PWM电机驱动系统传导共模EMI抑制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
虽然PWM电机驱动系统因其具有良好的运行特性,而在工业系统和民用装置中得到了广泛地应用,但它所带来的EMI问题也日趋严重,这不但严重地威胁着系统自身的安全、稳定运行,而且还对周边其它电气系统构成了较大的威胁。其中的传导共模EMI,因其传播路径包含大地,而会增大系统辐射EMI发射强度,同时它还会以电流的形式注入其它电气系统形成干扰,并且这种干扰的发射强度正随着功率变换器开关频率和电压、电流变化率的提高而逐渐增强。为此本文就PWM电机驱动系统传导共模EMI的抑制技术、及相关等效电路的建立方法进行了深入研究,并在此基础提出了相应的解决方法。
     本文在详细研究PWM电机驱动系统感应电机侧共模电压形成机理、时域/频域特性,及该侧共模EMI电流形成机理的基础上,提出了一种感应电机传导干扰频段共模等效电路。该等效电路是依据感应电机高频共模特性及绕组对地、对中性点阻抗幅频特性测量值获取等效电路参数。此共模等效电路可以用于分析和预测PWM电机驱动系统传导共模EMI发射强度、感应电机侧共模EMI电流。等效电路仿真结果与实验结果的具有良好的一致性。
     针对系统功率变换器侧传导共模EMI发射强度难以得到有效抑制这一问题,本文在深入分析该EMI形成机理与传播特点的基础上,提出了一种用于降低系统功率变换器侧传导共模EMI发射强度的方法。该方法是通过提高散热器对地共模阻抗实现这一目的的。为了从理论上验证该方法正确,论文通过FEM-BEM耦合法对采用此抑制方法前/后散热器表面电场强度的变化情况进行了数值模拟。模拟结果和实验结果证明了该方法能够有效地抑制功率变换器侧传导共模EMI发射强度。
     鉴于PWM电机驱动系统感应电机侧普遍存在着共模电压、共模电流这一EMI问题,本文依据系统感应电机侧共模电压、共模电流的形成机理,提出了一种应用于功率变换器输出端的无源共模EMI滤波器结构。它由结构类似于只具有单边星接绕组变压器结构的电感,且每相绕组两端并联电容的共模电压检测单元和起电压补偿作用的四绕组共模变压器组成。该滤波器克服了传统功率变换器输出端无源共模EMI滤波器高低频特性难以兼顾,且体积过大的缺点。仿真结果和实验结果均验证了该无源滤波器可以有效地抑制感应电机侧共模电压、共模电流,实现有效降低整个系统传导共模EMI发射强度的目的。
     研究了有源EMI滤波器的插入损耗及设计与应用中的最佳匹配问题,并依据所得出的“电流检测电流补偿方式反馈型有源滤波器适用于共模电流噪声和漏电流的抑制”观点,提出了一种用于抑制系统共模EMI电流的有源EMI滤波器结构。该有源滤波器是以反向补偿电流直接注入系统的方法阻断系统电源侧共模电流流通路径,实现有效抑制系统传导共模EMI发射强度这一目的。与采用补偿电流注入大地方式的典型有源EMI滤波器相比,该有源EMI滤波器克服了补偿电流不足所带来的插入损耗变小的缺点。同时,在该滤波器的电源设计上还注重了共模EMI电流的抑制。仿真结果与实验结果均证明该有源滤波器可以有效地抑制系统传导共模EMI发射强度。
PWM motor drive system is widely applied to industrial systems and civil devices because it has excellent operating characteristic; however, it also brings severe EMI problem. The EMI affects the safety and stabilization not only of the motor drive system itself but also of other surrounding electrical system. The conducted common-mode EMI has enhanced systematic radiated interference because its circulating path includes the earth. At the same time it also brings conducted interference to other electrical system in the form of interference current. Emission intensity will gradually strengthen with the rise of switching frequency, voltage and current ratio of power converter. So this dissertation investigates conducted common-mode EMI suppression techniques in the PWM motor drive system and the modeling method of related equivalent circuit. Taking this as a base, some methods to solve this problem are proposed.
     The common-mode equivalent circuit of induction motor in conducted interference frequency band is proposed based on deep research of the formation mechanism and the time/frequency domain characteristics of common-mode voltage and formation mechanism of common-mode current at induction motor side in PWM motor drive system. In this model, equivalent circuit parameters are obtained according to measurement values of high frequency common-mode characteristic of induction motor and measurement values of amplitude and frequency characteristic of impedances which are winding to the earth and to the neutral point. This equivalent circuit model can be used to analyze and predict common-mode EMI emission intensity and common-mode EMI current at motor side in PWM motor drive system. The consistency of simulation and experimental result is good.
     It is hard to reduce effectively conducted common-mode EMI emission at power convert side, in order to solve the problem this paper propose a common-mode EMI suppression method by analyzing the formation mechanism and propagation characteristic of common-mode EMI at this side. The suppression is implemented by increasing the common-mode impedance between heat sink and the earth. By adopting FEM-BEM coupling method, the paper simulates numerically the surface electric field of heat sink with and without the presented method separately. The simulation and experimental result validate that the presented method can effectively suppress common-mode EMI emission intensity at power convert side, eventually reducing the EMI emission intensity of the whole system.
     Whereas common-mode voltage and common-mode current problem exists commonly at induction motor side in PWM motor drive system, this paper proposed a novel structure of passive common-mode EMI filter placed at power converter output side according to the formation mechanism of common-mode voltage and common-mode current at induction motor side. This passive filter is composed of a common-mode voltage detecting element and a four-winding voltage compensation transformer. The common-mode voltage detecting element adopts inductors, the structure of which is similar to an unilateral transformer in Y connection, and capacitors, paralleled with each phase winding. The proposed filter overcomes the disadvantage of conventional filter which has either poor high frequency characteristic or poor low frequency characteristic and has too large bulk. Both simulation result and experimental result prove that the proposed passive filter can effectively suppress common-mode voltage and common-mode current at induction motor side, realizing effective suppression of emission intensity of conducted EMI of the whole system.
     Insert losses of active EMI filter and optimal match problem in the design and application are researched. And a novel structure of active EMI filter is proposed to restrain common-mode EMI current in the system according to the conclusion that current detection and compensation mode active EMI filter adapts to suppress common-mode current noise and leakage current. In the proposed active filter, compensation current is directly injected into system, thus, propagation path of common-mode EMI at source side of the system is blocked and the aim to effectively suppress common-mode conducted EMI is achieved. Compared to typical active filter, compensation current of which is directly injected into the earth, the proposed filter overcomes the shortcoming of small insert loss caused by deficiency of compensation current. In the source design of the proposed filter, much attention is paid to suppression of common-mode EMI current. Both simulation result and experimental result prove that the proposed filter can effectively reduce emission intensity of conducted EMI in system.
引文
1 全国无线电干扰标准化技术委员会, 全国电磁兼容标准化技术委员会. 电磁兼容标准汇编 基础、通用卷. 北京: 中国标准出版社, 2002: 31
    2 A. V. Jouanne, A. D. Rendusara, N. Prasad. Enjeti. Filtering Techniques to Minimize the Effect of Long Motor Leads on PWM Inverter-fed AC Motor Drive Systems. IEEE Transactions on Industry Applications. 1996, 32 (4): 919~926
    3 Y. Murai, T. Kubota. Leakage Current Reduction for a High-frequency Carrier Inverter Feeding an Induction Machine. IEEE Transactions Industry Applications, 1992, 28:858~863
    4 白同云,吕晓德. 电磁兼容设计. 北京: 北京邮电大学出版社, 2001: 1~2
    5 S. R. Bowes, S. Grewal. Novel Harmonic Elimination PWM Control Strategies for Three-phase PWM Inverters Using Space Vector Techniques. IEE Proc-Electr. Power Appl. 1999, 146(5): 495~514
    6 M. M. Swamy, K. Yamada, T. Kume. Common-mode Current Attenuation Techniques for Use with PWM Drives. IEEE Transactions on Power Electronics. 2005, 16(2): 248~255
    7 Doyle, F. Busse, M. E. Jay. The Effects of PWM Voltage Source Inverter on the Mechanical Performance of Rolling Bearings. IEEE Transactions on Industry Applications. 1997, 33(2): 567~576
    8 S. T. Chen, A. Lipo Thomas. Circulating Type Motor Bearing Current in Inverter Drives. IEEE Industry Application Magazine. 1998, 4(1): 32~38
    9 Melhorn, J. Christopher, L. Tang. Transient Effects of PWM ASDs on Standard Squirrel Cage Induction Motors. IEEE IAS Proceedings, Orlando, USA, 2005: 2689~2695
    10 A. D. Rendusara, E. Cengelci. Analysis of Common-mode Voltage “neutral shift” in Medium Voltage PWM Adjustable Speed Drive (MV-ASD) Systems. IEEE Transactions on Power Electronics. 2000, 15(6): 1124~1133
    11 A. Orlandi, R. Scheich. EMC in Power Electronic Devices: Radiated Emissions from a Silicon Controlled Rectifier. IEEE International Symposium on Electromagn Compat, Chicago, USA, 2004: 22~26
    12 N. Aoki, K. Satoh, A. Nabae. Damping Circuit to Suppress Motor Terminal Overvoltage and Ringing in PWM Inverter-Fed AC Motor Drive Systems with Long Motor Leads. IEEE Transactions on Industry Applications. 1999, 35(5): 1014~1020
    13 D. Chambers, A. V. Jouanne. A Novel High Performance Resonant Converter ASD to Eliminate the Adverse Effects of PWM Operation. IEEE Industry Applications Magazine. 2001: 2033~2040
    14 国家技术监督局标准化司和全国无线电干扰标准技术委员会. 欧洲电磁兼容法规、标准与执行. 1994: 5
    15 A. Moreira, F. Alessandro. High-frequency Modeling for Cable and Induction Motor Ovoltage Studies in long cable drives. IEEE Transactions on Applications. 2002, 38(5): 1297~1306
    16 A. Boglietti, A. Cavagnino, M. Lazzari. Experimental High Frequency Parameter Idetification of AC Electrical Moyors. IEEE Transactions on Applications. 2005, 49(3): 5~10
    17 R. Naik, T. A. Nondhal. Circuit Model for Shaft Voltage Prediction in Induction Motors Fed by PWM-Based AC Drives. IEEE Transactions on Industry Applications. 2003, 39(5): 1294~1299
    18 M. Cacciato, A. Consoli, G. Scarcella. Reduction of Common-Mode Currents in PWM Inverter Motor Drives. IEEE Transactions on Industry Applications. 2005, 35(2): 469~476
    19 G. Gabriele, D. Casadei. Common and Differential-Mode HF Current Components in AC Motors Supplied by Voltage Source Inverters. IEEE Transactions on Power electronics. 2004, 19(1): 16~24
    20 S. Ogasawara, A. Hirofumi. Modeling and Damping of High-Frequency Leakage Currents in PWM Inverter-Fed AC Motor Drive Systems. IEEE Transactions on Industry Applications. 2006, 32(5): 1105~1114
    21 Y. S. Lai. Investigations into the Effects of PWM Technique on Common-mode Voltage for Inverter-controlled Induction Motor Drives. IEEE Engineering Society, New York , AUS, 2005, 1: 35~40
    22 Y. S. Lai. Common-mode Voltage Reduction Technique for Wide Speed Range Control of Induction Motor Drives Fed by Inverter with Diode Front End. Conference Record-IAS Annual Meeting-IEEE Industry ApplicationsSociety,2003, 1: 424-431
    23 A. M. D. Broe, A. L. Julian et al. Neutral-to-Ground Voltage Minimization in a PWM-Rectifier/Inverter Configuration. PEVD’96, Nottingham, UK, 1996: 564~568
    24 H. D. Lee, S. K. Sul. A Common-mode Voltage Reduction in Boost Rectifier/inverter System by Shifting Active Voltage Vector in a Control Period. IEEE Transactions on Power Electronics. 2000, 6(15): 1094~1101
    25 H. D. Lee, Y. C. Son. A New Space Vector Pulse width Modulation Strategy for Reducing Ground to Stator-neutral Voltage in Inverter-fed AC motor drives. Conference Proceedings-IEEE Applied Power Electronics Conference and Exposition, New Carolina, USA, 2000, 2: 918~923
    26 M. Zigliotto, A. M. Trzynadlowski. Effective Random Space Vector Modulation for EMI Reduction in Low-cost PWM Inverters. IEEE Conference Publication Proceedings of the 7th International Conference on Power Electronics and Variable Speed Drives, Boston, USA, 2006: 163~167
    27 D. B. Zhang, D. Chen. Non-intrinsic Differential Mode Noise Caused by Ground Current in an off-line Power Supply. Power Electronics Specialists Conference Record, Piscataway, USA, 1998: 1131~1133
    28 S. Guttowski, H. Jorgensen, K. Heumann. The possibilities of reducing conducted line emissions by modifying the basic parameters of voltage-fed pulsed inverters. 28th IEEE Power Electronics Specialist Conference PES C'97, St. Louis, USA, 1997, 2: 1535~1540
    29 L. Zverev. Influence of the gate drive techniques on the conducted EMI behavior of a power converter. 28th IEEE Power Electronics Specialist Conference PESC'97, St. Louis, USA, 1997, 2: 1522~1528
    30 A. Galluzzo, M. Melito, G. Belverde. Switching Characteristic Improvement of Modern Gate Controlled Device. IEEE Conference publication-Epe. 2005, 377(2): 374~379
    31 S. Takizawa, S. Igarashi, K. Kuroki. A New dv/dt Control Gate Drive Circuit for IGBTs to Reduce EMI Noise and Switching Losses. IEEE annual Power Electronics Specialists Conference, Fukuoka, Japan, 1998, 2: 1443-1444
    32 A. Consoli, M. Salvatore. An Innovative EMI Reduction Design Technique in Power Converters. IEEE Transactions on Electromagnetic Compatibility.2006, 4(38): 567~575
    33 S. Igarashi, S. Takizawa, M. Tabata. An Active Control Gate Drive Circuit for IGBTs to Realize Low Noise and Snubberless System. IEEE International Symposium on Power Semiconductor Devices & ICs, 1997: 69~72
    34 S. H. Park, T. M. Jahns. Flexible dv/dt and di/dt Control Method for Insulated Gate Power Switches. IEEE Transactions on Industry Applications. 2003, 3(39): 657~664
    35 C. Licitra. 新型 IGBT 驱动电路. 电力牵引快报. 2006(12): 32~39
    36 V. John, B. S. Suh, T. A. Lipo. High Performance Active Gate Drive for High Power IGBT’s. Conference Record-IAS Annual Meeting-IEEE Industry Applications Society, Wisconsin-Madison, USA, 2006, 2: 1519~1529
    37 P. Caldeira, R. Liu. Comparison of EMI Performance of PWM and Resonant Power Converters. IEEE PESC'93 Record, Seattle, USA, 1993: 134~140
    38 D. Zhang, D. Y. Chen, F. C. Lee. An Experimental Comparison of Conducted EMI Cmissions Between a zero Voltage Transition Circuit and a hard Switching Circuit. IEEE PESC'96 Record, Maggiore, Italy, 1996: 1992~1997
    39 F. Botteron, R. F. Camargo. New Limiting Algorithms for Space Vector Modulated Three-phase Four-leg Voltage Source Inverter. IEEE Power Electronics Specialists Conference-PESC'02, Queensland-Autrália, USA, 2002, 1: 232~237
    40 G. Oriti, T. A. Lipo. A New Space Vector Modulation Strategy for Common-mode Voltage Reduction. IEEE Transactions on Power Electronics, 2007, 21(4): 1541~1546
    41 A. L. Julian, T. A. Lipo, G. Oriti et al. Elimination of Common-mode Voltage in Three Phase Sinusoidal Power Converters. IEEE Transactions on Power Electronics. 2006, 15(14): 1968~1972
    42 M. D. Manjrekar, T. A. Lipo. An Auxiliary Zero State Synthesizer to Reduce Common-mode Voltage in Three Phase Inverter. Conference Record-IAS Annual Meeting-IEEE Industry Applications Society, Phoenix, USA, 2005, 1: 54~59
    43 A. Rao, T. A. Lipo, A. L. Julian. A Modified Single Phase Inverter Topology with Active Common-mode Voltage Cancellation. IEEE Transactions on Industry Applications. 2006, 10(2): 850~854
    44 A. V. Jouanne , H. R. Zhang. A Dual-Bridge Inverter Approach to Eliminating Common-mode Voltages and Bearing and Leakage Currents. IEEE Transactions on Power Electronics. 1997, 1(14): 1276~1280
    45 H. R. Zhang, A. V. Jouanne. A Reduced-switch Dual ridge Inverter Topology for the Mitigation of Bearing Currents, EMI, and DC-link Voltage Variations. IEEE Transactions on Industry Applications. 2001, 5(37): 1365~1372
    46 H. R. Zhang, A. V. Jouanne. Suppressing Common-mode Conducted EMI Generated by PWM Drive Systems Using a Dual-Bridge Inverter. IEEE APEC Proceedings, Anaheim, USA, 2004: 1017~1020
    47 A. Consoli. Common-mode Current Elimination in Multi-Drive Industrial Systems. IEEE IAS Proceedings, Phoenix, USA, 1999: 1851~1857
    48 A. V. Jouanne, H. R. Zhang. An Evaluation of Mitigation Techniques for Bearing Currents, EMI, and Overvoltages in ASD Applications. IEEE Transactions on Industry Applications. 2004, 5(34): 1113~1122
    49 A. D. Rendusara. An Improved Inverter Output Filter Configuration Reduces Common and Differential Modes dv/dt at the Motor Terminals in PWM Drive Systems. IEEE Transactions on Power Electronics. 1998, 6(13): 1135~1143
    50 B. Basavaraja, S. S. Sarma. Modeling and simulation of dv/dt filters for AC drives with fast switching transients. IEEE Transactions on Applications. 2006: 10~14
    51 I. Takahashi, A. Ogata. Active EMI Filter for Switching Noise of High Frequency Inverters. IEEE Power Conversion Conference, Nagaoka, Japan, 2003: 331~334
    52 S. Ogasawara, A. Hideki. An Active Circuit for Cancellation of Common-Mode Voltage Generated by a PWM Inverter. IEEE Transactions on Power Electronics. 1998, 5(13): 835~841
    53 小笠原悟司, 綾野秀樹, 赤木泰文. 電圧形 PWM インバ–タが発生するコモンモ–ド電圧のアクテイブキヤンセレ–シヨン. 電学論 D. 平成 9 年, 5(117): 565~571
    54 S. Ogasawara, H. Akagi. Circuit Configurations and Performance of the Active Common-Noise Canceller for Reduction of Common-Mode Voltage Generated by Voltage-Source PWM Inverter. IEEE Industry Applications Conference, Rome, Italy, 2000: 1482~1488
    55 小笠原悟司, 張松, 赤木泰文. PWM インバ–タのコモンモ–ド電圧を抑制するアクライブ補償回路の構成と特性. 電学論 D. 平成 12 年, 5(120): 658~665
    56 S. Ogasawara, M. Fujikawa. A PWM Rectifier/inverter System Capable of Suppressing Both Harmonics and EMI. Electrical Engineering in Japan. 2006, 141(4): 59-68
    57 Y. Q. Xiang. A Novel Active Common-Mode-Voltage Compensator (ACCom) for Bearing Current Reduction of PWM VSI-Fed Induction Motors. IEEE APEC Proceedings, Anaheim, USA, 1998: 1003~1009
    58 Y. Q. Xiang, R. Cuzner, G. Oriti, et al. Active filtering for Common-mode Conducted EMI Reduction in Voltage Source Inverters. IEEE Transactions on Power Electro. 1998, 13: 835-841
    59 Y. Q. Xiang. A Common-mode Voltage Reduction in Converter-Inverter System by Shifting Active Space Vector in a Sampling period. IEEE Transon Magnetics, 1999, 25 (6) : 2898- 2900
    60 万健如, 禹华军. PWM 变频调速电机特性变化对过电压影响的研究. 电工技术学报. 2003, 17(2): 24-28
    61 万健如, 孙洋建, 禹华军. 高压变频器共模电压仿真研究. 中国电机工程学报. 2003, 9(23): 57~62
    62 陆继明, 李维波, 毛承雄, 等. 高压变频器输出滤波器研究. 高电压技. 2002, 11(28): 13~16
    63 程汉湘, 尹项根, 王志华. 变频调速中共模电压分析.电力传动. 2002, (6): 3-9
    64 姜艳殊. PWM 变频器输出共模电压抑制技术的研究. 哈尔滨工业大学博士论文. 2003: 3
    65 Y. S. Jiang, D. g. Xu, X. Y. Chen. Analysis and design of a feed-forward-type active filter to eliminate common-mode voltage generated by a PWM inverter. 28th Annual Conference of the Industrial Electronics Society, 2002, 1: 771~775
    66 姜艳姝, 徐殿国, 刘宇. PWM 驱动系统中感应电机共模模型的研究.中国电机工程学报. 2004, 24(12): 150~155
    67 Y. S. Jiang, D. g. Xu, X. Y. Chen. A novel inverter output dv/dt suppression filter. The 29th Annual Conference of the IEEE Industrial Electronics Society, Virginia, USA, 2003, 3: 2901~2905
    68 H.F. Ma, D. G. Xu, X.Y. Chen. A New Common-Mode Sinusoidal Inverter Output Filter. PESC2002, Carins, Australia, 2002: 38~42
    69 陈希有, 颜斌, 徐殿国, 等. 变频器输出滤波器的模糊优化设计. 中国电机工程学报. 2003, 23(8): 71~75
    70 Y. S. Jiang, D. g. Xu, X. Y. Chen. Analysis and Design of A Feed-Forward-Type Active Filter to Eliminate Common-Mode Voltage Generated by A PWM Inverter. PESC2002, Carins, Australia, 2002: 158~162
    71 Y. S. Jiang, D. G. Xu. Research on an Inverter Output Filter for Reducing Common-Mode Voltage at Motor Terminals in PWM Drive System. IMACS Multiconference, Boston, USA, 2006: 1322~1325
    72 姜艳姝, 徐殿国, 刘宇, 等. 新颖 PWM 变频器输出无源滤波器的研究. 电机与控制学报. 2005, 9(1): 5~10
    73 吴昕, 庞敏熙, 李俊明. 基于反相技术的开关电源共模干扰的抑制. 电力电子技术. 2000, (2): 26~27
    74 袁义生. 功率变换器电磁干扰的建模. 浙江大学博士学位论文. 2002: 15~45
    75 袁义生, 钱照明. 分析传导 EMI 的功率 MOSFET 建模. 浙江大学学报(工学版). 2003, 37(2): 198~214
    76 袁义生, 钱照明. 功率变换器动态节点电位平衡共模 EMI 抑制技术. 浙江大学学报(工学版). 2003, 37(1): 108-111
    77 袁义生, 钱照明. 功率变换器传导 EMI 的精确建模. 电力电子技术. 2003, (1): 12~15
    78 钱照明, 陈玮, 谌平平. 功率变流器 EMI 建模和印刷电路板(PCB)布置的优化设计. 科学技术与工程. 2004, 4(7): 584~595
    79 咸哲龙, 钟玉林, 孙旭东. 用于传导电磁干扰分析的接地回路模型与参数. 中国电机工程学报. 2005, 25(7): 156~160
    80 C. P. Wang, D. H. Liu, J. G. Jiang. Study on coupling effects among passive components used in power electronic devices. Proceedings of 4th international power electronics and motion control conference, Xi’an, China, 2003: 136~140
    81 和军平, 陈斌, 姜建国. 开关电源共模传导干扰模型的研究. 中国电机工程学报. 2005, 25(8): 50~55
    82 和军平, 姜建国. 离线式 PWM 开关电源传导电磁干扰的分析研究. 中国电机工程学报. 2003, 23(6): 91~95
    83 J. P. He, J. G. Jiang. A Comprehensive Analysis Method of Conducted EMI of an off-line Converter. 3rd International Symposium on Electromagnetic Compatibility, Atlanta, USA, 2002: 529~532
    84 周卫平, 夏立, 侯新国. 电力电子系统电磁干扰的抑制. 中原工学院学报. 2003, 14(1): 141~144
    85 单潮龙, 马伟明. 挂接三相逆变器的直流电网共模传导干扰研究. 中国电机工程学报. 2003, 23(4): 134~139
    86 J. Meng, W. M. Ma. Power converter EMI analysis including IGBT nonlinear switching transient model. Proceedings of the IEEE International Symposium on Industrial Electronics, 2005, 2: 499~504
    87 J. Meng, W. M. Ma. Determination of noise source and impedance for conducted EMI prediction of power converters by lumped circuit models. PESC 04, Galway, Ireland, 2004, 4: 3028~3033
    88 J. Meng, W. M. Ma. Identification of Essential Coupling Path Models for Conducted EMI Prediction in Switching Power Converters. IEEE Transactions on Power Electronics. 2006, 25(6): 1795~1803
    89 张磊, 马伟明. 三相可控整流桥系统共模干扰研究. 中国电机工程学报. 2005, 25(2): 40~43
    90 J. Meng, W. M. Ma. A new technique for modeling and analysis of mixed-mode conducted EMI noise. IEEE Transactions on Power Electronics. 2004, 19(6): 1679 ~ 1687
    91 L. Zhang, W. M. Ma, J. Meng. Prediction of the DM conducted EMI in PWM rectifier system. 17th International Zurich Symposium on Electromagnetic Compatibility, Zurich, Switzerland, 2006, 545~548
    92 张磊, 马伟明. 带整流环节的交流电网中的 EMI 分析. 电工技术学报. 1999, 14(4): 72~77
    93 张磊, 马伟明. 三相整流桥直流侧差模干扰预测. 电力电子技术. 2004,28(1): 104~106
    94 S. Kim. A New Approach to Improve Power Factor and Reduce Harmonics in a Three-Phase Diode Rectifier Type Utility Interface. IEEE Transactions on Industry Applications. 1994, 30(6): 1557~1564
    95 A. V. Jouanne, P. Enjeti, W. Gray. Application Issues for PWM Adjustable Speed AC Motor Drives. IEEE IAS Magazine, 2006: 10~18
    96 R. J. Kerkman, G. L. Skibinski, D. W. Schlegel. Voltage Harmonics Generated by Voltage-Fed Inverters Using PWM Natural Sampling. IEEE Transactions on Power Electronics. 1988, 3(3): 297~301
    97 Mahdavi, S. Kaboli, H. A. Toliyat. Conducted Electromagneticemissions in Unity Power factor AC/DC Converters. Comparison Between PWM and RPWM Techniques, Dallas,USA, 2004, 2 : 881~885 .
    98 N. Mutoh, M. Kanesaki, J. Nakashima, et al. A New Method to Control Common-mode Currents Focusing on Common-mode Current Paths Produced in Motor Drives systems. 38th IAS Annual Meeting, 2003, 1: 459~ 466
    99 G, Grandi, D. Casadei, A. Massarini. Model for AC Motor Windings. High frequency lumped Parameter The 7th European Conference on Power Electronics and Applications, Trondheim, Norway, 1997: 210~214
    100 幸善成, 吴正国. 基于共模耦合效应的电机绕组过电压研究. 中国电机工程学报. 2006, 25(16): 174~177
    101 M. J. Nave. Prediction of Conducted Emissions in Switched Mode Power Supplies. IEEE International Symposium on Electromagnetic compatibility, 2006: 167~173
    102 R. Sheich, J.Roudet. EMI conducted emission in differential mode emanating from an SCR: phenomena and noise level predicion. IEEE Transactions on Power Electronics. 2005, 10(2): 105~110
    103 R. Li, S. Gokani, J. Clare. Conducted Electromagnetic Emission in Induction Motor Drive Systems Part 1: Time Domain Analysis and Identification of Dominant Modes. IEEE Transactions on Power Electronics. 1998, 13(4): 757~767
    104 R. Li. Conducted Electromagnetic Emissions in Induction Motor Drive Systems Part II: Frequency Domain Models. IEEE Transactions on PowerElectronics. 1998, 13(4): 768~776
    105 L. Cart, J. Kerkman. EMI is ions of Modern PWM AC Drive MAC Drives. IEEE Industry Applications Magazine. 1999, 5(6): 47~48
    106 H. Zhu, J. S. Lai, A. R. Hefner. Modeling-based examination of conducted EMI emissions form hard-and soft-switching PWM inverters .IEEE Transactions on Industry Applications. 2005, 40(5) :1383-1393
    107 J. Meng, W. M. Ma. Power converters EMI analysis including IGBT nonlinear switching transient model. IEEE Transactions on Industrial Electronics. 2006, 53(5) :1577~1583
    108 D. Cochrane, D. Y. Chen. Passive cancellation of Common-mode Noise in Power Electronic Circuits. IEEE Transactions on Power Electronics, 2003, 18(3) :756-763
    109 N. Mutoh, Kanesaki, M. Nakashima. A new Method to Control Common-mode Currents focusing on Common-mode Current Paths produced in motor drive systems. 38th IAS Annual Meeting, Tokyo, Japan, 2003, 1: 459~466
    110 H. Akagi, T. Doumoto. A Passive EMI Filter for Preventing High-Frequency Leakage Current From Flowing Through the Grounded Inverter Heat Sink of an Adjustable-Speed Motor Drive System. IEEE Transactions on Industry Applications. 2005, 41(1): 1215~1223
    111 J. S. Lai, X. D. Huang, E. Pepa, S. T. Chen. Inverter EMI Modeling and Simulation Methodologies. IEEE Transactions on Industrial Electronics. 2006, 53(3): 736~744
    112 钱照明. 电力电子系统电磁兼容设计基础及干扰抑制技术. 杭州: 浙江大学出版社, 2000: 76
    113 J. A. Kong. Electromagnetic Wave Theory. 北京: 高等教育出版社, 2003: 291
    114 中华人民共和国国家标准 GB/T7343-1987 10KHz~30MHz 无源无线电干扰滤波器和抑制元件特性的测量方法. 北京: 中国标准出版社, 1988:6~8
    115 C. Choochuan. A Survey of Output filter Topologies to Minimize The IMPACT of PWM Inverter waveforms on Three-phase AC Induction Motors. Power Engineering Conference, Ltd, Thailand, 2006: 1~6
    116 G. M. Cheng, J. C. Waite, W. P.Carr, et al. Analyzing Common-ModeChokes For Induction Motor Drives. IEEE Transactions on Industrial Electronics. 2006, 53(4): 1557~1562
    117 G. M. Cheng,J. C. Waite. Minimization and Cancellation of Common-Mode Currents, Shaft Voltages and Bearing Currents for Induction Motor Drives. IEEE Transactions on Industrial Electronics. 2006, 53(5): 1127~ 1132
    118 G. M. Cheng,J. C. Waite. Active Cancellation of Common-Mode Voltages on Drives Rated 460-V and Higher. Electric Machines and Drives Conference, Madison, USA, 2003, 3: 1845~1851
    119 Y. S. Lee, L. P. Wong, K. W Cheng. Simulation and Design of Integrated magnetics fo Rpower Converters. IEEE Transactions on Magnetics. 2003, 39 (2): 1008~1018
    120 S. Wang, F. C. Lee, W. G. Odendaal. Improvement of EMI Filter Performance with Parasitic Coupling Cancellation. IEEE Transactions on Power Electronics. 2005, 20(5) : 1221~1228
    121 聂剑红. 一体化电机系统传导骚扰机理及抑制技术的研究. 哈尔滨工业大学博士学位论文. 2005: 68~70
    122 L. Leif, F. Schecht. Design of Active Ripple Filters for Power Circuits Operating in the 1-10 MHz Range. IEEE Transactions on Power Electronics. 1988, 3(3): 310~317
    123 Y. C. Son, S. K. Sul. Generalization of Active Filters for EMI Reduction and Harmonics Compensation. IEEE Transactions on Industry Applications. 2006, 42(2): 545~551
    124 Y. C. Son, S. K. Sul. A New Active Common-Mode EMI Filter for PWM Inverter. IEEE Transactions on Power Electronics. 2003, 18(6): 1309~314

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700