两电机变频调速系统的最小二乘支持向量机逆控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
两电机变频调速系统在现代工业领域中应用非常广泛,其高性能控制对于提高生产质量和效率具有重要的意义。近年来,逆系统方法已在一般形式的非线性系统上建立起比较完整的设计理论,物理意义清晰,结构简单。将逆系统方法与最小二乘支持向量机(LSSVM)结合,提出的LSSVM逆系统方法,突破了传统逆系统方法在实际工程应用中解析表达式难以获取的瓶颈。针对两电机变频调速系统所具有的高阶、强耦合、非线性的特点,基于LSSVM逆系统理论,本文研究了系统的模型辨识、控制器设计等问题,论文的主要内容如下:
     (1)阐述了逆系统理论的基本概念、系统可逆性原理,将逆系统与原系统串联构成伪线性复合系统,可实现系统的线性化与解耦。继而,概述了LSSVM回归算法,用以实现对逆系统非线性映射的逼近。对课题研究所用的两电机变频调速系统实验平台的软、硬件组成及工作原理作了简要介绍,为控制策略的理论分析、实验验证提供了必需的知识准备和条件支持。
     (2)构建了两电机变频调速系统的数学模型,对矢量控制下的数学模型进行了右逆存在性分析,证明系统是右可逆的。采用逆系统的扩展结构,提出了LSSVM自抗扰逆控制策略。引入自抗扰控制器作为伪线性复合系统的附加控制器,并将扩张状态观测器的扰动观测结果用于LSSVM逆系统的构造,在实现系统线性化和解耦控制的前提下,使整个系统具有良好的鲁棒性和抗干扰能力。
     (3)为解决因张力传感器的安装而引起的系统成本增加、可靠性降低等缺陷,提出了张力LSSVM左逆辨识策略。分析了张力软测量的左可逆性,利用容易测取的速度信号构造张力“内含传感器”左逆软测量模型,实现了对张力的辨识。该软测量方案不依赖系统模型和具体参数,计算量小,实现简单。
     (4)借助于张力左逆软测量方法,提出广义联合逆控制器设计方法。基于广义逆系统理论,将左逆软测量和右逆系统相融合,形成具有整体形式的广义联合逆控制器,并对其中的非线性映射采用LSSVM回归逼近。将该联合逆控制器应用于两电机变频调速系统,实现系统的无张力传感器运行。
     (5)分析了按转子磁场定向矢量控制的两电机变频调速系统特点,利用数据驱动原理,对输入输出样本数据进行二次AP聚类,对二次聚类后的各子类数据建立局部LSSVM模型,并对各个局部模型加权综合,得到的张力和速度的全局模型能准确拟合两电机变频调速系统的非线性特性。
     (6)针对现有逆模型辨识方法存在的不足,提出了两电机变频调速系统基于改进RLS算法的LSSVM逆模型辨识方法。依据多模型思想,将系统输出空间进行划分,使用LSSVM拟合获得局部逆模型,并对各局部逆模型加权综合得到系统初始逆模型。根据逆模型输出与系统输入的误差,利用改进RLS算法可在线调整局部LSSVM逆模型的权值,降低了逆模型在线调整的难度。
     最后,在总结全文的基础上,提出了课题下一步研究的重点。
Two-motor variable frequency speed-regulating system is widely used in the modern industrial manufacturing plants. In order to improve quality and quantity of the products, the high-performance control system is needed. In recent years, the inverse system method has been developed to a complete control theory for the general form of nonlinear systems. It is easy in practical use and strict in theory. Since least squares support vector machines (LSSVM) has a strong potential to approximate a nonlinear function, a new LSSVM inverse model is obtained by introducing the LSSVM into the inverse system. The LSSVM inverse model can overcome the difficulty in implementing the inverse system by analytic means and break through the bottleneck in engineering applications. According to the characteristics of multi-variables, high nonlinearity and strong-coupling, the model identification and the controller design for the two-motor system are investigated based on the LSSVM inverse system. The main contents and fruits of this thesis are as follows:
     1) The fundamental concept of the inverse system theory and the system reversible principle are introduced. The inverse system includes the left and the right inverse system. By cascading the inverse system with the original system, the whole system is decoupled to a pseudo-linear combined system in order to implement linearization and decoupling control. The LSSVM regression algorithm, which is adopted to approximate nonlinear mapping of the inverse system, is depicted. Experimental platform of two-motor variable frequency speed-regulating system is presented, which provides necessary support.
     2) Inversibility of the two-motor system in vector control mode is verified. By using the extended structure of the inverse system, the LSSVM inverse control strategy based on active disturbances rejection control (ADRC) is proposed. A pseudo-linear system is completed by combining the LSSVM inverse model with the two-motor system. ADRC is used as a closed-loop controller for the pseudo-linear system, and the uncertainty estimated by the extended state observer is used to construct the LSSVM inverse model. The proposed method can reduce the interference caused by load disturbance and modeling error. The good decoupling applicability and strong robustness can be achieved meanwhile.
     3) To solve the problems such as high cost and poor reliability caused by tension sensors, tension identification based on the LSSVM left inverse is proposed. The left-invertibility of the tension model is proved. Speed signal which is relatively easy to be measured has been used to build the "assumed inherent sensor" left inverse soft-sensing model for tension identification. The proposed method can identify the actual tension quickly and accurately, independent of dynamic model and specific parameters of the two-motor system.
     4) Taking full advantage the left inverse soft-sensing model in estimating the system state, a new generalized combined inverse controller is proposed. Based on the generalized inverse theory, the combination of the left inverse and the right inverse forms a whole combined inverse controller. LSSVM is used to implement it, resulting in the LSSVM combined inverse controller. Sensorless operation of the two-motor system can be achieved through the LSSVM combined inverse controller.
     5) The characteristics of the two-motor system by the rotor magnetic field-oriented vector control are analyzed. A new modeling method is proposed based on the data-driven principle. The affinity propagation (AP) clustering algorithm is successively applied to group the input and the output data into clusters. LSSVM is used to construct local models. The estimation of every LSSVM local model is fused to build the speed model and the tension model. The proposed method can fit the nonlinear characteristics of the system with high precision and good generalization.
     6) To mend the defects associated with conventional inverse model identification methods for two-motor system, a multi-model LSSVM modeling method based on the modified recursive least-squares (RLS) algorithm is proposed. The initial, off-line, inverse model of the system is deduced by computing the weighted sum of every LSSVM local model. The modified RLS algorithm is adopted to adjust the weights according to system deviation adaptively. The proposed method is feasible, effective, and suitable for two-motor system.
     Finally, some conclusions and further research projects are raised.
引文
[1]B. Jeftenic, M. Bebic, S. Statkic. Controlled multi-motor drives[C]. International Symposium on Power Electronics. Electrical Drives, Automation and Motion,2006, s14: 53-59.
    [2]R. D. Lorenz, P. B. Schmidt. Synchronized motion control for process automation[C]. IEEE Industry Applications Society Annual Meeting.1989,2:1693-1698.
    [3]Y. Koren. Cross-coupled biaxial computer control for manufacturing system[J]. Jounal of Dynamic System, Measurement, and Control.1980,102:265-272.
    [4]L. Guo, A. Schone, X. Ding. Control of hydraulic rotary multi-motor systems based on bilinearization[J]. Automatic,1994,30(9):1445-1453.
    [5]M. Tomizuka, J. S. Hu. T. C. Chiu. Synchronization of two motion control axes under adaptive feedforward control[J]. Journal of Dynamic System, Measurement and control, 1992,114(2):196-201.
    [6]Y. Koren, C. C. Lo. Variable-gain cross-coupling controller for contouring[J]. CIRP Annals-Manufacturing Technology,1991,40(1):371-374.
    [7]R. G. Anderson, A. J. Meyer, M. A. Valenzuela, et al. Web machine coordinated motion control via electronic line-shafting[J]. IEEE Transactions on Industry Applications,2001, 37(1):247-254.
    [8]M. A. Valenzuela, R. D. Lorenz. Electronic line-shafting control for paper machine drives[J]. IEEE Transactions on Industry Applications,2001,37(1):158-164.
    [9]J. Y. Wen, Q. H. Wu, D. R. Turner, et al. Optimal coordinated voltage control for power system voltage stability [J]. IEEE Transactions on Power Systems,2004,19(2): 1115-1122.
    [10]S. D. Iftime, L. L. Egsgaard, M. Zepponi. et al. A coordination model based control of functional arm manipulation by RBF neural networks[C].7th Seminar on Neural Network Applications in Electrical Engineering,2004:159-164.
    [11]D. Sun, X. Y. Shao, G. Feng. A model-free cross-coupled control for position synchronization of multi-axis motions:theory and experiments[J]. IEEE Transactions on Control Systems Technology,2007,15(2):306-314.
    [12]赵希梅,郭庆鼎.数控机床多轴联动伺服电机的零相位自适应鲁棒交义耦合控制[J].中国电机工程学报,2008,28(12):129-133.
    [13]刘然,孙建忠,罗亚琴.等.基于环形耦合策略的多电机同步控制研究[J].控制与决策,2011,26(6):957-960.
    [14]毛剑琴,茅洪波,张建刚.卷染机模糊控制系统设计[J].自动化学报.1997,23(2):195-200.
    [15]C. C. Kung, K. H. Su, L. P. Hung. Adaptive fuzzy total sliding-mode controller design and its application to tension control of a winding process[J]. IEEE International Conference on Systems, Man and Cybernetics,2006,3659-3664.
    [16]陈冲.刘星桥,刘国海,等.基于模糊PID的多电机张力控制[J].电气传动,2009,39(6):42-46.
    [17]吴飞青,马修水,关宏伟,等.基于模糊专家控制的织机经纱恒张力控制研究[J].中国机械工程,2008,19(4):384-387.
    [18]史耀耀,阎龙,何晓东.非连续带材缠绕张力控制技术研究[J].航空学报,2010,31(6):1294-1298.
    [19]赵德安,赵不贿,刘星桥,等.一类基于PLC和Profibus-DP总线的张力自适应控制系统[J].信息与控制,2002,31(2):122-126.
    [20]征琦,朱劲.自适应张力控制[J].电气传动,2001,(6):35-37.
    [21]安世奇.孙一康,王京.双机架可逆冷轧机恒张力简单自适应控制[J].西南交通大学学报,2005,40(2):142-146.
    [22]P. R. Pagilla, R. V. Dwivedula, N. B. Siraskar. A decentralized model reference adaptive controller for large-scale systems[J]. IEEE Transcations on Mechatronics,2007,12(2): 154-163.
    [23]蒋近,戴瑜兴,彭思齐.多线切割机控制系统的研制[J].中国机械工程,2010,21(15):1780-]784.
    [24]童松.张庆灵,马跃超.不确定动态系统的稳定鲁棒镇定控制器设计[J].控制工程,2007,14(S1):45-47.
    [25]D. Knittel, E. Laroche, D. Gigan, et al. Tension control for winding systems with two-degrees-of-freedom H∞ controllers[J]. IEEE Transactions on Industry Applications, 2003.39(1):113-120.
    [26]方一鸣,陆金波,刘仙,等.冷连轧机张力系统H∞混合灵敏度鲁棒控制器设计[J].系统仿真学报,2004,16(8):1812-1814.
    [27]A. Benlatreeche, D. Knittel, E. Ostertag. Robust decentralised control strategies for large-scale web handling systems[J]. Control Engineering Practice,2008,16(6): 736-750.
    [28]刘国海,杨官学,沈跃,等.基于神经网络广义逆的两电机变频系统内模控制[J].电工技术学报,2010,25(11):56-61.
    [29]F. L. Luo. Multiple-page-mapping backpropagation neural network for constant tension control[J].IEE Proceedings-Electric Power Applications,1998,145(3):239-245.
    [30]王春香,付云中,王永章,等.基于神经网络的张力控制系统[J].中国机械工程,2001,12(8):873-875.
    [31]F. J.-Sharifi. A neuro-fuzzy system for looper tension control in rolling mills[J]. Control Engineering Practice,2005,13(1):1-13.
    [32]欧长劲,吴海列,卢康.模糊神经网络张力控制系统[J].轻工机械,2006,24(4):102-105.
    [33]张承慧,石庆生,程金.一种多电机同步传动模糊神经网络控制器的设计[J].控制与决策,2007,22(1):30-34.
    [34]Y. Seki, K. Sekiguchi, Y. Anbe, et al. Optimal multivariable looper control for hot strip finishing mill[J]. IEEE Transactions on Industry Applications,1991,27(1):124-130.
    [35]M. Okada. K. Murayama. A. Urano, et al. Optimal control system for hot strip finishing mill[J]. Control Engineering Practice,1998,6(8):1029-1034.
    [36]T. Hesketh, Y. A. Jiang, D. J. Clements, et al. Controller design for hot strip finishing mills[J]. IEEE Transactions on Control Systems Technology,1998,6(2):208-219.
    [37]S. H. Jeon, J. M. Kim, K. C. Jung, et al. Decoupling control of bridle rolls for steel mill drive system[J]. IEEE Transactions on Industry Applications,1999,35(1):119-125.
    [38]S. H. Song, S. K. Sul. A new tension controller for continuous strip processing line[J]. IEEE Transactions on Industry Applications,2000,36(2):633-639.
    [39]N. Hur, K. Nam. A robust load-sharing control scheme for parallel-connected multisystems[J]. IEEE Transactions on Industrial Electronics,2000,47(4):871-879.
    [40]D. Knittel, A. Arbogast, M. Vedrines, et al. Decentralized robust control strategies with model based feedforward for elastic web winding systems[C]. Proceedings of the 2006 American Control Conference,2006:1968-1975.
    [41]张义兵,戴瑜兴,汤睿.多线切割机速度同步系统的自适应逆控制[J].控制理论与应用,2008,25(6):1007-1010.
    [42]管力明,林剑.无轴单张纸输纸机的同步控制[J].控制理论与应用,2009,26(5):573-577.
    [43]杨亮亮,周云飞,潘海鸿,等.步进扫描投影光刻机同步机制研究[J].中国机械工程,2009,20(1):20-23.
    [44]蒋近.戴瑜兴.郜克存,等.多线切割机的速度同步控制[J].控制理论与应用,2011,28(2):279-283.
    [45]M. Lossie, H. V. Brussel. Design principles in filament winding[J]. Composites manufacturing 1994.5(1):5-13.
    [46]P. Plante. Applying electromagnetic clutches and brakes[J]. Instruments and Control System.1982, (4):31-33.
    [47]M. F. Yeung, A. H. Falkner, S. Gergely. The control of tension in textile filament winding[J]. Mechatronics,1995,5(2-3):117-131.
    [48]A. Kugi, K. Schlacher, R. Novak. Nonlinear control in rolling mills:a new perspective[J]. IEEE Transactions on Industry Applications,2001,37(5):1394-1402.
    [49]Y. Frayman, L. Wang. A dynamically-constructed fuzzy neural controller for direct model reference adaptive control of multi-input-multi-output nonlinear processes[J]. Soft Computing,2002,6(3):244-253.
    [50]I. Hoshino, Y. Okamura, H. Kimuraa. Observer-based multivariable tension control of aluminum hot rolling mills[C]. Proceedings of the 35th Conference on Decision and Control, Kobe, Japan,1996:1217-1222.
    [51]J. Kim, O. K. Choi, J. S. Lee. Adaptive transition disturbance observer for winding machine[C]. ICROS-SICE International Joint Conference, Fukuoka. Japan.2009: 4693-4697.
    [52]H. Zhong, L. Y. Pao. Disturbance rejection in parameter-varying web-winding systems[C]. Proceeding of 17th IFAC World Congress. Seoul, Korea.2008:9284-9289.
    [53]W. K. Zhou. Robust and decentralized control of web winding systems[D]. Doctor thesis: Cleveland State Univcrsity,2007.
    [54]何金保,郭帅,何永义,等.基于遗传优化的张力模糊控制[J].控制理论与应用,2009,26(3):243-248.
    [55]J. B. He, Y. Y. He, S. Guo, et al. Tension robust control strategy based on self-optimizing algorithm[J]. WSEAS Transactions on Systems and Control,2009,4(3):151-161.
    [56]M. A. Valenzuela, J. M. Bentley, R. D. Lorenz. Sensorless tension control in paper machines[J]. IEEE Transactions on Industry Applications,2003,39(2):294-304.
    [57]K. C. Lin. Observer-based tension feedback control with friction and inertia compensation[J]. IEEE Transactions on Control System Technology.2003.11(1): 109-118.
    [58]V. Gassmann, D. Knittel. H∞-based PI-observers for web tension estimations in industrial unwinding-winding systems[C]. Proceeding of 17th IFAC World Congress. Seoul, Korea,2008:1018-1032.
    [59]R. M. Hirschorn. Invertibility of multivariable nonlinear control systems[J]. IEEE Transactions on Automatic Control,1979,24(6):855-865.
    [60]S. N. Singh. A modified algorithm for invertibility in nonlinear systems[J]. IEEE Transactions on Automatic Control,1981,26(2):595-598.
    [61]S. N. Singh. Generalized functional reproducibility condition for nonlinear systems[J]. IEEE Transactions on Automatic Control,1982,27(4):958-960.
    [62]S. N. Singh. Functional reproducibility in nonlinear systems using dynamic compensation [J]. IEEE Transactions on Automatic Control,1984,29(5):446-450.
    [63]C. W. Li, Y. K. Feng. Decoupling theory of general multivariable analytic nonlinear systems[J]. International Journal of Control,1987,45(4):1147-1160.
    [64]李春文,冯元琨.多变量非线性控制的逆系统方法[M].北京:清华大学出版社,1991.
    [65]吴热冰,李春文.一般非线性系统的构造性逆系统方法[J].控制理论与应用,2003,20(3):345-350.
    [66]M. D. D. Benedetto, A. Glumineau, C. H. Moog. The nonlinear Interactor and its application to input-output decoupling[J]. IEEE Transactions on Automatic Control, 1994,39(6):1246-1250.
    [67]戴先中.多变量非线性系统的神经网络逆控制方法[M].北京:科学出版社,2005.
    [68]M. Fliess. A note on the invertibility of nonlinear input-output differential systems [J]. System and Control letters,1986,8(2):147-151.
    [69]陈庆伟.吕朝霞,胡维礼,等.基于逆系统方法的非线性内模控制[J].自动化学报,2002.28(5):715-721.
    [70]S. Devasia, B. Paden. Stable inversion for nonlinear nonminimum-phase time-varying systems[J]. IEEE Transactions on Automatic Control,1998,43(2):283-288.
    [71]S. Devasia. Approximated stable inversion for nonlinear systems with nonhyperbolic internal dynamics[J]. IEEE Transactions on Automatic Control,1999,44(7):1419-1425.
    [72]葛友,李春文.孙政顺.逆系统方法在电力系统综合控制中的应用[J].中国电机工程学报.2001,21(4):1-4.
    [73]张兴华.沈捷,梅磊,等.永磁同步电机混沌运动的逆系统控制[J].电机与控制学报.2010.14(10):73-77.
    [74]张绍德,毛雪菲,毛雪芹.基于最近邻聚类支持向量机辨识的的电弧炉电极逆控制[J].控制理论与应用,2010,27(7):909-915.
    [75]曹立,郑毓蕃.非线性左、右逆系统的规范形设计[J].自动化学报,1994,20(5):533-538.
    [76]王万成.神经网络逆软测量与控制方法及其应用研究[D].博士论文:东南大学,2007.
    [77]张凯锋,戴先中,马超,等.同步发电机中不可直接测量量的左逆软测量方法[J].电力系统自动化,2008,32(23):46-50.
    [78]戴先中,刘军,冯纯伯.神经网络α阶逆系统在离散非线性系统控制中的应用[J].控制与决策.1997,12(3):217-221.
    [79]X. Z. Dai. D. He. X. Zhang, et al. MIMO system invertibility and decoupling control strategies based on ANN αth-order inversion [J]. IEE Proceedings-Control Theory and Applications,2001,148(2):125-136.
    [80]X. Z. Dai, W. C. Wang, Y. H. Ding, et al. "Assumed inherent sensor" inversion based ANN dynamic soft-sensing method and its application in erythromycin fermentation process[J]. Computers and Chemical Engineering,2006,30(8):1203-1225.
    [81]X. Z. Dai, K. F. Zhang, T. Zhang, et al. ANN generalised inversion control of turbo-generator governor[J]. IEE Proceedings-Generation, Transmission and Distribution,2004,151(3):327-333.
    [82]戴先中,张腾,张凯锋,等.发电机励磁与汽门系统解耦控制的神经网络逆系统方法[J].中国电机工程学报,2002,22(11):75-80.
    [83]Y. H. Ding, X. Z. Dai, T. Zhang. Low-cost fiber-optic temperature measurement system for high-voltage electrical power equipment[J]. IEEE transactions on Instrument and Measurement,2010,59(4):923-933.
    [84]戴先中,丁煜函,王万成.红霉素发酵关键生化量的动态软测量方法[J].仪器仪表学报,2006,27(6z):1046-1048.
    [85]X. Z. Dai, W. C. Wang, Y. H. Ding. Estimation of some crucial variables in erythromycin fermentation process based on ANN left-inversion[J]. Lecture notes in computer science,2006,3973(3):1085-1090.
    [86]V. N. Vapnik. The nature of statistical learning theory[M]. New York:Springer,2000.
    [87]J. A. K. Suykens, J. Vandewalle. Least squares support vector machine classifiers[J]. Neural processing Latters,1999,9(3):293-300.
    [88]宋夫华,李平.支持向量机α阶逆系统控制——离散非线性系统[J].浙江大学学报(工学版),2006,40(12):2098-2102.
    [89]宋夫华,李平.支持向量机α阶逆系统控制——连续非线性系统[J].浙江大学学报(工学版),2007,41(3):356-389.
    [90]何俊峰,张曾科.基于支持向量机的逆系统离散控制方法[J].清华大学学报(自然科学版),2005,45(1):100-102.
    [91]X. F. Yuan, Y. N. Wang, L. Wu. Adaptive inverse control of excitation system with actuator uncertainty [J]. Neural Processing Letters,2008,27(2):125-136.
    [92]刘国海,张锦,赵文祥,等.两电机变频系统的支持向量机广义逆内模解耦控制[J].中国电机工程学报,2011,31(6):85-91.
    [93]X. F. Yuan, Y. N. Wang. LS-SVM approximate based inverse controller with uncertainty compensation[J]. Journal of Dynamic Systems, Measurement and Control.2007.129(6): 845-850.
    [94]刘胜,王宇超,傅荟璇.船舶航向保持变论域模糊——最小二乘支持向量机复合控 制[J].控制理论与应用,2011.28(4):485-490.
    [95]B. Scholkopf, A. J. Smola. Learning with kernels:support vector machines, regularization, optimization, and beyond (adaptive computation and machine learning)[M]. Cambridge MA:MIT Press,2002.
    [96]魏国,刘剑,孙金玮,等.基于LS-SVM的非线性多功能传感器信号重构方法研究[J].自动化学报,2008,34(8):869-875.
    [97]苏昆哲.深入浅出西门子WinCC V6(第2版)[M].北京:北京航空航天大学出版社,2005.
    [98]SIEMENS. Programming with STEP 7 V5.3 Manual[Z].2004.
    [99]侯维岩,费敏锐PROFIBUS协议分析和系统应用[M].北京:清华大学出版社,2006.
    [100]廖常初.S7 300/400 PLC应用技术(第2版)[M].北京:机械工业出版社,2008.
    [101]SIEMENS. S7-300 Hardware and Installation:CPU31xC and CPU31x Installation Manual[Z].2003.
    [102]刘锴,周海.深入浅出西门子S7-300 PLC[M].北京:北京航空航天大学出版社.2004.
    [103]M. D. Baumgart, L. Y. Pao. Robust control of nonlinear tape transport systems with and without tension sensors[J]. Journal of Dynamic Systems, Measurement, and Control. 2007,129:41-55.
    [104]张承慧,石庆升,程金.一种基于相邻耦合误差的多电机同步控制策略[J].中国电机工程学报,2007,27(15):59-63.
    [105]W. S. Lee, M. V. C Rao. Modeling and design of tape transport mechanisim[J]. Mathematics and Computers in Simulation,2006,72(1):26-37.
    [106]C. C. Huang, T. T. Tang. Spinline tension control in melt spinning by discrete adaptive sliding-mode controllers[J]. Journal of Applied Polymer Science,2006,100(5): 3816-3821.
    [107]童朝南,武延坤,刘磊明,等.液压活套多变量系统的建模及积分变结构控制[J].自动化学报,2008,34(10):1305-1311.
    [108]M. A. Valenzuela, J. M. Bentley, P. C. Aguilera, et al. Improved coordinated response and disturbance rejection in the critical sections of paper machines[J]. IEEE Transactions on Industry Applications,2007,43(3):857-869.
    [109]韩京清.自抗扰控制器及其应用[J].控制与决策,1998,13(1):19-23.
    [110]J. Han. From PID to active disturbance rejection control[J]. IEEE Transactions on Industrial Electronics,2009,56(3):900-906.
    [111]韩京清.一类不确定对象的“扩张状态观测器[J].控制与决策,1995,10(1):85-88.
    [112]刘星桥,胡建群,周丽.自抗扰控制器在三电机同步系统中的应用[J].中国电机工程学报,2010,30(12):80-85.
    [113]刘志刚,李世华.基于永磁同步电机模型辨识与补偿的自抗扰控制器[J].中国电机工程学报,2008,28(24):118-123.
    [114]A. F. Lynch, S. A. Bortoff, K. Robenack. Nonlinear tension observers for web machines[J].Automatica,2004,40(9):1517-1524.
    [115]R. Carrasco, M. A. Valenzuela. Tension control of a two-drum winder using paper tension estimation[J]. IEEE Transaction on Industry Application,2006,42(2):618-628.
    [116]M. A. Valenzuela, R. Carrasco, D. Sbarbaro. Robust sheet tension estimation for paper winders[J]. IEEE Transactions on Industry Applications,2008,44(6):1937-1949.
    [117]M. A. Valenzuela, J. M. Bentley, R. D. Lorenz. Dynamic online sensing of sheet modulus of elasticity[J]. IEEE Transactions on Industry Applications,2010,46(1): 108-120.
    [118]N. R. Abjadi, J. Soltani, J. Askari, et al. Nonlinear sliding-mode control of a multi-motor web-winding system without tension sensor[J]. IET Control Theory and Applications, 2009,3(4):419-427.
    [119]张今朝,刘国海,潘天红.多电机同步系统的多模型辨识[J].电机与控制学报,2009,13(1):138-142.
    [120]陈伯时.电力拖动自动控制系统——运动控制系统(第三版)[M].北京:机械工业出版社,2005.
    [121]J. M. Bates, C. W. J. Granger. The combination of forecasts[J]. Operational Research Society,1969,20(4):451-468.
    [122]A. K. Jain, M. N. Murty, P. J. Flynn. Data clustering:a survey[J], ACM Computing Surveys,1999,31(3):264-323.
    [123]王实,高文.数据挖掘中的聚类方法[J].计算机科学,2000,27(4):42-45.
    [124]J. C. Bezdek. Pattern recognition with fuzzy objective function algorithms[M]. Plenum Press, New York,1981.
    [125]汪长娥,赵曙光,付新林.一种模糊核聚类算法的改进[J].电子科技,2008,21(10):49-51.
    [126]R. R. Yager, D. P. Filev. Approximate clustering via the mountain method [J]. IEEE Transactions on Systems, Man and Cybernetics,1992,24(8):1279-1284.
    [127]J. C. Bezdek, N. R. Pal. Some new indexes of cluster validity[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics,1998,28(3):301-315.
    [128]李柠,李少远.席裕庚.基于LPF算法的多模型建模方法[J].控制与决策,2002,17(1):11-14.
    [129]仲蔚,刘爱伦,俞金寿.分馏塔产品质量估计MIMO软测量[J].自动化仪表,2000,21(3):8-10.
    [130]B. Kosko. Fuzzy systems as universal approximators[J]. IEEE Transactions on Computers,1994,43(11):1329-1333.
    [131]张宇,李柠,黄道.基于多神经网络的酯化反应软测量[J].华东理工大学学报(自然科学版),2005,31(2):208-211.
    [132]常玉清,王福利.基于模糊规则分类的分布式RBF网络软测量模型[J].计量学报,2002,23(2):131-133.
    [133]冯瑞,沈伟,张艳珠,等.基于F_SVMs的多模型建模方法[J].控制与决策,2003.18(6):646-650.
    [134]李修亮,苏宏业,褚健.基于在线聚类的多模型软测量建模方法[J].化工学报,2007,58(11):2834-2839.
    [135]K. J. Hunt, T. A Johansen. Design and analysis of gain-scheduled control using local controller networks[J]. International Journal of Control,1997,66(5):619-652.
    [136]K.S. Narendra, J. Balakrishnan. Improving transient response of adaptive control system multiple models and switching[J]. IEEE Transactions on Automatic Control,1994,39(9): 1861-1866.
    [137]薛振框,李少远.MIMO非线性系统的多模型建模方法[J].电子学报,2005,33(1):52-56.
    [138]G. Franze. A nonlinear sum-of-squares model predictive control approach[J]. IEEE Transactions on Automatic Control,2010,55(6):1466-1471.
    [139]S. Alcantara, A. Ibeas, J. A. Herrera, et al. Multi-model smith predictor based control of multivariable systems with uncertain bounded external delays[J]. IEEE Latin America Transactions,2009,7(1):42-53.
    [140]李卫,杨煜普,王娜.基于核模糊聚类的多模型LSSVM回归建模[J].控制与决策,2008,23(5):560-562.
    [141]潘天红,薛振框,李少远.基于减法聚类的多模型在线辨识算法[J].自动化学报,2009,35(2):220-224.
    [142]徐海霞,刘国海,周大为,等.基于改进核模糊聚类算法的软测量建模研究[J].仪器仪表学报,2009,30(10):1621-1626.
    [143]B. J. Frey, D. Dueck. Clustering by passing message between data points[J]. Science, 2007,315(5814):972-976.
    [144]王开军,张英军,李丹,等.自适应仿射传播聚类[J].自动化学报,2007,33(12):1242-1246.
    [145]戴先中.刘国海.两变频调速电机系统的神经网络逆同步控制[J].自动化学报, 2005,31(6):890-900.
    [146]戴先中,刘国海,张兴华.恒压频比变频调速系统的神经网络逆控制[J].中国电机工程学报,2005,25(7):109-114.
    [147]刘国海,刘平原,沈跃,等.两电机变频调速系统的神经网络广义逆解耦控制[J].中国电机工程学报.2008,28(36):98-102.
    [148]刘国海,薛剑锋,康梅,等.两电机调速系统神经网络广义逆在线调整控制[J].电机与控制学报,2009,13(4):511-515.
    [149]张今朝,刘国海,潘天红.多电机变频调速同步系统的多模型预测控制[J].控制与决策,2009,24(10):1489-1494.
    [150]S. Haykin. Adaptive filer theory(fourth edition)[M]. Prentice Hall,2002.
    [151]陈涵,刘会金,李大路,等.可变遗忘因子递推最小二乘法对时变参数测量[J].高电压技术,2008,34(7):1471-1477.
    [152]刘国海,吕汉闻,陈兆岭.等.基于修正遗忘因子RLS算法的庇波电流检测新方法[J].电工技术学报.2010.25(1):172-177.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700