existing in the current hot embossing device with the help of theoretical analysis and numericalsimulation. Thermoelectric cooler is used for heating/cooling and the heat of the cooler surface is taken awayby the flowing water when cooling. A fuzzy-PID control was designed for the precision control oftemperature. The temperature control precision can reach 0.2℃and temperature increasing/decreasing speedis larger than 1℃/s. The imprint pressure is applied with hydraulic pressure system, which can decrease thenon-uniform distribution of pressure in the embossing step and can improve the imprint quality.
     In chapter 7, the control precision of the temperature, the pressure and the vacuum was tested to verifythe performance of self-designed hot embossing device. The experiment results show the device accords wellwith the design specification. Two types of micro structures, microfluidic chips and the light guide plate werechosen as the experimential object and the process parameters with respect to the imprint quality wereanalyzed. By analyzing the error of channel sizes, the main reason of the error was assumed as the recoveryof polymer. Orthogonal method was used in the analysis of relationship between the process parameters andthe imprint quality. Then the optimized process parameters were got.
     In chapter 8, the study contents and conclusions of the dissertation have been summarized and thefurther research works have been forecast.
引文
[1] M. Heckele, W.K. Schomburg. "Review on micro molding of thermoplastic polymers", Journal of Micromechanics and Microengineering, 14 (2004): R1-R14.
    [2] R.M. McCormick, R.J. Nelson, M.G. Alonso et al. "MicroChannel electrophoretic separations of DNA in injectionmolded plastic substrates", Analytical Chemistry, 69 (1997): 2626-2630.
    [3] T. Hanemann, M. Heckele, V. Piotter. "Current status of micromolding technology", Polymer News, 25 (2000): 224-229.
    [4] D C Duffy, J C McDonald, O J A Schueller et al. "Rapid prototyping of microfluidic systems in polydimethylsiloxane", Analytical Chemistry, 70 (1998): 4974-4984.
    [5] M T Gale. "Replication techniques for diffractive optical elements", Microelectronic Engineering ,34 (1997): 321-339.
    [6] M.U. Kopp, H.J. Crabtree, A. Manz. "Developments in technology and applications of Microsystems", Current Opinion in Chemical Biology, 3 (1997): 410-419.
    [7] H. Becker, W. Dietz. "Microfluidic devices for μ -TAS applications fabricated by polymer hot embossing", Processing SPIE, 3515 (1998): 177-182.
    [8] J. Schulze, W.Ehrfeld, H. Muller, A. Picard. "Compact self-aligning assemblies with refractive microlens arrays made by contactless embossing", Proc. Of SPIE 3289(1998): 22-32.
    [9] L. W. Lin, Shia TK, C. J. Chiu. "Fabrication and characteristion of IC processed brightness enhancements films", The 9th International conference on Solid-State Sensors and Actuators, Tansducers'97: 1421-1437.
    [10] Paul Swanson, Richard Gelbart, Eugene Atlas et al. "A fully multiplexed CMOS biochip for DNA analysis", Sensors and Actuators B 64 (2000): 22-23.
    [11] G. G. Wallace, M. Smyth, H. Zhao. "Conducting electroactive polymer-based biosensors", Trends in analytical chemistry, 4(1999): 245-251.
    [12] Ulrich R, Weber H P, Chandross E A et al. "Embossed optical waveguides", Appl. Phys. Lett. 20(1972): 213-215.
    [13] Chou S Y, Krauss P R and Renstrom P J. "Imprint of sub-25 nm vias and trenches in polymers", Appl. Phys. Lett., 67(1995): 3114-3116.
    [14] H. Becker, U. Heim. "Hot embossing as a method for the fabrication of Polymer high aspect ratio structures", Sensors and Actuators, 12(2000): 130-135.
    [15] H. Becker, U. Heim. "Silicon as tool material for polymer hot embossing", IEEE Conferences, MEMS'99, (1999): 228-229.
    [16] Rowland H D, King W P. "Polymer deformation and filling modes during microembossing", J. Micromech. Microeng 14(2004): 1625-1632.
    [17] J. Narasimhan, I. Papautsky. "Polymer embossing tools for rapid prototyping plastic microfluidic devices", J. Microme-ch. Microeng, 14(2004): 96-103.
    [18] N. S. Ong, Y.H. Koh, Y.Q. Fu. "Microlens array produced using hot embossing process", Microelectronic Engineering 60(2002): 365-379.
    [19] Yi-Je Juang, L.James Lee. Kurt W.Koelling. "Hot Embossing in Microfabrication. Part Ⅰ: experimental, Part Ⅱ Rheological Characterization and Process Analysis", Polymer Engineering and Science, 9(2002): 539-551.
    [20] Jin Tae Kim, Keun Byoung Yoon, Choon-Gi Choi. "Passive Alignment Method of Polymer PLC Devices by Hot Embossing Technique", IEEE Photonics Technology Letters, 16 (2004): 1664-1666.
    [21] L J Heyderman, C Schift, J David et al. Schweizer. "Flow behaviour of thin polymer films used for hot embossing lithography", Microelectronic Engineering 54 (2000): 229-245.
    [22] X J Shen, L W Pan, L W Lin. "Microplastic embossing process: experimental and theoretical characterizations", Sensors and actuators A, 97 (2002): 428-433.
    [23] M Worgull, M Heckele, J F Hetu et. al. "Modeling and optimization of the hotembossing process for micro- and nanocomponent fabrication", Microsystem Technology (2006): 542-548.
    [24] M Worgull, M Heckele, J. F. Hetu et al. "Modeling and optimization of the hotembossing process for micro- and nanocomponent fabrication", J. Microlith. Microfab. Microsyst. 51 (2006): 011005.
    [25] Yoshihiko Hirai, Satoshi Yoshida, Nobuyuki Takagi. "Defect analysis in thermal nanoimprint lithography", J. Vac. Sci. Technol. 21(2003): 2765-2770.
    [26] C Y Chang, S Y Yang, L S Huang, J.-H. Chang. "Fabrication of plastic microlens array using gas-assisted micro-hot-embossing with a silicon mold", Infrared Physics & Technology 48 (2006): 163-173.
    [27] Nils Roos, Thomas Luxbacher, Thoma Glinsner, et al. "Nanoimprint Lithography with a commercial 4 inch bond system for hot embossing", Proceedings of the SPIE, 4343(2001): 5735-5739.
    [28] M Heckele, W Bacher, K D Muller. "Hot embossing-The molding technique for plastic microstructures", Microsystem Technologies, 4(1998): 122-124.
    [29] Nils Roos, Matthias Wissen, Thomas Glinsner, Hella C Scheer. "Impact of vacuum environment on the hot embossing process", Proceedings of SPIE 5037 (2003): 211-218.
    [30] Deguchi, K. Takeuchi, N. Shimizu. "Evaluation of press-uniformity using a pressure sensitive film andcalculation of wafer distortions caused by mold press in imprint lithography", International Conference of Microprocesses and Nanotechnology 2001.
    [31] 辛依瑾.“奈米压印制程参数之研究”,台湾国立成功大学硕士论文,2003.
    [32] 黄重凯.“智能型模仁的初步开发”台湾国立交通大学硕士论文,2002.
    [33] 董毓才.“超音波热压微结构加工参数影响之研究”,台湾长庚大学硕士论文,2004.
    [34] 林威宇.“动态压力控制对微结构压印特性的影响暨加工过程中聚丙烯的结晶特性的初步探讨”,台湾交通大学硕士论文,2003.
    [35] 邱治文.“热挤压式微透镜数组成形之研究”,台湾国立中兴大学硕士论文,2004
    [36] LIU Junshan, WANG Liding, LIU Chong, et al. "Hot embossing methods for plastic microchannel fabrication", Chinese Journal of Mechanic Engineering, 19(2006):223-225.
    [37] 王晓东,罗怡,刘冲等.“聚合物PMMA微流控芯片微通道热压成形工艺参数的确定”,中国机械工程,22(2005):2061-2063.
    [38] 温敏.“聚合物微流控芯片微通道热压成形及键合工艺研究”,大连理工大学硕士论文,2005.
    [39] 徐敏,罗怡,王晓东等.“聚合物微结构热压成形温度有限元分析”,传感技术学报,5(2006):2015-2018.
    [40] 文伟力,左春柽,于建群等.“聚合物微流控芯片微通道模压成型分析”,吉林大学学报(工学版),5(2006):696-700.
    [41] 任永利,傅建中,陈子辰.“微压印聚合物微流控芯片的传热分析研究”,机械科学与技术,11(2005):1358-1361.
    [42] 司卫华,董晓文,顾文琪.“纳米压印技术的工艺和图形精度研究”,半导体光电,4(2006):441-445.
    [43] 范东升,王德强,康晓辉等.“热压光刻技术复制波带片图形研究”,微细加工技术,3(2005):27-31.
    [44] 孙洪文,刘景全,陈迪等.“正交法对DEM技术中模压工艺的优化研究”,微细加工技术,3(2004):45-49.
    [45] 孙洪文,刘景全,陈迪等.“一种适于热压成型的新聚合物---PETG”,聚合物工业,10(2004):59-61.
    [46] 朱学林,刘刚,田扬超,“一种PMMA表面改性的热压键合方法研究”,微细加工技术,4(2005):52-55.
    [47] 黄致维,“高深宽比微结构之真空热成形制程研究”,台湾大叶大学硕士论文,2004.
    [48] 黄重凯,“智能型模仁的初步开发”,台湾交通大学硕士论文,2003.
    [49] 赖文童,“微结构热压成形缺陷之探讨”,台湾交通大学硕士论文,2000.
    [50] M. Worgull, M. Heckele. "New aspects of simulation in hot embossing", Microsystem Technologies, 10(2004) 432-437.
    [51] N. Bogdanski, M. Wissen, A. Ziegler et al. "Temperature-reduced nanoimprint lithography for thin and uniform residual layers", Microelectronic Engineering, 79(2005): 598-604.
    [52] H. Schulz, M. Wissen, H.-C. Scheer. "Local mass transport and its effect on global pattern replication during hot embossing", Microelectronic Engineering 68(2003): 657-663.
    [53] H. Schulz, M. Wissen, N. Bogdanski et al. "Choice of the molecular weight of an imprint polymer for hot embossing lithography", Microelectronic Engineering, 79(2005): 625-632.
    [54] H. Schulz, M. Wissen, N. Bogdanski. "Impact of molecular weight of polymers and shear rate effects for nanoimprint lithography", Microelectronic Engineering, 83(2006): 259-280.
    [55] J. Tallal, M. Gordon, K. Berton et al. "AFM characterization of anti-sticking layers used in nanoimprint", Microelectronic Engineering, 83(2006): 851-85.
    [56] Chun-Hway Hsueh, Sanboh Lee, Hung-Yi Lin et al. "Analyses of mechanical failure in nanoimprint processes", Materials Science and Engineering A, 433(2006): 316-322.
    [57] Yuhua Guo, Gang Liu, Xuelin Zhu et al. "Analysis of the demolding forces during hot embossing", Microsystem Technology, 2(2006): s00542-006-0225-9.
    [58] Torbjorn Eriksson, Henrik KoblitzRasmussen, "The effects of polymer melt rheology on the replication of surface microstructures in isothermal moulding", J. Non-Newtonian Fluid Mech., 127(2005): 191-200.
    [59] M. Worgull AE M. Heckele AE W. K. Schomburg, "Large-scale hot embossing", Microsystem Technology, 12(2005): 110-115.
    [60] Harry D. Rowland and William P. King, "Simulations of nonuniform embossing, "The effect of asymmetric neighbor cavities on polymer flow during nanoimprint lithography", J. Vac. Sci. Technol. B 6(2005): 2958-2962.
    [61] Harry D Rowland, Amy C Sun, P Randy Schunk, "Impact of polymerfilm thickness and cavity size on polymer flow during embossing: toward process design rules for nanoimprint lithography", J. Micromech. Microeng., 15(2005): 2414-2425.
    [62] Heon Young Kim, Kwang-soon Kim and Byeong-hee Kim, "Micro nano patterning characteristics in hot embossing process", Material Processing and Design, 2004.
    [63] G. L. W. Cross, B. S. O'Connell, J. B. Pethica et al. "Instrumented indentation testing for local characterisation of polymer properties after nanoimprint", Microelectronic Engineering, 78-79(2005): 618-624.
    [64] C.-R. Lin, R.-H. Chen and C. Hung, "Preventing non-uniform shrinkage in open-die hot embossing of PMMA microstructures", Journal of Materials Processing Technology, 140(2003): 173-178.
    [65] C.-R. Lin, R.-H. Chen and C. Hung, "The Characterisation and Finite Element Analysis of a Polymer under Hot Pressing", International Journal of Advanced Manufacturing Technology, 20(2002): 230-235.
    [66] 林佳荣,“聚合物压印成型之有限元素分析”,台湾交通大学博士论文 2003.
    [67] 贺永,傅建中,陈子辰,“聚合物微流控芯片热压成型的建模研究”,浙江大学学报(工学版),12(2005):1911-1914.
    [68] Wen-Bin Young, "Analysis of the nanoimprint lithography with a viscous model", Microelectronic Engineering, 77(2005) 405-411.
    [69] H.-C. Scheer, N. Bogdanski, and M. Wissen, "Polymer time constants during low temperature nanoimprint lithography", J. Vac. Sci. Technol. B, 23(6):963-2966.
    [70] K. Mohamed, M.M. Alkaisi, J. Smaill, "Resist deformation at low temperature in nano- imprint lithography", Current Applied Physics, 6(2006): 486-490.
    [71] Yoshihiko Hirai, Takaaki Konishi, Takashi Yoshikawa et al. "Simulation and experimental study of polymer deformation in nanoimprint lithography", J. Vac. Sci. Technol. B, 22(2004): 3288-3293.
    [72] V. Sirotkin, A. Svintsov, S. Zaitsev et al. "Viscous flow simulation in nanoimprint using coarse-grain method", Microelectronic Engineering, 83(2006): 880-883.
    [73] Quang-Cherng Hsu, Chen-Da Wu and Te-Hua Fang, "Studies on Deformation Mechanism and Punch Taper Effects on Nanoimprint Processes by Molecular Dynamics", AIP Conference Proceedings, 2004.
    [74] Q.C. Hsu, C.D. Wu, T.H. Fang, "Studies on nanoimprint process parameters of copper by molecular dynamics analysis", Computational Materials Science, 34(2005) 314-322.
    [75] Harutaka Mekaru, Osamu Nakamura, Osamu Maruyama, et al. "Development of precision transfer technology of atmospheric hot embossing by ultrasonic vibration", Microsystem Technology 2006).
    [76] M. Worgull, M. Heckele, J. F. Hetu, et al. "Modeling and optimization of the hot embossing process for micro- and nanocomponent fabrication", J. Microlith., Microfab., Microsyst. 5(2006): 011005.
    [77] 尉元杰,刘冲,李经民等.“微流控芯片微通道热压成形中聚合物流动的仿真”,传感技术学报,5(2006):2008-2011.
    [78] M.Heckele, W. Bacher, K.D. Muller, "Hot embossing-The molding technique for plastic microstructures", Microsystem Technologies, 4(1998): 122-124.
    [79] L. James Lee, Marc J. Madou, Kurt W. Koelling et al. "Design and Fabrication of CD-Like Microfluidic Platform for Diagnostic: Polymer-Based Microfabrication", Biomedical Micro devices, 4(2001): 339-351.
    [80] J.-H. Chang, S.-Y. Yang, "Development of fluid-based heating and pressing systems for micro hot embossing", Microsystem Technologies, 11 (2005): 396-403.
    [81] R Truckenmuller, Z Rummier, Th Schaller, et al. "Low-cost thermoforming of micro fluidic analysis chips", J. Micromech. Microeng., 12(2002): 375-379.
    [82] L. Bendfeldt, H. Schulz, N. Roos et al. "Groove design of vacuum chucks for hot embossing lithography", Microelectronic Engineering, 62(2002): 455-459.
    [83] Xiqiu Fan, Honghai Zhang, Sheng Liua, et al. "NIL-a low-cost and high-throughput MEMS fabrication method compatible with IC manufacturing technology", Microelectronics Journal, 37(2006): 121-126.
    [84] Thomas E, Kimerling, Weidan Liu, et al. "Rapid hot embossing of polymer microfeatures", Microsyst Technol, (2006).
    [85] H. Mekaru, H. Goto, M. Takahashi, "Development of ultrasonic micro hot embossing technology", Microelectronic Engineering (2007), doi: 10.1016/j.mee.2007.01.235.
    [86] 张哲豪.“流体微热压制程开发研究”,台湾大学博士论文,2003.
    [87] 萧兆丰.“微热压成型技术校正、量测与模流分析”,台湾淡江大学硕士论文,2003.
    [88] 王晓东,吕长辉,韦鹤等.“RYJ_Ⅱ型热压成形设备实现压力均匀性的调平装置”,机电产品开发与创新,5(2006):59-61.
    [89] 王钧,王晓东,刘冲.“聚合物微流控芯片热压及键合设备结构设计研究”,机械设计与制造,4(2004):93-95.
    [90] 王晓东,刘冲,马骊群等.“聚合物微流控芯片微通道热压成形机的研制”,制造技术与机床,11(2004):57-60.
    [91] 王晓东,刘冲,王立鼎.“面向聚合物微结构制作的热压成形设备的研制”,中国机械工程,14(2005):1229-1232
    [92] 王晓东,刘冲,马骊群等.“聚合物微流控芯片的制作及其自动化”,高技术通讯,7(2004):45-48.
    [93] 严乐,刘红忠,丁玉成等.“高保真度五步加载纳米压印光刻的研究”,西安交通大学学报,9(2005):933-936.
    [94] YAN Le, DING Yucheng, LU Bingheng et al., "Process Control for Nanoimprint Lithography", Transactions of Tianjin University, 5(2005): 322-326.
    [95] 张亚军,段玉刚,卢秉恒等.“纳米压印光刻中模版与基片的平行调整方法”,微细加工技术,2(2005):34-38.
    [96] 刘红忠,丁玉成,卢秉恒等.“纳米压印光刻中的多步定位研究”,西安交通大学学报,3(2006):261-264.
    [97] 尹磊,刘红忠,丁玉成等.“基于纳米压印技术的光伏器件微三维构型研究”,传感技术学报,5(2006):1455-1458.
    [98] 蒋维涛,丁玉成,卢秉恒等.“压印光刻中模具空间位姿的识别及仿真”,西安交通大学学报,1(2007):55-58.
    [99] 张鸿海,胡晓峰,范细秋等.“纳米压印光刻技术的研究“,华中科技大学学报(自然科学版),12(2004):57-59.
    [100] 张鸿海,范细秋,胡晓峰等.“一种微透镜阵列制作方法”,华中科技大学学报(自然科学版),6(2006):77-79.
    [101] 胡晓峰.“纳米热压设备与试验研究”,华中科技大学硕士论文,2005.
    [102] 沙志宏,傅建中,陈子辰.“微流体芯片计算机数控热压机设计”,组合机床与自动化加工技术,1(2004):40-41.
    [103] 沙志宏.“数控微流控芯片热压系统研制”,浙江大学硕士论文,2004.
    [104] 任永利.“微压印聚合物微流控芯片的传热模型及实验研究”,浙江大学硕士论文,2005.
    [105] 张海峰.“全自动聚合物微流控芯片压印机的研究与设计”,浙江大学硕士论文,2005.
    [106] 张海峰,傅建中,陈子辰.“PLC控制的聚合物微流控芯片压印机设计”,机床与液压,2(2006):69-71.
    [107] 傅建中,陈子辰,贺永等.“帕尔贴热循环微纳米压印装置”,中国发明专利,ZL200410053401.X.
    [108] 翟金平 胡汉杰主编.“聚合物成型原理及成型技术”,化学工业出版社,2001.
    [109] 袁龙蔚著.“流变力学”,科学出版社,1986.
    [110] 杨挺青编.“粘弹性力学”,华中理工大学出版社,1990.
    [111] 刘孝敏,周光泉编.“粘弹性理论”,中国科技大学出版社,1996.
    [112] 于同隐.“高聚物的粘弹性”,上海科学技术出版社,1986.
    [113] 周彦豪编.“聚合物加工流变学基础”,西安交通大学出版社,1988.
    [114] 顾国芳.浦鸿汀编,“聚合物流变学基础”,同济大学出版社,2000.
    [115] 何平笙编.“高聚物的力学性能”,中国科学技术大学出版社,1997.
    [116] 马德柱编.“高聚物的结构与性能”,第二版,科学出版社,1995.
    [117] 萧兆丰.“微热压成形系统校正、量测与模流分析”,台湾淡江大学硕士论文,2003.
    [118] Genns P G De. "Dynamics of entangled polymer solutions. I. The Rouse Model", Macromolecules, 9(1976): 587-593.
    [119] Wagner D J, Jayatissa A H. "Nanoimprint lithography Review of aspects and applications". Proceeding of SPIE, 6002(2005): 6002R.
    [120] Bogdanski N, Schulz H, Wissen M et al. "Dynamic mask defects in hot embossing lithography". Proceeding of SPIE, 5504(2004): 197-203.
    [121] Hyun W R, Yifu D, Lee H J et al. "The role of stress in nanoimprint lithography". Proceeding of SPIE, 6151(2004): 615116.
    [122] Chien C H, Yu H M. "Fabrication of switches on polymer-based by hot embossing". DTIP of MEMS&MOEMS, 2006, 2-946187-03-0.
    [123] Wissen M, Glinsner T, Bogdanski N et al. "Alignment issues in a modular hot embossing system". Proceeding of SPIE, 5751(2005): 957-963.
    [124] STEPHEN R Q, AXEL S. "From micro-to nanofabrication with soft materials", Science, 24 (2000): 1537-1540.
    [125] THEODOR N. "Nanoimprint lithography". Master thesis of Technical University of Denmark, 2003.
    [126] JUANG Y J. "Polymer processing and rheoiogical analysis near the glass transition temperature". Doctor thesis of The Ohio State University, 2001.
    [127] ROBERT W F, ALAN T M. "Introduction to Fluid Mechanics". 6th ed. Wiley press, 2004.
    [128] Genns P G De, "Dynamics of entangled polymer solutions. I. The Rouse Model", Macromolecules, 9(1976): 587-593.
    [129] T. Benzler, V. Plotter, T. Hanemann, et al. "Innovations in molding technologies for microfabrication". Proc. SPIE 3874(1999): 53-60.
    [130] A.J. Ricco, T. D. Boone, Z. H. Fan et al."Application of disposable plastic microfluidic device arrays with customized chemistries to multiplexed biochemical assays". Biochemical Society Transactions, 30(2002): 452-459.
    [131] Fisher, M. Freed, C. Spanos, and K. Poolla. "Micro-sensor Arrays for Calibration, Control, and Monitoring of Semiconductor Manufacturing Processes". Proceedings of the IEEE International Conference on Control Applications, 1999,784-788.
    [132] Hocheng H, Nien C C. "Numerical analysis of effects of mold features and contact friction on cavity filling in the nanoimprinting process". J. Microlith., Microfab., Microsyst. 5(2006): 011004.
    [133] Petitdidier C, Tiron R, Derrough S. "Mechanical dynamical analysis of ultra thin resist films for microlithography applications". Proceeding of SPIE, 6591(2007): 659101.
    [134] M. Sahli, J. C. Gelin, C. Khan Malek. "Modeling and Simulation of the Flow of a Thermoplastic Polymer during Filling of a Cylindrical Micro-Cavity". NUIFORM'07, Materials Processing and Design: Modeling, Simulation and Applications, 2007, 1079-1084.
    [135] M. Sahlf, C. Millof, C. Roques-Carmes. "Modelling and experimental determination of the replication of a cylindrical shape relief. 10th ESAFORM Conference on Material Forming, 2007,927-932.
    [136] Palm G, Dupaix R B, Castro J. "Large Strain Mechanical Behavior of Poly (methyl methacrylate) (PMMA) Near the Glass Transition Temperature". Journal of Engineering Materials and Technology, 128(2006): 559-563.
    [137] G'SELL C, SOUAHI A. "Influence of crosslinking on the plastic behavior of amorphous polymers at large strains", Journal of Engineering Materials and Technology, 1(1997): 223-229.
    [138] DEFORM-2D Manual, Scientific Forming Technologies Corporation, 2004.
    [139] Jun-Ho Jeong, Youn-Suk Choi, Young-Jae Shin et al. "Flow Behavior at the Embossing Stage of Nanoimprint Lithography". Fibers and Polymers, 3(2002): 113-119.
    [140] Cross Graham L. W., Richard M. Langford, Barry S. O'Connell et al. "The Mechanics of Nanoimprint Forming". Res. Soc. Symp. Proc. 841(2004): R1-R6.
    [141] Y Hirai, M Fujiwara, T Okuno, Y Tanaka et al. "Study of the resist deformation in nanoimprint lithography", J. Vacuum Sci. Technol. B, 6(2001): 2811-2815.
    [142] Austin M Det al. "Fabrication of 5nm line width and 14nm pitch features by nanoimprint lithography". Appl. Phys. Lett., 2004(5): 5299-5301.
    [143] Yu Z, Gao H and Chou S Y. "In situ real time process characterization in nanoimprint lithography using time-resolved diffractive scatterometry". Appl. Phys. Lett. 2004(8): 4166-4168.
    [144] 温诗铸. “纳米摩擦学”,清华大学出版社,1998.
    [145] Luo Y, Xu M, Wang X D. Finte Element Analysis of PMMA Microfluidic Chip Based on Hot Embossing Technique. Journal of Physics: Conference Series, 48(2006): 1102-1106.
    [146] Jung G Y, Wu W, Li Z et al. "Surface engineering for resolution enhancement in nanoimprint lithography". Proceeding of SPIE, 5751(2005): 952-956.
    [147] ScheerH C, Schulz H. "A contribution to the flow behaviour of thin polymer films during hot embossing lithography". Microelectronic Engineering. 56(2001): 311-332.
    [148] Macintyre D S, Thoms S. "A study of resist flow during nanoimprint lithography". Microelectronic Engineering, 78(2005): 670-675.
    [149] Neil S. Cameron Arnaud Ott, Helene Roberge, Teodor Veres. "Chemical force microscopy for hot-embossing lithography release layer characterization". Sott Matter, 2006(2): 553-557.
    [150] Hyung S P, Ho H S, Man Y S et al. "Novel Process to Improve Defect Problems for Thermal Nanoimprint Lithography". IEEE Transactions on Semiconductor Manufacturing. 1 (2007): 13-19.
    [151] Mandy B. Esch, Sahil Kapur, Gizaida Irizarry et al. "Influence of master fabrication techniques on the characteristics of embossed microfluidic channels". Lab Chip, 3(2003): 121-127.
    [152] Pollock H M, Maugis D, Barquins M. "The force of adhesion between solid surfaces in contact Appl. Phys. Lett", 33(1978): 798-799.
    [153] Yuhua Guo, Gang Liu, Yin Xiong et al al. "Study of the demolding process—implications for thermal stress, adhesion and friction control", J. Micromech. Microeng., 17(2007): 9-19.
    [154] Komvopoulos K, Yan W. "A fractai analysis of stiction in microelectromechanical systems", J. Tribol., 119(1997): 391-400.
    [155] Zhang Peng, LiuGang, Tian Yangchao. "The properties of demoulding of Ni and Ni-PTFE moulding inserts", Sensors and Actuators A, 118 (2005) 338-341.
    [156] Simo J C, Wrigger P, Tayor R L. "A perturbed Lagrangian formulation for the finite element solution of contact problems", Comput Meth Appl Mech Engng, 50(1985): 163-180.
    [157] 孙林松,王德信,谢能刚.“接触问题有限元分析方法综述”,水利水电科技进展,3(2003):18-22.
    [158] 刘涛,杨凤鹏.“精通ANSYS”,清华大学出版社,2002.
    [159] 倪栋,段进,徐久成.“通用有限元分析ANSYS7.0实例精解”,电子工业出版社,2003.
    [160] 徐德胜.“半导体制冷与应用技术”,上海交通大学出版,1999.
    [161] 姚志彪.“半导体制冷装置的实验研究”.流体机械.12(1996):48-52.
    [162] CzFesta, B.Neri. "Thermally regulated low-noise, wideband, in converter, using Peitier heat pumps. IEEE transactions on instrumentation and measurement". 6 (1994): 900-905.
    [163] 迟泽涛,戚丽萍,贾立业等.“半导体制冷器工作电流和应用参数的特性分析”,黑龙江大学自然科学学报.2(1996):8891-8895.
    [164] 简弃非,梁荣光,张勇等.“半导体制冷效率及空间冷量传递特性实验研究”,华南理工大学学报(自然科学版).5(2001):72-75.
    [165] 宋绍京,薛永祺.“复杂环境下半导体致冷器的动态模型及温度控制”,红外与毫米波学报,5(2005):352-356.
    [166] www.ferrotec.com.cn
    [167] 陶永华.“新型PID控制及其应用”,机械工业出版社,2002.
    [168] 刘延俊等.“液压与气压传动”,机械工业出版,2003.
    [169] Michael J.Young著,邱仲潘译.“Visual C++6从入门到精通”,电子工业出版社,2001.
    [170] 李现勇.“Visual C++串口通信技术与工程实践”,人民邮电出版社,2002.
    [171] R. R. Darwin, L. Dimitri, A.A. Pierre, et al. "Micro total analysis systems Ⅰ: Introduction, theory, and technology". Anal Chem, 74(2002): 262322636.
    [172] V. Torsten, J. Dirk, M. Andreas. "Micro total analysis systems recent developments". Anal. Chem., 76(2004): 3373-3386.
    [173] 方肇伦等.“微流控分析芯片”,科学出版社,2002.
    [174] 叶美英,殷学锋,方肇伦.“微流控芯片硅阳模的加工”,微细加工技术,3(2004):59-64.
    [175] R. D. Chien. "Hot embossing of microfluidic platform", Int. Comm. Heat Mass Transfer, 33(2006): 645-653.
    [176] 潘重德.“背光模组的技术发展趋势”,电子与材料杂志,2003,17(2):50-54.
    [177] Shen Y K, Wu W Y. "Study on numerical simulation and experiment of light guide plate in injection molding", J. Reinforced Plastics and Composites, 11(2004): 1187-1206.
    [178] 方育斌.“LCD背光模组之光学最佳化设计”.中国台湾:国立成功大学,2004
    [179] 沈永康,吴伟裕,洪荣宏.“微射出成型导光板的微结构分析”,纳米技术与精密工程,2(2006):111-114.
    [180] 蒋炳炎,沈龙江,罗建华等.“微特征结构对导光板翘曲变形的影响.,光学 精密工程,2(2007):180-185.
    [181] 梅长林,周家良.“实用统计方法”,科学出版社,2002.
    [182] 滕素珍,冯敬海.“数理统计学”,大连理工大学出版社,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700