多频GNSS精密定位理论与方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着美国GPS现代化的推进,欧盟GALILEO系统的建立,俄罗斯GLONASS系统的恢复,中国北斗二代的实施,未来的导航卫星星座将包含有120多颗卫星,且将提供多个频率的无线电信号。多频多系统组合定位有望减少模糊度的初始化时间,提高定位精度及可靠性,已成为高精度卫星定位的发展方向。因此,多频多系统精密数据处理理论和方法,特别是多频GNSS模糊度解算已成为国际卫星导航定位的研究热点。
     本文在此背景下,着重研究了GNSS多频精密定位模型及其模糊度解算方法,主要内容包含以下几个部分:
     1. GNSS多频观测数据仿真
     在深入分析了GNSS定位原理基础上,依据GNSS星座参数和卫星运动的开普勒定理,仿真了GPS/GLONASS/GALILEO/COMPASS四个卫星导航系统的星座,并由误差模型仿真了观测值误差,最后根据GNSS定位原理,编制仿真软件实现了四个GNSS系统的多频观测数据模拟,为论文的研究提供了实验数据。
     2.多频载波相位混合伪距最优组合系数的求解
     深入分析了载波相位混合伪距组合观测值的模型,针对原有的基于二阶导数求函数极值方法解算最优组合系数需要复杂的公式推导,且对组合的频率个数有要求,论文中提出了一种新的基于最小二乘求解最优组合系数方法。新的方法模型简单,且可以直接获得任意频率组合的最优组合系数。
     3.三频周跳探测与修复的新方法——三频TurboEdit方法
     深入分析了双频TuroEdit方法探测与修复周跳的方法,在此基础上,提出了三频TurboEdit方法。基于该方法处理实测的GPS三频数据,可有效的探测并修复大于1周(包含1周)的小周跳。
     4.模糊度解算方法及其可靠性理论
     1)提出了一种新的模糊度搜索方法——K-Bootstrap方法
     系统介绍了球形模糊度搜索方法的理论基础,并针对高维情况下,球形模糊度搜索方法耗时较多的缺点,文中提出一种新的模糊度搜索方法——K-Bootstrap法。与MLAMBDA软件包中的球形搜索算法相比,新方法在损失较少模糊度解算的成功率情况下,极大地减少了模糊度的搜索时间。
     2)引入了格理论以辅助整周模糊度解算
     引入了格理论以辅助载波相位整周模糊度解算。讨论了LAMBDA方法中的多维高斯整数降相关法与LLL格基规约的关系,并进一步比较分析了LLL格基规约、多维高斯整数降相关、逆Cholesky整数降相关、统一整数降相关四种方法辅助模糊度解算的性能。结果表明:LLL格基规约不但耗时少,而且可以获得较高的Bootstrap成功率;统一整数降相关法消耗时间最多,但是获得的Bootstrap成功率最高;逆Cholesky整数降相关耗时较多,获得的Bootstrap成功率也较低。在高维情况下,虽然经格基规约后的模糊度方差协方差矩阵条件数较大,但是格基规约明显提高了模糊度的搜索效率,且可以很大程度上提高Bootstrap成功率,且当Bootstrap成功率较高时,球形搜索方法耗时也较少。
     在此基础上提出一种混合降相关的方法,在保证模糊度降相关效率的同时,有效的提高Bootstrap成功率,减少球形搜索方法的耗时。
     3)提出了一种新的序贯模糊度解算方法
     针对在高维情况下,模糊度解算耗时较多的缺点,文中提出了一种降维的模糊度解算方法——序贯模糊度解算法。新方法在模糊度区域内对模糊度转换后,再对其分块序贯固定,不仅可减少模糊度解算时间,而且可以提高模糊度正确固定时的Ratio值,便于模糊度的检验。
     4)采用Monte Carlo方法讨论了模糊度的成功率
     深入讨论了模糊度固定成功率的问题,包括直接取整成功率,Bootstrap成功率,以及整数最小二乘成功率。针对Bootstrap成功率理论存在争议的问题,文中采用了Monte Carlo方法进行验证,结果表明:Bootstrap成功率低于但是接近于整数最小二乘成功率,可以作为其下边成功率。
     5)提出了一种新的Bootstrap方法解算方法
     深入研究了Bootstrap方法的解算模糊度的原理,针对在高维情况下,原有的直接基于Cholesky分解的Bootstrap解算方法,其模糊度解算成功率较低。文中提出了一种新的Bootstrap解算方法,新方法基于分块序贯Cholesky分解原理,可有效地提高Bootstrap方法解算模糊度的成功率。
     6)采用Monte Carlo方法讨论了Ratio的经验取值
     基于Monte Carlo方法,分析了不同维数下Ratio值的概率分布。结果表明:Ratio值与模糊度的维数、精度存在较大的相关性。当Bootstrap成功率一定时,模糊度维数越高,则Ratio值越小。最后指出在高维情况下,使用Ratio经验值检验模糊度将过于保守。在此基础上,分析了固定失败率的模糊度固定方法。
     5.研究并分析了多频GNSS相对定位的性能
     1)研究了GNSS不同基线长度条件下单历元模糊度固定的成功率
     基于仿真的观测数据,分别研究了短基线与长基线条件下,GNSS单历元模糊度固定成功率。结果表明在短基线情况下,单系统双频与三频的单历元模糊度固定成功率都可以达到100%;在长基线情况下,GPS/GALILEO/COMPASS单系统模糊度固定成功率都较低。但在中国及周边地区,由于可视卫星数的增加,COMPASS系统模糊度固定成功率远优于GPS和GALILEO系统,三个系统组合可以显著提高模糊度解算的成功率。
     2)研究了GNSS长基线多历元不同数据处理模式下模糊度固定的初始化时间
     针对单系统长基线单历元模糊度固定成功率较低的问题,分析了长基线双频与三频多历元、不同数据处理模式下模糊度固定的初始化时间。比较了基于原始观测值的相对定位模型与基于无电离层组合观测值的相对定位模型的优缺点,仿真数据处理结果表明:如果忽略电离层过程变化的影响,两种模型获得的定位结果是一致的,但前者模糊度固定的初始化时间少于后者。
     进一步分析了长基线条件下,双频与三频多历元模糊度固定的初始化时间;仿真数据处理结果表明:三频模糊度固定的初始化时间远少于双频需要的时间,且GALILEO系统模糊度固定的初始化时间少于GPS系统。
     最后分析了不同模糊度解算方法对模糊度固定初始化时间的影响;数据处理结果表明:基于降维处理的序贯模糊度解算的方法可以有效的提高模糊度正确固定时的Ratio值,减少了模糊度固定的初始化时间;基于固定失败率的模糊度解算方法可以根据用户的需要获得Ratio域值,其模糊度的初始化时间取决于用户设置的失败率,失败率越小,其需要的初始化时间越长。
With the modernization of U.S. GPS, the establishment of European GALILEO system, the recovery of the Russian GLONASS system, and the implementation China COMPASSⅡ, four satellite navigation systems will provide 120 navigation satellites. multi-frequency multi-system combinations postioning not only can improve the navigation accuracy and reliability, but also can improve the success rate of fixing carrier phase integer ambiguity and reduce the initial time for ambiguity fixed. However, it is not easy to process so many observation data and resovel ambiguity in high dimension, which propose new problem in high-precision multi-frequency GNSS combined navigation and positioning.
     The multi-frequency high-precision GNSS positioning theory and methods are reseached in this paper, which mainly contains the following sections:
     1. Simulation of GNSS multi-frequency observations
     The errors of GPS observation are analysis and simulated with the error model, and GNSS satellite constellation are simulated based on the orbit parameters, then the GNSS observation are simulated based on the theory of GNSS positioning, the GNSS simulation software can output multi-system multi-frequency pseudo-range and carrier phase observations.
     2. New method for carrier phase mixed pseudo-range combination—the least square method
     The original method to resolve the coefficients of carrier phase mixed pseudo-range combination is very complicated and can only resolve 3 frequency combinations, so new method which based on least square method is proposed to resolve the coefficients, it is very easy to understand and can resolve 4 or more frequency combinations.
     3. New method to detect cycle slip of three-frequency data—Three frequency TurboEdit method
     Analysis the limitations of cycle slip detection and repair for dual frequency carrier phase data, then the Three frequency TurboEdit method to detect and repair the three-frequency carrier phase cycle slip is introduced, the real observation of the GPS three frequency data (15s interval) is processed, which can effectively detect and repair half-cycle slips.
     4. GNSS ambiguity resolution methods is studied
     1) A new search method for ambiguity search—K-Bootstrap Method
     Spherical ambiguity search method is analyzed, and for high-dimensional case, the spherical ambiguity search method takes a long time, the paper proposes a new method for ambiguity resolution-K-Bootstrap method, in high dimension case, the new method can greatly reducing search time for ambiguity fixed.
     2) Introduction of lattice theory
     the Lattice theory was introduced to aid the carrier phase integer ambiguity resolution, multi-dimensional Gaussian integers decorrelation is under the LLL reduce law, and further analysis of the performance of LLL reduce, Gaussian integers decorrelation,inverse Cholesky integer decorrelation, and unified integer decorrelation for ambiguity resolution, the results show that:LLL reduce is not only less time consuming, and the Bootstrap can get a higher success rate; uniform integer decorrelation method get the most time consuming, but receive the highest success rate of Bootstrap; inverse Cholesky decorrelation is time-consuming, and with lower success rate of Bootstrap. In high-dimensional case, when the Bootstrap success rate is low, it is more time-consuming to search ambiguity, when the Bootstrap success rate is high, less time-consuming to search ambiguity.
     3) A new method of sequential ambiguity resolution
     A sequential method of ambiguity resolution is proposed, which first transform the ambiguity to new ambiguity combination in the ambiguity region, and then fix them in sequential model, it can reduce ambiguity resolution time while increasing the value of Ratio.
     4) using Monte Carlo method to validate success rate of ambiguity
     Introduce the success rate for ambiguity resolution, including rounding, Bootstrap, integer least squares method. the Monte Carlo method is used to verify the theoretical, the results show that, Bootstrap ambiguity success rate is lower but close to the integer least squares method.
     5) using Monte Carlo method to validate Ratio value
     This paper analyzes the principle of Ratio test, and using Monte Carlo methods to obtain the distribution of Ratio value in different dimensions, in high-dimensional case, using the experience value of 2 in Ratio would be too conservative, and on this basis, the ambiguity resolve with fixed-failure rate method is introduced.
     5. Analyzed the performance of multi-frequency GNSS relative positioning
     1) Analyzed the success rate of single epoch ambiguity resolution
     The success rate of single-epoch ambiguity fixed is analyzed, the success rate of ambiguity fixed in the European region is similar, but in the Chinese region and the surrounding areas, the success rate of ambiguity resolution for COMPASS is much better than the other three systems; relative to a single system, multiple systems can improve the success rate of single-epoch ambiguity resolution.
     2) Analyzed the multi-epoch ambiguity reolution for long baseline
     The KALMAN filter is used to process three-frequency data simulated, the initialization time for ambiguity fixed is studied, the results showed that:compared with dual-frequency, the three-frequency can largely reduce the initialization time for ambiguity fixed, it's RATIO values is lager than dual-frequency, which make it easy to fixed ambiguity when ambiguity is right.
引文
[1]Agrell E, Eriksson T, Vardy A, Zeger K (2002) Closest point search in lattices. IEEE Trans Inform Theory 48:2201-2214
    [2]Alves, P. (2001) The Effect of Galileo on Carrier Phase Ambiguity Resolution,Proceedings of ION GPS-01, 11-14 September, Salt Lake City, UT. pp.933-944.
    [3]Alves, P., G. Lachapelle, M.E. Cannon, J. Park, and P. Park (2002) Use of Self-Contained Ionospheric Modeling to Enhance Long Baseline Multiple Reference StationRTK Positioning, Proceedings of ION GPS-02,24-29 September Potland, OR, pp.1388-1399.
    [4]ARINC, Inc. (1993).Navstar GPS Space Segment/Navigation User Interfaces, ICD-GPS-200, Fountain Valley, CA, April.
    [5]ARINC, Inc. (2001) Navstar GPS Space Segment User Segment L5 Interfaces, ICD-GPS-705, El Segundo, CA, GPS Navstar JPO SNC/CZ,16 April.
    [6]Ashraf Farah (2003). A LIGHT ON:GPS/GALILEO DATA SIMULATION. The 2003 International Symposium on GPS/GNSS.Tokyo, Japan,November,2003.
    [7]Ashraf Farah; MOORE Terry; HILL Chris J (2005)."High Spatial Variation Tropospheric Model for GPS-Data Simulation" Journal of Navigation.2005, vol.58, n3, pp.459-470
    [8]Ashraf Farah (2002). The Ionospheric Delay Effort For GPS Single-Frequency Users-Analysis Study For Simulation Purposes. ION GPS 2002,24-27 September 2002, Portland, OR.
    [9]Babai L (1986). On Lovasz lattice reduction and the nearesr lattice point problem. Combinatorica 6:1-13
    [10]Bossche, M., C. Bourga and B. Lobert (2004) GPS Galileo Time Offset:How it AffectsPositioning Accuracy and How to Cope with It, Proceedings of ION GNSS-04,21-24September, Long Beach, CA, pp.654-659.
    [11]B. W. Parkinson and J. J. Spilker, eds. (1996) Global Positioning System:Theory and Application. Washington, D.C.:AIAA.
    [12]Bisnath, S., Gao, Y(2008). Current state of precise point positioning and future prospects and limitations, in: Sideris, M.G. (Ed.), Observing OurChanging Earth. Springer-Verlag, New York, pp.615-623,2008.
    [13]Blewitt G.(1990). An automatic editing algorithm for GPS data. Geophysical research letters, vol.17, no.3, 1990, pp.199-202.
    [14]Blewitt, G (1989). Carrier phase ambiguity resolution for the global positioning system applied to geodetic baselines up to 2000 km. J. Geophys. Res.94 (B8),10187-10203,1989.
    [15]Bonillo-Martinez, C., M. Toledo-Lopez and M. Romay-Merino (1999) The Benefits of the GPS Three Frequencies on the Ambiguity Resolution Techniques, Proceedings of ION GPS-99,14-17 September, Nashville, TN, pp.1737-1746.
    [16]Cai Jianqing,etc.(2009). The total optimal search criterion in solving the mixed integer linear model with GNSS carrier phase observations.GPS Solution.13:221-230, July 01,2009.
    [17]Chen, D. and G. Lachapelle (1995). "A comparison of the FASF and least-squares search algorithms for on-the-fly ambiguity resolution." Navigation:Journal of The Institute of Navigation, Vol.42, No.2, pp. 371-390
    [18]Collins, J.P. (2000). An overview of GPS inter-frequency carrier phase combinations.
    [19]Collins, P. Isolating and estimating undifferenced GPS integer ambiguities, in:Proceedings of ION National Technical Meeting. The Institute of Navigation, Inc., Fairfax, USA. pp.720-732,2008.
    [20]Collins, P., Lahaye, F., He'roux, P., Bisnath, S. Precise point positioning with ambiguity resolution using the decoupled clock model, in;Proceedings of ION GNSS 21st International Technical Meeting of the Satellite Division. The Institute of Navigation, Inc., Fairfax, USA,pp.1315-1322,2008.
    [21]Cocard, Marc, Bourgon, Stephanie, Kamali, Omid, Collins, Paul.A systematic investigation of optimal carrier-phase combinations for modernized triple-frequency GPS. Journal of Geodesy, Vol.82, No.9, pp. 555-564.2008
    [22]Counselman, C.C., S.A. Gourevitch (1981):Miniature Interferometer Terminals for Earth Surveying: Ambiguity and Multipath with Global Positioning System. IEEE Transactions on Geoscience and Remote Sensing, Vol. GE-19, No.4, pp.244-252.
    [23]David Basin, Ueli Maurer etc.(2010). The LLL Algorithm Survey and Applications[M]. springer.
    [24]Daniele Micciancio and Shafi Goldwasser(2002). Complexity of Lattice Problems, A Cryptographic Perspective [M]. Springer.
    [25]Dellago, R., E. Detoma and F.Luongo (2003). Galileo-GPS Interoperability and Compatibility:A Synergetic Viewpoint, Proceedings of ION GPS/GNSS-03,9-12September, Portland, OR, pp.542-548.
    [26]De Jonge, P. and Tiberius, C. (1996). The LAMBDA method for integer ambiguity estimation: implementation aspects. Technical Report LGR Series, No.12, Delft Geodetic Computing Centre, Delft University of Technology, The Netherlands.
    [27]De Jong, K. and P. Joosten (2001) Triple-frequency GPS and GALILEO Ambiguity Resolution, Proceedings 8th GNSS Workshop-2001 International Symposium on GPS/GNSS,7-9 November, Cheju Island, Korea, pp.49-52.
    [28]Dong, D., Bock, Y. Global positioning system network analysis with phase ambiguity resolution applied to crustal deformation studies in California. J. Geophys. Res.94 (B4),3949-3966,1989.
    [29]Euler, H.-J., H. Landau (1992):Fast GPS Ambiguity Resolution On-The-Fly for Real-Time Applications. Proceedings 6th Int. Geod. Symp. on Satellite Positioning. Columbus, Ohio,17-20 March 1992, pp.650-729.
    [30]Eissfeller, B., C. Tiberius, T. Pany and G. Heinrichs (2001) Real-Time Kinematic in the Light of GPS Modernization and Galileo, Proceedings of ION GPS-01,11-14 September, Salt Lake City, UT, pp.650-662.
    [31]Ericson, S. (1999) A Study of Linear Phase Combinations in Considering Future Civil GPS Frequencies, Proceedings of ION NTM-99,25-27, January, San Diego, CA, pp.677-686.
    [32]Fontana, R.D., W. Cheung and T. Stansell (2001) The Modernized L2 Civil Signal, GPSWorld, September, Eugene, OR, pp.28-34.
    [33]Frei, E., G. Beutler (1990):Rapid Static Positioning Based on the Fast Ambiguity Resolution Approach FARA:Theory and First Results. Manuscripta Geodaetica, Vol.15, No.6,1990.
    [34]Forssell, B., M. Martin-Neira, and R. A. Harris (1997) Carrier Phase Ambiguity Resolution in GNSS-2, Proceedings of ION GPS-97,16-19 September, Kansas City, MO,pp.1727-1736.
    [35]Fyfe, P., K. Davis, I. Jeng, C. Kelley and C. Mosley (2002) GPS and Galileo -Interoperability for Civil Aviation Applications, Proceedings of ION GPS-02,24-27 September, Portland, OR, pp.289-302.
    [36]Gabor MJ, Nerem RS (1999) GPS carrier phase ambiguity resolution using satellite-satellite single difference. In:Proceedings of 12th Int Tech Meet Satellite Div Inst Navigation GPS 99,14-17 September, Nashville, TN, USA
    [37]Gao Y, Li Z, "Cycle slip detection and ambiguity resolution algorithms for dual frequency GPS data processing," Marine Geodesy. New York, NY Taylor & Francis, bd.22,1999, pp.169-182.
    [38]Gao Y, Shen X (2002) A new method for carrier-phase-based precise point positioning. NAVIGATION J Inst Navig 49(2):109-116
    [39]Ge, M., Gendt, G., Rothacher, M., Shi, C., Liu, J. Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations. J. Geod.82 (7),389-399,2008.
    [40]Geng, J., Teferle, F.N., Shi, C., Meng, X., Dodson, A.H., Liu, J. Ambiguity resolution in precise point positioning with hourly data. GPS Solut.13 (4),263-270, doi:10.1007/s10291-009-0119-2,2009.
    [41]Geng, J., Teferle, F.N., Meng, X., Dodson, A.H. Kinematic precise point positioning at remote marine platforms. GPS Solut., doi:10.1007/s10291-009-0157-9,2010.
    [42]Guo Jiming, Junbo Shi and Wei Wang (2007), "Impact of antenna phase center offset and variation for high precision GPS data processing", Geomatics and Information Science of Wuhan University, V32, n12:1143-1146.
    [43]Han S, Rizos C (1995) A new method for constructing multi-sat-ellite ambiguity combinations for improved ambiguity resolution. Proc ION GPS-95. Palm Springs,12±15 September
    [44]Han, S. and C. Rizos (1999) The Impact of Two Additional Civilian GPS Frequencies on Ambiguity Resolution Strategies, Proceedings of ION 55th Annual Meeting,28-30 June 1999, Cambridge, MA, pp.315-321.
    [45]Han, S. Quality-control issues relating to instantaneous ambiguity resolution for real-time GPS kinematic positioning. J. Geod.71 (6),351-361,1997.
    [46]Hatch, R. (1989):Ambiguity Resolution in the Fast Lane. Proceedings ION GPS-89, Colorado Springs, CO, 27-29 September, pp.45-50.
    [47]Hatch R (1990). Instantaneous ambiguity resolution. Proc. of KIS'90, Banff, Canada:
    [48]Hatch, R. (1996) The Promise of a Third Frequency, GPS World, May 1996, pp.55-58.
    [49]Hatch R (2006) A New Three-Frequency,Geometry-Free Technique for Ambiguity Resolution[C]. Proc of ION GNSS 2006, P309-316,26-29 Sept, Fort Worth, TX.
    [50]Harris RA (1997). Direct resolution of carrier-phase ambiguity by 'Bridging the wavelength gap. ESA publication "TST/60107/RAH/Word"
    [51]Hassibi A, Boyed S (1998) Integer parameter estimation in linear models with applications to GPS. IEEE Trans Signal Proc 46:2938-2952
    [52]Hein, G.W., J. Godet, J.-L. Issler, J.-C. Martin, P. Erhard, R. Lucas-Rodriguez and T.Pratt (2001) The Galileo Frequency Structure and Signal Design, Proceedings of ION GPS-01,11-14 September, Salt Lake City, UT, pp.1273-1282.
    [53]Hein, G.W., J. Godet, J.-L. Issler, J.-C. Martin, P. Erhard, R. Lucas-Rodriguez and T. Pratt (2002), Status of Galileo Frequency and Signal Design, Proceedings of ION GPS-02,24-27 September, Portland, OR, pp.266-277.
    [54]Jonge PJ de, Tiberius CCJM (1996) The Lambda method for integer ambiguity estimation:implementation aspects. In:DelftGeodetic Computing Center LGR-series, no 12
    [55]Julien, O., P. Alves, M.E. Cannon and W. Zhang (2003) A Tightly Coupled GPS/GALILEO Combination for Improved Ambiguity Resolution, Proceedings of ENCGNSS 2003,22-25 April, Graz, Austria, CDROM, 14 pages.
    [56]Julien, O., P. Alves, M.E. Cannon and G. Lachapelle (2004) Improved Triple-Frequency GPS/GALILEO Carrier Phase Ambiguity Resolution Using a Stochastic Ionosphere Modeling, Proceedings of ION NTM-04, 26-28 January, San Diego, CA, pp.441-452.
    [57]Jung, J. (1999) High Integrity Carrier Phase Navigation for Future LAAS Using Multiple Civilian GPS Signals, Proceedings of ION GPS-99,14-17 September, Nashville, TN, pp.727-736.
    [58]Jin, S.G., Wang, J., Park, P.H. An improvement of GPS height estimates:stochastic modeling. Earth Planets Space 57 (4),253-259,2005.
    [59]Jin, S.G., Park, J.U., Cho. J.H., Park. P.H. Seasonal variability of GPSderived zenith tropospheric delay (1994-2006) and climate implications.;. Geophys. Res.112, D09110. doi:10.1029/2006JD007772.2007.
    [60]Jin, S.G., Komjathy, A. GNSS reflectometry and remote sensing:new objectives and results. Adv. Space Res.. doi:10.1016/j.asr.2010.01.014,2010.
    [61]Jung, J, P. Enge, and B. Pervan (2000) Optimization of Cascade Integer Resolution with Three Civil GPS Frequencies. Proceedings of the ION GPS-00,19-22 September, Salt Lake City. UT, pp.2191-2201.
    [62]J. Simon, B. Martin Peiro, M. Toledo.Improving Performances of Classic Three Carrier Ambiguity Resolution (TCAR) Algorithms for Galileo using GTCAR[C]. Proceedings of ION GNSS 2008. Savannah, Georgia.USA.
    [63]Kim D, Langley R.B, Instantaneous real-time cycle-slip correction of dual-frequency GPS data. in Proc. KIS 2001, Banff Alberta, Canada.5-8 June,2001, pp.255-264.
    [64]Kim D, Langley RB (1999). An optimized least-squares technique for improving ambiguity resolution performance and computational e±ciency. Proc. of ION GPS-1999,Nashville TN:1579(1588.
    [65]K. W. Wong, C. Y. Tsui, R. S. K. Cheng, and W. H. Mow, A VLSI archetecture of a K-best lattice decoding algorithm for MIMO channnels, in PIMIRC'02,2002
    [66]Klobuchar JA (1996) In:Parkinson B, Spilker J, Axelrad P, Enge P(eds) Ionospheric Effects on GPS, global positioning system:theory and application, vol Ⅰ. American Institute of Aeronautics and Astronautics, pp 485-515
    [67]Kouba J, Heroux P(2001). Precise point positioning using IGS orbit and clock products. GPS Solut 5(2):12-28;
    [68]Lawrence Lau. Phase Multipath Modeling and Mitigation in Multiple Frequency GPS and GalileoPositioning, PhD. Thesis. University College London.2005
    [69]Laurichesse, D., Mercier, F. Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP, in:Proceedings of ION GNSS 20th International Technical Meeting of the Satellite Division. The Institute of Navigation, Inc., Fairfax, USA, pp.839-848,2007.
    [70]Laurichesse, D., Mercier, F., Berthias, J.P., Bijac, J. Real time zerodifference ambiguities fixing and absolute RTK, in:Proceedings of ION National Technical Meeting. The Institute of Navigation, Inc., Fairfax, USA, pp.747-755,2008.
    [71]Li Z, Gao Y. (1997) Direct construction of high dimension ambiguity transformation for the Lambda method. Proc K1S97.Banff, June
    [72]Li, Z.F. and Gao, Y. (1998). "A Method for the Construction of High Dimensional Transformation Matrices in LAMBDA", Geomatica, Vol.52, No.4., pp.265-272.
    [73]Leonard, A. and I. Izquierdo (2002) GPS and GALILEO Interoperability and Synergies, Proceedings of ION GPS-02,24-27 September, Portland, OR, pp.330-341.
    [74]Le A.Q., Tiberius C. (2007).Single-frequency precise point positioning with optimal filtering. GPS Solution, No.11:33-44:
    [75]Lenstra HW Jr (1981) Integer programming with a fixed number of variables. Tech Rep 81-03. Departmentt of Mathematics, University of Amsterdam, The Netherlands
    [76]Lenstra AK. Lenstra HW Jr, Lov'asz L (1982) Factoring polynomials with rational coefficients. Math Ann 261:515-534
    [77]Liu LT, Hsu HT, ZhuYZ, Ou JK (1999).A new approach to GPS ambiguity decorrelation. J Geod 73:478-490
    [78]Lou L, Grafarend EW (2003) GPS integer ambituity resolution by various decorrelation methods. Zeitschrift fur Vermessungswesen 128:203-211
    [79]Martin-Neira M, Toledo M, Pelaez A (1995). The null space method for GPS integer ambiguity resolution. Proc. of DSNS'95, Bergen, Norway, paper no.31.
    [80]McDonald, K. (2001) A Future GNSS Concern on the Modernization of GPS and the Evolution of Galileo, Proceedings of ION GPS-01,11-14 September, Salt Lake City, UT,pp.2804-2809.
    [81]McDonald, K. (2002) The Modernization of GPS:Plans, New Capabilities and the Future Relationship to Galileo, Journal of Global Positioning System, Vol.1, No.1:1-17.
    [82]Mervart, L., Lukes, Z., Rocken, C, Iwabuchi, T. Precise point positioning with ambiguity resolution in real-time, in:Proceedings of ION GNSS21st International Technical Meeting of the Satellite Division. The Institute of Navigation, Inc., Fairfax, USA, pp.397-405,2008.
    [83]M. Romay-Merino, M., A.J.G. Alarcon, I. J. Villares and E. H. Monseco (2001) An integrated GNSS concept, Galileo & GPS, benefits in terms of Accuracy, Integrity.Availability and Continuity, Proceedings of the ION GPS-01,11-14 September, SaltLake City, UT, pp 2114-2122.
    [84]Mirsa P, Enge P (2004) Global positioning systems, signals, measurements and performance. Ganga-Jamuna Press, Lincoln, pp 227-254
    [85]Ning Luo. Precise Relative Positioning of Multiple Moving Platforms Using GPS Carrier Phase Observables.PhD Thesis. University of CALGARY.2001.
    [86]Patrick Henkel and Christoph Giinther, Precise Point Positioning with multiple Galileo frequencies, Proc. of ION/IEEE Position, Location and Navigation Symposium (PLANS), Monterey, USA, pp.592-599, May 2008.
    [87]Patrick Henkel, Geometry-free linear combinations for Galileo, Proc. of 58-th International Astronautical Congress (IAC),1st prize of international student contest (Pierre Contensou Medal), Hyderabad, India, Sep.2007.
    [88]Patrick Henkel, Wide-Area RTK and Precise Point Positioning with mixed Code-Carrier Combinations, Delft Institute of Earth Observation and Space Systems, Delft University of Technology, The Netherlands, Dec.2007.
    [89]Pohst M (1981) On the computation of lattice vector of minimal length, successive minima and reduced bases with applications. ACM SIGSAM Bull 15:37-44
    [90]Ray, J.K. (2000), Mitigation of GPS Code and Carrier Phase Multipath Effects Using a Multi-Antenna System, Ph.D. Thesis, UCGE Report No.20136, Department of Geomatics Engineering, The University of Calgary,260 pp.
    [91]Ray, J.K. and M.E. Cannon (1999), Characterization of GPS Carrier Phase Multipath, Proceedings of ION National Technical Meeting, San Diego, January 25-27, pp.243-252.
    [92]Ray, J.K., M.E. Cannon and P. Fenton (1999a), Mitigation of Static Carrier Phase Multipath Effects Using Multiple Closely-Spaced Antennas, NAVIGATION:Journal of The Institute of Navigation,46,3, Fall, pp. 193-202.
    [93]Radovanovic, R.S., F. Georgia, and N. El-Sheimy (2001) On Optimizing Multi-Frequency Carrier Phase Comb inations for Precise Positioning, IAG Scientific Assembly,2-7 September, Budapest, Hungary, CDROM.
    [94]Richert, T. (2005) The Impact of Future Global Navigation Satellite Systems on Precise Carrier Phase Positioning, UCGE Report, Number 20218, May,2005,
    [95]Richert, Todd, El-Sheimy. Naser.Optimal linear combinations of triple frequency carrier phase data from future global navigation satellite systems. GPS Solutions, Volume 11, Number 1, January 2007, pp. 11-19(9).
    [96]Rodriguez, J., M. Irsigler, G. W. Hein and T. Pany (2004) Combined Galileo/GPS Frequency and Signal Performance Analysis, Proceedings of ION GNSS-04,21-24 September, Long Beach, CA, pp.632-649.
    [97]Remondi, B.W. (1984):Using the Global Positioning System (GPS) Phase Observable for Relative Geodesy: Modelling, Processing, and Results, Ph.D. dissertation,NOAA, Rockville,360 pp..
    [98]Ruizhi Chen, Chris Hill, Terry Moore. Development of a Multi-constellation Augmentation Service Based on EGNOS and Galileo Simulation. ION GNSS 2007,25-28, September 2007, Fort Worth, TX
    [99]Shi, Junbo:Analysis of the Integer Property of Ambiguity and Characteristics of Code and Phase Clocks in PPP using a Decoupled Clock Model, in:Proceedings of ION National Technical Meeting. The Institute of Navigation, Inc., Fairfax, USA, pp.747-755,2010.
    [100]Schnorr CP, EuchnerM(1994) Lattice basis reduction:improved practical algorithms and solving subset sum problems. Math Program 66:181-199
    [101]Shen, yz; Xu, G. (2008):Simplified equivalent representation of differenced GPS observation equations. GPS Solutions,12,2,99-108.
    [102]Sergey Revnivykh(2010).GLONASS status and progress.ION GNSS 2010, Poland, Oregen.22, Sep.22.2010.
    [103]Teunissen, P. (1993) Least-square estimation of the integer GPS ambiguities. In IAG General Meeting. Invited Lecture. Section Ⅳ Theory and Methodology, Beijing, China.
    [104]Teunissen, P.J.G. A new method for fast carrier phase ambiguity estimation, in:Proceedings of IEEE Position, Location and NavigationSymposium. IEEE, Inc., New York, USA, pp.562-573,1994.
    [105]Teunissen, P.J.G. On the GPS widelane and its decorrelating property. J.Geod.71 (9),577-587,1997.
    [106]Teunissen, P. (1998) Success probability of integer GPS ambiguity rounding and bootstrapping, Journal of Geodesy,72:pp.606-612.
    [107]Teunissen P. (1999) An optimality property of the inte-ger least-squares estimator, J Geod,73:587-593.
    [108]Teuniessen P.J.G.Jonkman N.F. Will geometry-free full ambiguity resolution be possible at all for long baselines[C], Proceedings of ION-NTM 2001 271-280. Long Beach, CA.
    [109]Teunissen, P., P. Joosten and C. Tiberius (2002) A Comparison of TCAR, CIR and LAMBDA GNSS Ambiguity Resolution, Proceedings of ION GPS-02,24-27 September,Portland, OR, pp.2799-2808.
    [110]Teunissen, P. J. G. (2003a). Integer aperture GNSS ambiguity resolution. Artificial Satellites,38(3):79-88.
    [111]Teunissen, P. J. G. (2003c). Towards a unified theory of GNSS ambiguity resolution. Journal of Global Positioning Systems,2(1):1-12.
    [112]Teunissen,P.J.G, Sandra Verhagen (2004). On the Foundation of the Popular Ratio Test for GNSS Ambiguity Resolution. Proceedings of ION GPS-02,24-27 September,Long Beach, pp.
    [113]Teunissen, P.S Verhagen. GNSS Carrier Phase Ambiguity Resolution:Challenges and Open Problems. International Association of Geodesy Symposia.2008.
    [114]Todd Richert Naser El-Sheimy(2007).Optimal linear combinations of triple frequency carrier phase data from future global navigation satellite systems.GPS Solution.11.11-19
    [115]Verhagen, S. (2002) Performance Analysis of GPS, Galileo and Integrated GPS-Galileo,Proceedings of ION GPS-02,24-27 September, Portland, OR, pp.2208-2215.
    [116]Verhagen, S. (2004).Integer ambiguity validation:an open problem?. GPS Solutions Volume 8(1) pp.36. 43.
    [117]Verhagen, S., and P. Joosten (2003).Algorithms for Design Computations for Integrated GPS. GALILEO. In Proceedings of the European Navigation Conference GNSS2003,Graz, Austria, April 22-25.
    [118]Verhagen,S.,and Peter Joosten. Analysis of integer ambiguity resolution algorithms[C]. The European Navigation Conference. GNSS 2004.
    [119]Verhagen, S. (2005), The GNSS Integer Ambiguities:Estimation and Validation. Ph.D. thesis, Publications on Geodesy,58, Netherlands Geodetic Commission, Delft,2005
    [120]Verhagen S (2006a) How will the new frequencies in GPS and Galileo affect carrier phase ambiguity resolution? Inside GNSS,
    [121]Verhagen S (2006b) Improved performance of multi-carrier ambiguity resolution based on the LAMBDA method. In:Proceedings of Navitec 2006, ESA-ESTEC, Noordwijk, NL, p 8
    [122]Vollath, U., S. Birnbach and H. Landau (1998) Analysis of Three-Carrier Ambiguity Resolution (TCAR) Technique for Precise Relative Positioning in GNSS-2, Proceedingsof ION GPS-98,15-18 September, Nashville, TN, pp.417-426.
    [123]Vollath, U., K. Sauer.FAMCAR Approach for Efficient Multi-Carrier Ambiguity Estimation,Paper presented at the European GNSS 2004 Conference, May 16-19,2004, Rotterdam, TheNetherlands.2004.
    [124]Volltah U (2005). Ambiguity estimation of GNSS signals for three and more carriers,US patent application 2005010248, pp 1-40.
    [125]Viterbo E, Biglieri E (1993) A universal decoding algorithm for lattice codes.Quatorzieme colloqueGRETSI, 611-614, Juan-Les-Pins,France
    [126]Viterbo E, Boutros J (1999)A universal lattice code decoder for fading channels. IEEE Trans Inform Theory 45:1639-1642
    [127]Willi Freeden, M. Zuhair Nashed etc.(2010).HandBook of Geomathmatics[M].springer.
    [128]Wubbena, G. (1985). "Software Developments for Geodetic Positioning with GPS Using TI 4100 Code and Carrier Measurements". Proceedings of 1st International Symposium on Precise Positioning with the Global Positioning System, edited by Clyde Goad, U.S.Department of Commerce, Rockville, Maryland,15-19 April, pp.403-412.
    [129]Wibberley, P. (2004).An Overview of the Galileo Programme and Galileo.s Future Timing Services. Presented at the Time and Frequency User Club Meeting, National Physics Laboratory, Teddington, Middlesex, September 28,2004.
    [130]Wang J (1999) Stochastic modelling for RTK GPS/GLONASS positioning. Navigation 46(4):297-305
    [131]Werner WJ, Winkel J (2003) TCAR and MCAR Options With Galileo and GPS. In:Proceedings of ION GPS/GNSS 2003,9-12 September, Portland, OR, pp 790-800
    [132]Wang Zemin, Liu Jingbin. Zhang Kefei.Multiple Carrier Ambiguity Resolution Method for GAL ILEO [C]. The 2004 International Symposium on GNSS/GPS, Sydney,2004
    [133]Xu, G. GPS-Theory, Algorithms and Applications [M].Springer Heidelberg.2007.
    [134]Xu P, Cannon E, Lachapelle G (1995) Mixed integer programming for the resolution of GPS carrier phase ambiguities. In:IUGG95Assembly, Boulder,2-14 July.Also in Technical Report Nr.2000.2,Department of Geodesy and Geoinformatics, Universit" at Stuttgart.Germany
    [135]Xu P. Random Simulation and GPS decorrelation. J Geod 75(7-8):408-423.2001
    [136]Xu P. Voronoi Cells, Probabilistic Bounds and Hypothesis Testings in Mixed Integer Linear Models. IEEE Transactions on Information Theory,52,3122-3138.2006.
    [137]Xu, P. Sign-constrained robust least squares, subjective breakdown point and the effect of weights of observations on robustness. J. Geod.79 (1-3),146-159,2005.
    [138]Xianglin Liu, Christian Tiberius and Kees de Jong. Modelling of differential single difference receiver clock bias for precise positioning, GPS Solutions:209-221.2004.
    [139]Xianglin Liu, Kees de Jong, Christian Tiberius, Reparameterization on single difference and undifferenced kinematic GPS positioning models, In the proceeding of 2002 International Symposium on GPS/GNSS Wuhan, China, Nov.6-8,2002, CD.6pp, and also in Geo-spatial Information Science, Volume 6, Issue 2, Page 1-7, June 2003
    [140]Yanming Feng, Chris Rizos. Geometry-Based TCAR Models and Performance Analysis[J]. IUGG 2007,. July 2-13. Perugia, Italy
    [141]Y. Feng."GNSS Three Carrier Ambiguity ResolutionUsing Ionosphere-reduced Virtual Signals", GPS Solutions, Vol.82, No.12, pp.847-862,2008
    [142]Feng Y, Rizos C (2005) Three carrier approaches for future global regional and local GNSS positioning services:concepts and performancePerspectives. In:Proceedings of IONGNSS2005,13-16 September, Long Beach, CA, pp 2277-2787
    [143]Zhang, W., M.E. Cannon, O. Julien, and P. Alves (2003), Investigation of Combined GPS/Galileo Cascading Ambiguity Resolution Schemes, Proceedings of ION GPS-03,9-12 September, Portland, OR, pp. 2599-2610.
    [144]Zhen Dai, Stefan Knedlik, Otmar Loffeld. Instantaneous Triple-Frequency GPS Cycle-Slip Detection and Repair. International Journal of Navigation and Observation. Volume 2009,2009.
    [145]Zhang X, Andersen OB(2006). Surface ice flow velocity and tide retrieval of the Amery Ice Shelf using precise point positioning. J Geod 80. DOI 10.1007/s00190-006-0062-8;
    [146]Zhang X, Forsberg R(2007). Assessment of long-range GPS kinematic positioning errors by comparison of airborne laser and satellite altimetry, Journal of Geodesy, DOI 10.1007/s00190-006-0100-6 Issue:Volume 81, Number 3:201-212;
    [147]Zumberge J, Heflin M, Jefferson D, Watkins M, Webb F(1997). Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res 102:5005-5017;
    [148]Zheng Y, Feng Y (2005) Interpolating esidual zenith tropospheric delays for improved regional area differential GPS positioning. Navigation 52(3):179-187
    [149]Zhou Yangmei,(2010). New practical approach to GNSS high-dimensional ambiguity decorrelation.GPS Solution.
    [150]Zhu Jian-jun,Ding Xiao-li Chen Yong-qi(2003), Schreiber Approach for GPS Carrier Phase Ambiguity Resolution, Wuhan University Journal of natural sciences, Vol.8(2B), P492-500.
    [151]陈小明.高精度GPS动态定位的理论与实践[D].武汉:武汉测绘科技大学,1997.
    [152]葛茂荣,过静郡.GPS相对导航在航天器交会对接中的应用[J].侧绘通报,1998.
    [153]韩绍伟.GPS相位观测值的模糊度函数法与最小二乘法的等价性及模糊度函数法的改进[J].测绘学报,1994,vol.23,No.4.
    [154]韩保民,欧吉坤.基于GPS非差观测值进行精密单点定位研究[J].武汉大学学报·信息科学版.2003Vol. 28, No.4;
    [155]韩保民,杨元喜.基于GPS精密单点定位的低轨卫星几何法定轨[J].西南交通大学学报,2007,Vol.42, No.1;
    [156]郝明,欧吉坤,郭建锋,袁运斌.一种加速精密单点定位收敛的新方法[J].武汉大学学报·信息科学版,2007,,Vol.32, No.10;
    [157]何海波,杨元喜.GPS动态测量连续周跳检验[J].测绘学报.1999,Vol.03.
    [158]黄丁发,作健成.GPS相位观测值周跳检验的小波分析法[J].测绘学报,1997,Vol.24,No.4.
    [159]胡丛玮,刘大杰,姚连壁.高精度动态GPS定位中的一种周跳修复方法[J].同济大学学报,1998,Vol.26, No.6
    [160]匡翠林,邹璇,李陶.利用IGS数据产品进行高精度GPS观测数据仿真[J].系统仿真学报.2007,Vol.19,No.12.
    [161]刘超MIMO系统中的球形解码算法[D].湖北省:华中科技大学.2005.
    [162]林云,何丰.MIMO技术原理及应用[M].人民邮电出版社.2010.
    [163]刘经南,叶世榕.GPS非差相位精密单点定位技术探讨[J].武汉大学学报·信息科学版,2003.
    [164]刘经南等.广域差分GPS原理与方法[M].测绘出版社.1999.
    [165]梁开龙,张玉册.现代化GPS信号的宽巷组合及其求解模糊度研究[J].测绘通报,2002.Vol.4.
    [166]柳景斌GALILEO卫星导航系统及其应用研究[D].湖北省:武汉大学,2004.
    [167]刘精攀.GPS非差相位精密单点定位方法与实现[D].南京:河海大学,2007;
    [168]刘基余.GPS卫星导航定位原理与方法[M].北京:科学出版社,2003
    [169]李博峰,沈云中,周泽波.中长基线三频GNSS模糊度的快速算法[J].测绘学报,2009,Vol.04
    [170]李征航,黄劲松.GPS测量与数据处理[M].武汉:武汉大学出版社,2005
    [171]李淑慧.整周模糊度搜索方法的比较研究[D].武汉大学硕士学位论文.2002
    [172]秦智.北斗全球导航系统(COMPASS)标准国际化的一点思考[J].第一届中国卫星导航学术年会.2010.
    [173]唐卫明,刘经南,施闯,楼益栋.三步法确定网络RTK基准站双差模糊度[J].武汉大学学报·信息科学版,2007年04期.
    [174]唐卫明,孙红星,刘经南.附有基线长度约束的单频数据单历元LAMBDA方法整周模糊度确定[J].武汉大学学报·信息科学版.2005.Vol.05.
    [175]邰贺(2007).单频GPS精密单点定位方法与实践[D].武汉:武汉大学,2007
    [176]伍岳.第二代导航卫星系统多频数据处理理论及应用[D].武汉:武汉大学,2005
    [177]魏子卿,葛茂荣.GPS相对定位的数学模型[M].测绘出版社.1998.2
    [178]王泽民,柳景斌Galileo卫星定位系统相位组合观测值的模型研究[J].武汉大学学报·信息科学版.2003.12.Vol.28, No.6.
    [179]叶世榕.GPS非差相位精密单点定位理论与实现[博士论文].武汉:武汉大学,2002;
    [180]喻国荣.GPS三个频率整周模糊度相关性研究.全球定位系统[J].2002.Vol.27, No.6,P31.
    [181]喻国荣.GPS三个频率相位平滑伪距方法[J].侧绘通报.2003.
    [182]余位驰.格基规约理论及其在密码设计中的应用[博士论文].西南交通大学.2005.
    [183]张小红,刘经南Rene Forsberg.基于精密单点定位技术的航空测量应用实践[J].武汉大学学报·信息科学版.2005.Vol.31, No.1.
    [184]张宝成,欧吉坤.基于GPS双频原始观测值的精密单点定位算法及应用[J].测绘学报.2010.
    [185]赵春梅,欧吉坤,袁运斌.基于单点定位模型的GALILEO及GPS-GALILEO组合系统的定位精度和可靠性的仿真分析[J].科学通报.2006,Vol.50,No.8;

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700