轻型飞行模拟器运动平台先进控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着民航业的不断发展,飞行培训的需求呈现日益强劲的态势,面对传统飞行模拟器高昂的采购价格和使用成本,航空界一直在寻求一种功能与传统飞行模拟机相当,但购置和使用成本低廉的经济型飞行模拟器。为此,我们提出了“轻型飞行模拟器”的概念,这是一种轻巧紧凑、以软件代替硬件的低成本模拟器,现在已经完成了原理样机的设计和制造。高性能的六自由度运动平台是这种轻型飞行模拟器系统中的一个重要组成部分,它的设计目标是能在普通层高的建筑物中进行布置,结构简单,重量轻;利用电动执行器实现较好的运动性能和加速度能力,能适应人员和装备的变化;能对运动感觉进行高性能的模拟;同时配备完善的软件限制保护措施,使之能进行自我保护,并尽可能的不影响仿真效果或产生仿真中断。本文针对运动平台的目标要求设计完成了一个完整的轻型飞行模拟器运动平台控制系统,对并联平台的建模、模型参数辨识、平台控制、动感模拟算法的设计优化和运动保护系统的设计等一系列问题展开了研究。
     本文的第一部分内容主要集中于运动平台的建模、辨识与控制。首先对三种动力学建模方法进行了比较研究,对比了它们的计算复杂度和应用场合等并研究了它们之间的等价关系。然后提出了使用UKF方法对并联运动平台进行参数辨识的方法,可以直接对非线性模型进行处理,而且精度很高。针对并联运动平台存在不确定性参数和外部扰动的情况,本文又提出了一系列自适应控制算法保证运动平台的控制性能。首先设计了自适应滑模控制器将平台的不确定性分为定常和时变的进行分别处理,然后进一步针对滑模控制器的高增益项会引起抖振的问题,又设计了基于模糊干扰观测器的自适应模糊控制器。接下来本文在前面所设计的自适应模糊控制器的基础上将执行器动力学的影响考虑进控制算法中,设计了运动平台的自适应模糊反步控制算法,可以保证整个系统的渐进稳定,同时保持良好的跟踪性能和抗干扰性能。最后针对电动飞行模拟器并联运动平台电动执行器有限的驱动力,提出了一种针对执行器饱和的轨迹跟踪算法。这种方法结合使用了实时轨迹修正、带饱和补偿的模糊干扰观测器和分支速度观测器,使得存在外部干扰和无分支速度测量情况下,平台控制器始终工作在非饱和状态,保证了控制器的稳定并保持了良好的跟踪特性。
     本文的第二部分内容设计和优化了轻型飞行模拟器的动感模拟算法。针对轻型飞行模拟器的特点选用了经典洗出滤波器,然后本文利用运动平台可达工作空间和所需工作空间需相匹配的原理,优化了动感模拟算法的参数,以保证能充分利用有限的并联平台运动空间达到逼真的动感模拟效果。
     本文的第三个部分设计了轻型飞行模拟器的运动保护系统。在分支关节空间设计了杆长限制算法,并针对任务空间运动在缓冲过程中容易发生错误运动这一问题对算法进行了改进。同时对于分支杆与平台座舱之间的干涉和关节摆角干涉这类问题,又提出了任务空间的虚拟弹簧干涉缓冲算法,假设平台构件表面都覆盖有虚拟弹簧,一旦构件相互接近到一定程度,会产生虚拟弹簧力对接近运动进行阻碍。
     本文的最后一部分针对轻型飞行模拟器设计了完整的性能测试的环境和流程,给出了性能指标以及最终的测试结果。性能测试结果表明运动平台具有良好的静态和动态运动性能。
     本文控制器设计都经过了严格的证明,并通过大量的计算机仿真试验和数据验证了控制律的正确性和有效性。所述的内容完整的解决了飞行模拟器运动平台控制的一系列关键问题,也为今后平台性能的进一步改进打下了坚实的基础。文中所设计的运动平台控制系统已应用在“轻舟一号”轻型飞行模拟器原型系统中,实际运行良好。
Nowadays, with the rapid development of civil aviation industry, there are increasingly strong demands of pilot training. But due to high purchase price and usage costs of tranditional flight simulator, a low-cost substitution is expected to appear that can cover the basic functions of the tranditional one. In order to meet the urgent needs of civil aviation industry, we propose a concept of“Light Flight Simulator”. The most exciting feature of this economic simulator is its low weight and massive usage of software modules to fulfill the functions that tranditional hardware must do. Now we finish design and manufacture of the prototype simulator. One of the most important parts of this simulator is a high performance six-dof motion platform. Its design goals are simple structure, low weight and capable of dispose within common office building. At the same time, the simulator must have good dynamic ability, supply satisfying motion feeling for pilots using electrical actuators and be capable of adapting variation of equips and pilots. Moreover, the simulator must be equipped with full software limiting measures, which can protect the hardware from accidents. This dissertation designs an integrated control system framework for light flight simulator motion platform, which covers a series of research subjects including modeling, identification, control of motion platform, washout algorithm design and optimization, motion protection system design and etc.
     The first part of this dissertation covers modeling, identification and control of motion platform. Firstly, three main dynamic modeling methods are compared in its computation complexity, application area and equivalence. Secondly, UKF method is proposed to identify parameters of parallel motion platform. Comparing to other identification methods, UKF method does not need transforming dynamic model to linear parameter form and have higher identification precision. Due to uncertain parameters of parallel motion platform and external disturbance, this dissertation proposes a series of adaptive control schemes to ensure the control performance of motion platform. The first controller proposed is a nonlinear adaptive sliding control scheme in task space based on dynamic model. This method divides system uncertainty into two parts: constant uncertain parameters and time-varying uncertain parameters. The control algorithm uses nonlinear adaptive controller to identify constant uncertain parameters, meanwhile, nonlinear sliding controller is used to compensate the effects of time-varying uncertain parameters and external disturbance. Due to inclusion of high-gain part in the adaptive sliding controller, it may excite unmodelled dynamics and cause chattering. So this dissertation proposed another novel adaptive fuzzy algorithm based on fuzzy disturbance observer to solve this problem. Next we step afurther and incorporate actuators’dynamics into controller design process to get an adaptive backstepping controller. This controller can ensure global stable of the whole system, good tracking ability and disturbance rejection ability. Finally due to limit actuator ability of electrical driven flight simulator parallel motion platform, this dissertation proposes a novel trajectory-tracking scheme considering actuator saturation. This scheme incorporates realtime trajectory shaping, fuzzy disturbance observer and joint space velocity observer with saturation compensation. This kind of controller structure can ensure the motion platform always operating in non-saturation region, stable and have good tracking performance under external disturbance and no-velocity measurement situation.
     The second part of this dissertation designs and optimizes washout algorithm for light flight simulator. Classical washout algorithm is Chosen and parameters are optimized according to the theory of matching the available workspace and demand workspace. This method ensures effective use of limit motion platform workspace to get good motion simulation effect.
     The third part of this dissertation designs a novel motion protection system for light flight simulator which is used to handle leg length limit and avoid interference between legs, cabin and joints. A leg length limit algorithm is developed to prevent actuators from exceeding position, velocity and acceleration limits and reduce false motion in limit region. And an interference reduction algorithm in task space based on virtual spring is proposed to handle other constraint such as interference between legs, cabin and joints. This algorithm covers virtual spring on the surface of all structure parts. As soon as the distance between structure parts is within the limit region, virtual spring force proportional to distance will push those parts away.
     The last part of this dissertation designs complete performance testing environment and process for light flight simulator. The test results show that motion platform has good static and dynamic motion performance.
     All the controllers designed by this dissertation are proven strictly and lots of simulations and experiment datas verify their validity and efficiency. The contents of this dissertation solve a series of key problems related to effectively control of flight simulator motion platform and lay a solid base to further improve the performance of motion platform. The controller software module, washout algorithm software module and motion protection software module in this dissertation have been applied in“light boat No. 1”light flight simulator prototype we designed, and have good performance in daily use.
引文
[1] Rolfe J M, Staples K J. Flight simulation. London: Cambridge University Press, 1986.
    [2]刘涛.六自由度模拟器控制系统研究. [硕士学位论文],武汉,华中科技大学, 2003.
    [3] Thomas L, Edward B, Judith B C. Initiative towards more affordable flight simulators for U.S. commuter airline training. In: Proceedings of the Royal Aeronautical Society Conference on Training, Lowering the Cost, Maintaining the Fidelity, 1996: 2.1-2.17.
    [4]中国民用航空飞行人员训练管理规定,中国民用航空总局, CCAR-62FS, 1998.7.
    [5] Platt P A, Dahn D A, Amburn P. Low-cost approaches to virtual flight simulation. In: Proceedings of the IEEE 1991 National Aerospace and Electronics Conference NAECON, New York, 1991, 23: 940-6.
    [6] Holzapfel F, Sturhan I, Sachs G. Pilot-in-the-loop flight simulation– a low-cost approach, In: AIAA Modeling and Simulation Technologies Conference and Exhibit, 2004.
    [7] Schroeder J A. Helicopter flight simulation motion platform requirements, Ph.D. Dissertation, US: Stanford University, 1998.
    [8] Judith B C, Nancy N S, Thomas L, Simulator platform motion-the need revisited, The International Journal of aviation psychology, 1998, 8(3): 293-317.
    [9] Airplane simulator qualification, U.S. Department of Transportation, Federal Aviation Administration, Advisory Circular 120-40B, 1991.
    [10] Advani S K. The kinematic design of flight simulator motion-bases, Ph.D. Dissertation, Netherland: Delft University of Technology, 1998.
    [11] Stewart D. A platform with six degree-of-freedom. In: Proceedings of the Institute for Mechanical Engineering, 1965, 180: 371-386.
    [12] Freeman J S, Watson G, Papelis Y E, et al. The Iowa driving simulator: an implementation and application overview, SAE 950172, 1995: 113-122.
    [13]杨灏泉,赵克定,吴盛林,曹健.飞行模拟器六自由度运动系统的关键技术及研究现状,系统仿真学报,2002, 14(1): 84-87.
    [14] Koekebakker S H. Model based control of a flight simulator motion system, Ph.D. Dissertation, Netherland: Delft University of Technology, 2001.
    [15] Lewis F, Dawson D, Abdallah C. Robot manipulator control: theory and practice, 2nd ed, USA: Marcel Dekkar, 2004.
    [16] Dasgupta B, Mruthyunjaya T S. The Stewart platform manipulator: a review. Mechanism and Machine Theory, 2000, 35(1): 15-40.
    [17]黄真,孔令富,方跃法,并联机器人机构学理论及控制,北京:机械工业出版社,1997.
    [18] Dieudonne J E, Parrish R V, Bardusch R E. An actuator extension transformation for a motion simulator and an inverse transformation applying Newton-Raphson’s method. NASA Technical Report D-7067, 1972.
    [19] Nguyen C C, Pooran F J. Dynamic analysis of a 6-DOF CKCM robot end-effector for dual-arm telerobot systems, Robot and Autonomous System, 1989, 5: 377-394.
    [20] Lebret G, Liu K, Lewis F L. Dynamic analysis and control of a Stewart platform manipulator. Journal of Robotic System, 1993, 10(5): 629-655.
    [21] Harib K H. Dynamic modeling, identification and control of Stewart platform-based machine tools, PhD Dissertation, The Ohio State University, 1997.
    [22] Dasgupta B, Mruthyunjaya T S. A Newton-Euler formulation for the inverse dynamics of the Stewart platform manipulator, Mechanism and Machine Theory, 1998, 33(8): 1135-1152.
    [23] Dasgupta B, Mruthyunjaya T S. Closed-form dynamic equations of the general Stewart platform through the Newton-Euler approach. Mechanism and Machine Theory, 1998, 33(7): 993-1012.
    [24]张国伟,宋伟刚.并联机器人动力学问题的Kane方法,系统仿真学报,2004,16(7):1386-1391.
    [25]李鹭扬,吴洪涛,朱剑英. Gough-Stewart平台高效动力学建模研究.机械科学与技术, 2005, 24(8): 887-889.
    [26] Liu M J, Li C X, Li C N. Dynamics analysis of the Gough-Stewart platform manipulator. IEEE Trans. On Robotics and Automation, 2000, 16(1): 94-98.
    [27] Codourey A, Burdet E. A body-oriented method for finding a linear form of the dynamic equations of fully parallel robot. In: Proc. IEEE Int.Conf. Robotics and Automation, Albuquerque, NM, 1997: 1612-1618.
    [28] Tsai L W. Solving the inverse dynamics of a Stewart-Gough manipulator by the principle of virtual work, J. Mech. Des., 2000, 122(3): 3-9.
    [29] Zhang C, Song S. An efficient method for inverse dynamics of manipulators basedon the virtual work principle. Journal of Robotic System, 1993, 10(5): 605-627.
    [30]杨灏泉,吴盛林,曹健等,考虑驱动分支惯量影响的Stewart平台动力学研究.中国机械工程, 2002, 13(12): 1009-1012.
    [31] Yiu Y K, Cheng H, Xiong Z H, et al. On the dynamics of parallel manipulators. In: Proceedings of the 2001 IEEE International Conference on Robotics and Automation, 2001: 3766-3771.
    [32] Ljung L. System identification - theory for the user, 2nd ed, Upper Saddle River: PTR Prentice Hall, 1999.
    [33] Poignet P, Gautier M. Comparison of weighted least squares and extended Kalman filtering methods for dynamic identification of robot. In: Proceedings of the 2000 IEEE International Conference on Robotics & Automation, San Francisco, CA, 2000: 3622-3627.
    [34] Slotine J E, Li W. Applied nonlinear control. Upper Saddle River: Prentice Hall, 1991.
    [35] Chen Wenjia, Wei Yingzi, Qin Yongfa, et al. Genetic algorithm based parameter identification for parallel manipulators. In: Proceedings of the 4th World Congress on Intelligent Control and Automation, Shanghai, 2002: 1200-1204.
    [36] Schutte F, Beineke S, Rolfsmeier A, et al. Online identification of mechanical parameters using extended kalman filters. In: IEEE Industry Application Society Annual Meeting, 1997:501-508.
    [37] Julier S, Uhlmann J K. A new extension of Kalman filter to nonlinear systems, Available: http://www.robots.ox.ac.uk.
    [38] Julier S, Uhlmann J, Durrant-Whyte H F. A new method for the nonlinear transformation of means and covariances in filter and estimators. IEEE Trans. on Automatic Control, 2002, 45(3): 477-482.
    [39] Julier S J, Uhlmann J K. Unscented filtering and nonlinear estimation. In: Proceedings of the IEEE, 2004, 92(3): 401-422.
    [40] Wan E A, Merwe van der. The unscented Kalman filter for nonlinear estimation, In: Adaptive Systems for Signal Processing, Communication, and Control Symposium, 2000: 153-158.
    [41] Merwe van der, Wan E A. The Square-root unscented Kalman filter for state and parameter-estimation. In: Proceeding of International Conference on Acoustics, Speech and Signal Processing, Salt Lake City, UT, 2001: 3461-3464.
    [42] Haykin S. Kalman filtering and neural networks, US: John Wiley & Sons, 2001.
    [43] Honegger M, Codourey A, Burdet E. Adaptive control of the Hexaglide, a 6 dofparallel manipulator. In: Proceedings of the 1997 IEEE International Conference on Robotics and Automation, Albuquerque, New Mexico, 1997: 543-548.
    [44] Grogjahn M, Heimann B, Abdellatif H. Identification of friction and rigid-body dynamics of parallel kinematic structures for model-based control. Multibody System Dynamics, 2004, 11: 273-294.
    [45] Gautier M, Khalil W. Direct calculation of minimum set of inertial parameters of serial robots. J. Robotics and Automation.1990, 6(3): 368-372.
    [46] Vivas A, Poignet P, Marquet F, et al. Experimental dynamic identification of a fully parallel robot. In: Proceedings of the 2003 IEEE International Conference on Robotics & Automation, 2003: 3278-3283.
    [47] Guegan S, Khalil W, and Lemoine P. Identification of the dynamic parameters of the orthoglide. In: Proc. of the 2003 IEEE International Conference on Robotics and Automation, Taipei, Taiwan, 2003: 3272-3277.
    [48] Huerta J M, Vidal J. Mobile tracking using UKF, time measures and LOS-NLOS expert knowledge. In: Proceeding of IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005, part 4: 901-904.
    [49] Norgaard M, Poulsen N K, Ravn O. New developments in state estimation for nonlinear systems. Automatica, 2000, 36 (11): 1627-1638.
    [50] Lennon C, Rodney W. Sensor fault detection for UAVs using a nonlinear dynamic model and the IMM-UKF algorithm. In: International Conference on Information, Decision and Control, 2007: 230-235.
    [51] Garagic D, Srinivasan K. Contouring control of Stewart platform based machine tools. In: Proceeding of the 2004 American Control Conference, 2004: 3831-3834.
    [52] Benali A, Richard P, Bidaud P. Design, control and evaluation of a six DOF force feedback interface for virtual reality applications. In: 8th IEEE International Workshop on Robot and Human Interaction, 1999: 338-343.
    [53] Ren G, Liu Q, Hu N, et al. On vibration control with Stewart parallel mechanism. Machatronics, 2004, 14: 1-13.
    [54] Su Yu Xin, Duan Bao Yan, Zheng Chun Hong. Nonlinear PID control of a six-DOF parallel manipulator. In: IEE Proceedings on Control Theory and Applications, 2004, 151(1): 95-102.
    [55] Honegger M, Brega R, Schweitzer G. Application of a nonlinear adaptive controller to a 6 dof Parallel Manipulator. In: Proceedings of the 2000 IEEE International Conference on Robotics and Automation, 2000: 1930-1935.
    [56] Kang J Y, Kim D H, Lee K I. Robust tracking control of Stewart platform. In:Proceedings of the 35th Conference on Decision and Control, 1996: 3014-3019.
    [57] Ting Y, Chen Y S, Wang S M. Task-space control algorithm for Stewart platform. In: Proceedings of the 38th Conference on Decision and Control, 1999:3857-3862.
    [58] Kim H S, Cho Y M, Lee K I. Robust nonlinear task space control for 6-DOF parallel manipulator. Automatica, 2005, 41(9): 1591-1600.
    [59] Huang P Y, Chen Y Y, Chen M S. Position-dependent friction compensation for ballscrew tables. In: Proceedings of the 1998 IEEE International Conference on Control Applications, 1998: 863-867.
    [60] Sadegh N, Horowitz R. Stability and robustness analysis of a class of adaptive controller for robotic manipulators. International Journal of Robotics Research, 1990, 9(3): 74-92.
    [61] Slotine J E, Li W. Adaptive manipulator control: a case study. IEEE Trans. On Automatic Control, 1988, 33(11): 995-1003.
    [62] Utkin V, Guldner J, Shi J. Sliding mode control in electromechanical systems. US: Taylor & Francis Press, 1999.
    [63] Spooner J T, Passino K M. Stable adaptive control using fuzzy systems and neural networks. IEEE Trans. on Fuzzy Systems, 1996, 4: 339-359.
    [64] Kim E. A fuzzy disturbance observer and its application to control. IEEE Trans. on Fuzzy Systems, 2002, 10(1): 77-82.
    [65] Wang L X. Stable adaptive fuzzy control of nonlinear systems. IEEE Trans. on Fuzzy Systems, 1993, 1: 146-155.
    [66] Wang L X, Mendel J M. Fuzzy basis functions, universal approximation, and orthogonal least-squares learning. IEEE Trans. on Neural Networks, 1992, 3(5): 807-814.
    [67] Corless M J, Leitmann G. Continuous state feedback guaranteeing uniform ultimate boundedness for uncertain dynamic systems, IEEE Trans. on Automatic Control, 1981, AC-26(5): 1139-1144.
    [68] Huang C I, Fu L C. Adaptive backstepping tracking control of the Stewart platform. In: Proceedings of the 43rd Conference on Decision and Control, 2004: 5228-5233.
    [69] Khalil H K, Nonlinear systems, 3rd ed, USA: Prentice Hall, 2002.
    [70] Bernstein D, Michel A. A chronological bibliography on saturating actuators. International Journal of Robust and Nonlinear Control, 1995, 5(5): 375-380.
    [71] Johnson E N, Calise A J. Neural network adaptive control of systems with input saturation. In: Proceedings of the American Control Conference, 2001:3527-3532.
    [72] Ohishi K, Akahori K, Kaewprom W, et al. Robust manipulator control method considering limit values of torque and controller output. In: Proceedings of the IEEE IECON 22nd International Conference, 1996: 1252-1257.
    [73] Pietsh I T, Krefft M, Becker O T, et al. How to reach the dynamic limits of parallel robots? an autonomous control approach. IEEE Transactions on Automation Science and Engineering, 2005, 2(4): 369-380.
    [74] Kothare M V, Campo P J, Morari M, et al. A unified framework for the study of anti-windup designs. Automatica, 1994, 30(12): 1869-1883.
    [75] Reinelt W. Robust control of a two-mass-spring system subject to its constraints. In: Proceedings of the American Control Conference, 2000:1817-1821.
    [76] Lee Y I, Kouvaritakis B. Receding horizon output feedback control for linear systems with input saturation. In: Proceedings of the 39th IEEE Conference on Decision and Control, 2000:656-661.
    [77] Lewis F L, Liu K, Semic R, et al. Adaptive fuzzy logic compensation of actuator deadzone. Journal of Robotic Systems, 1997, 14(6): 501-511.
    [78] Ohnishi K. A new servo method in mechatronics, Trans. Japanese Society of Electrical Engineering, 1987, 107-D: 83-6.
    [79] Li Y, Tomizuka M. Two-degree-of-freedom control with robust feedback control for hard disk servo systems. IEEE/ASME Trans on Mechatronics, 1999, 4(1): 17-24.
    [80] Kim B K, Chung W K. Advanced disturbance observer design for mechanical positioning systems. IEEE Trans on Industrial Electronics, 2003, 50(6): 1207-1216.
    [81] Nicosia S, Tomei P. Robot control by using only joint position measurements. IEEE Trans on Automatic Control, 1990, 35(9): 1058-1061.
    [82] Grant P R, Reid L D. Motion washout filter tuning: rules and requirements. Journal of Aircraft, 1997, 14(2): 145-151.
    [83] Hosman R. Pilot's perception and control of aircraft motions, Ph.D. Dissertation, Netherland: Delft University of Technology, 1996.
    [84] Schmidt S F, Bjorn C. Motion drive signals for piloted flight simulators, TR CR-1601, NASA, 1970.
    [85] Parrish R V, Dieudonne J E, Martin D J. Motion software for a synergistic six degree of freedom motion base, TND-7350, NASA, 1973.
    [86] Sivan R, Ish-shalom J, Huang J K. An optimal control approach to the design of moving flight simulators. IEEE Transactions on Systems, Man, and Cybernetics,1982, SMC-12(6): 818-827.
    [87] Parrish R V, Dieudonne J E, Bowles R L, et al. Coordinated adaptive washout for motion simulators. Journal of Aircraft, 1975, 12(1): 44-50.
    [88] Ariel D, Sivan R. False cue reduction in moving flight simulators. IEEE Transactions on Systems, Man and Cybernetics, 1982, SMC-14(4): 818-827.
    [89] Nahon M A, Reid L D, Kirdeikis J. Adaptive simulator motion software with supervisory control. Journal of Guidance, Control, and Dynamics, 1992, 15(2): 376-383.
    [90] Naseri A, Grant P. An improved adaptive motion drive algorithm. In: AIAA Modeling and Simulation Technologies Conference and Exhibit, San Francisco, California, 2005.
    [91] Wu W, Cardullo F M. Is there an optimum cueing algorithm? In: AIAA Modeling and Simulation Technologies Conference and Exhibit, New Orleans, LA, 1997:23-29.
    [92] Liao C S, Huang C F, Chieng W H. A novel washout filter design for a six degree-of-freedom motion simulator, JSME International Journal (Series C), 2004, 47(2): 626-636.
    [93] Telban R J, Cardullo F M, Houck J A. A nonlinear, human-centered approach to motion cueing with A neurocomputing solver. In: AIAA Modeling and Simulation Technologies Conference and Exhibit, Monterey, California, 2002.
    [94] Wang S C, Fu L C. Predictive washout filter design for VR-based motion simulator. In: IEEE International Conference on System, Man and Cybernetics, 2004: 6291-6295.
    [95] Romano R A. Motion control logic for large-excursion driving simulators, Ph.D. Dissertation, USA: The University of Iowa, 1999.
    [96] Nahon M A, Reid L D. Simulator motion drive algorithms: a designer's perspective. Journal of Guidance, Control, and Dynamics, 1990, 13(2): 356-362.
    [97] Reid L D, Nahon M A. Flight simulator motion-based drive algorithm: part 1– developing and testing the equations, UTIAS Report No.296, 1985.
    [98] Masory O, Wang J. Workspace evaluation of Stewart platforms. Advanced Robotics, 1995, 9(4):443–461.
    [99] Merlet J P, Daney D. Legs interference checking of parallel robots over a given workspace or trajectory. In: Proceedings of 2006 IEEE International Conference on Robotics and Automation, 2006: 757-762.
    [100] Gosselin C. Determination of the workspace of 6-DOF parallel manipulators.ASME J Mech Des, 1990, 112(3): 331-336.
    [101] Merlet J P. Geometrical determination of workspace of a constrained parallel manipulators, In: ARK, France, 1992: 326-329.
    [102] Kim D I, Chung W K, Youm Y. Geogmetrical approach for the workspace of 6-DOF parallel manipulator. In: Proceedings of the 1997 IEEE International Conference on Robotics and Automation, 1997: 2986-2991.
    [103] Chen Xuesheng, Chen Zaili. Synthesis of a Stewart platform for a specific workspace with a genetic algorithm. High Technology Letters, 2004(5): 66-69.
    [104] Adkins F A, Haug E J. Operational envelope of a spatial Stewart platform. Journal of Mechnical Design, Transactions of the ASME, 1997, 119(2): 330-332.
    [105] Marco C, Massimo S. The effects of design parameters on the workspace of turin parallel robot. The International Journal of Robotics Research, 1998, 17(8): 886-902.
    [106] Francois C H, Eric M. A new redundancy-based iterative scheme for avoiding joint limits application to visual servoing. In: Proceeding of IEEE International Conference on Robotics & Automation, 2000: 1720-1725.
    [107] Tan F C, Rajiv V. A weighted least-norm solution based scheme for avoiding joint limits for redundant joint manipulators. IEEE Transaction on Robotics & Automation, 1999, 11(2): 286-292.
    [108] Tchnon K, Matszok A. On avoiding singularity in redundant robot kinematics. Robotica, 1995,13: 599-606.
    [109] Reid L D, Nahon M A. Flight simulator motion-based drive algorithm: part 2– selecting the system parameters, UTIAS Report No.307, 1986.
    [110] McFarland R E. Adjustable limiting algorithms for robust motion simulation. In: AIAA Modeling and Simulation Technologies Conference, Montreal, Canada, 2001.
    [111] Telban R J, Cardullo F M, Kelly L C. Motion cueing algorithm development: new motion cueing program implementation and tuning, NASA CR-2005-213746.
    [112] Rubio A, Avello A, Florez J. On the use of virtual springs to avoid singularities and workspace boundaries in force-feedback teleoperation. In: Proceedings of the 2000 IEEE International Conference on Robotics & Automation, San Francisco, CA, 2000: 2690-2695.
    [113]周冰. Stewart平台并联机器人设计与干涉防护问题研究. [博士学位论文],西安,西安交通大学, 2002.
    [114]方浩,并联机器人安全机构设计与控制问题的研究. [博士学位论文],西安,西安交通大学, 2002.
    [115] Chunkpaiwong I, Newman W S. Reflexive collision avoidance for a novel parallel manipulator. In: Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems, Maui, Hawaii, 2001: 1293-1298.
    [116] AGARD Working Group, Dynamic characteristics of flight simulator motion systems, AGARD Advisory Report No.144, 1979.
    [117] Six-degree-of-freedom motion system requirements for aircrew member training simulators, MIL-STD-1558, Department of Defense, 1974.
    [118] Berkouwer W R, Stroosma O, Paassen M van, et al. Measuring the performance of the SIMONA research simulator's motion system, In: AIAA Modeling and Simulation Conference, 2005.
    [119] Grant P R. Motion characteristics of the UTIAS flight research simulator motion-base, UTIAS Technical Note No.261, 1986.
    [120] Seo B W, Lee W S, Kim J H. The performance evaluation method for the Stewart platform driven by AC servo motor. In: Proceedings of the IASTED International Conference on Modeling and Simulation, 2003: 182-187.
    [121] Cartmell D H. Evaluation of flight simulator pilot cueing system performance. In: AIAA Modeling and Simulation Technologies Conference and Exhibit, 2002.
    [122] Joint Aviation Requirements. Aeroplane flight simulators jar-std 1a. Technical Report, Westward Digital Limited, 1997.
    [123] Airplane simulator qualification, U.S. Department of Transportation, Federal Aviation Administration, Advisory Circular 120-40C, Technical Report, 1996.
    [124] Levi R W, Hayashigawa L. Specification considerations for a small motion-base. In: AIAA Flight Simulation Technologies Conference, 1988.
    [125] Advani S K, Verbeek R J. The influence of platform mass properties on simulator motion system performance, AIAA-94-3418-CP, 1994.
    [126] Chung W W, Shroeder J A. An initial evaluation of the effects of motion platform and drive characteristics, AIAA-97-3503, 1997.
    [127] Tu K Y, Wu T C, Lee T T. A study of Stewart platform specification for motion cueing systems. In: 2004 IEEE International Conference on Systems, Man and Cybernetics, 2004: 3950-3955.
    [128] Park M K, Lee M C, Yoo K S, et al. Development of PNU driving simulator and performance evaluation. In: Proceedings of the 2001 IEEE International Conference on Robotics and Automation, 2001:2325-2330.
    [129] Wang Zhiyong. Modeling and control of closed kinematic chains-- A singularperturbation approach, Ph.D. Dissertation, USA: Rice University, 2004.
    [130] Gaitsgory V, Nguyen M T. Multiscale singularly perturbed control systems-- limit occupational measures sets and averaging. In: Proceedings of the 42nd IEEE Conference on Decision and Control, Maui, Hawaii, USA, 2003: 984-989.
    [131] Idan M, Nahon M A. Off-line comparison of classical and robust flight simulator motion control. Journal of Guiance, Control and Dynamics, 1999, 22(5): 702-709.
    [132] Idan M, Sahar D. Robust controller for a dynamic six degree of freedom flight simulator. In: AIAA Flight Simulation Technologies Conference, San Diego, CA, 1996: 53-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700