基于GNSS的多传感器融合实时姿态测量技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低成本航向确定技术在民用船舶导航上的应用一直是国内外导航界的研究热点。利用GNSS实现航向指示的设备,称为卫星罗经(GNSS罗经),为船上其他设备(如AIS、VDR、ARPA)提供实时的航向信息,具有无累积误差、不受磁场分布影响、体积较小、价格低等特点,可作为中小型船只电/磁罗经的替代设备。
     利用载波相位差分测量实现多天线GNSS姿态/航向确定,关键在于初始整周模糊度解算和姿态/航向确定算法。在国家863项目“长航时高动态条件下高精度组合导航技术研究”(No. 2006AA705320)等课题的资助下,本文开展了基于GNSS姿态测量和其他姿态传感器的组合问题研究,重点放在单基线卫星罗经技术及组合的关键理论和实验技术研究,这将作为集成卫星罗经产品的理论和实验基础。
     本文主要研究思路及工作体现在五个方面:
     (1)调研、分析国内外GNSS组合姿态测量和卫星罗经技术,结合实验室现有研究基础,分析卫星罗经主要技术要求,提出GNSS单基线姿态测量与低成本磁传感器、INS组合方案。
     (2)基于当地水平坐标系下的差分姿态方程,研究了GNSS姿态测量误差,着重开展了多路径误差的理论和实验研究,提出了差分姿态方程的ADOP概念和表达式。
     (3)考虑可能出现的干扰情况,采用低成本三轴磁强计和单基线GNSS姿态测量进行组合。针对磁强计受到的外界干扰,寻求有效的误差补偿算法。搭建实验平台,开展组合航向测量的理论仿真和实验研究。
     (4)对于一些要求较高的场合,研究双天线测姿与低成本INS组合的方式和技术实现手段。在改善系统航向输出精度和可靠性的基础上,研究了INS与GNSS测姿的相互辅助技术,建立相应的量测方程。同时,搭建实验平台,开展相关的算法研究。
     (5)在上述研究基础上并结合已有工作,设计并改进了软、硬件试验应用系统,开展了大量静态、动态试验工作及数据分析处理,得到不同场景下实验具体结果。
     本文的关键技术研究和创新性有三方面:
     (1)研制了GNSS组合姿态测量系统。对多路径分析和单差姿态方程的姿态精度因子ADOP进行理论分析及实验研究,优化GNSS姿态测量的实现算法,提高了系统的可靠性和精度。
     (2)建立单基线GNSS与低成本磁强计的观测方程并优化滤波设计,改善载体组合姿态/航向的估算精度以及数据连续性。提出将磁强计给出的航向角粗估值约束模糊度函数搜索范围,减少搜索计算量。
     (3)研究双天线测姿与INS组合的结构形式采用同位于一条基线的深度融合方式。将INS和双天线测姿进行进一步分析,构造新的误差观测方程,并用Unscented卡尔曼滤波(UKF)进行处理。结合本文的单差姿态方程,利用INS初始测量的姿态角作为粗估量,可在整周全域搜索中,缩小整周模糊度函数的搜索范围,减少运算量,提高实时性。
     本文的研究结论主要有四点:
     (1)差分姿态方程和模糊度函数法的组合应用,提高了整周模糊度的实时性和可靠性。大量静态、车载动态实验表明这种组合改进方法较传统方法有效缩减了计算量,并且姿态/航向精度较高、数据稳定。
     (2)在开阔环境下,利用单差姿态算法和模糊度求解方法,分别计算引入多路径误差前后的姿态角,统计结果表明姿态角的标准差和均值变化不大,而在复杂环境下且同样的试验条件下,保持基线位置相同,多路径对姿态估算的影响几乎是相同,且通过作差可消除。通过对姿态ADOP的分析推导,在算法实现上需要注意一些特殊位置的处理。
     (3)低成本磁强计和GNSS组合测量航向可有效提高整个系统数据输出的连续和稳定性,而且两者组合结构和滤波易于实现、磁强计误差补偿易于工程实现。相比与单一GNSS测姿系统,组合后系统的成本增加有限。
     (4)低成本INS和GNSS组合姿态测量的数据精度高,而且能利用INS的初始信息提高GNSS的整周模糊度解算的效率,二者的相互辅助提供了系统的整体稳定性,通过Unscented卡尔曼滤波可得到较高的精度。与磁强计组合相比,其劣势在于成本增加较多,适用于更高需求的用户。利用本文的理论和技术手段,可针对不同的指标要求,实现不同的系统,满足实际需要。
Low-cost direction determination for civil ship has long been an issue of great interest in navigation. Satellite compass, or GNSS compass, an equipment to indicate direction using GNSS technologies and provide realtime heading information for other devices (AIS, VDR and ARPA), becomes a major alternative for the traditional electronic-/magnetic-gyrocompass because of its non-accumulation error, little influence of earth magnetic and low cost.
     The key to the direction determination by GNSS carrier phase measurements lies in the algorithms of solving integer ambiguity and attitude/heading. What is described in this thesis is based on the results collected during the extended research of which is a 863 project named‘High precision integrated navigation technology under long endurance and high dynamic conditions’(No. 2006AA705320) and other related projects. The major topic is integration of GNSS and various sensors for attitude determination and special emphasis has been put on the theoretical analysis and experimental verifications of single-baseline satellite compass, which is prepared for preliminary report before production.
     The major contributions and roadmap of the thesis are summarized as follows:
     (1) Collection and summary of all the related literature and previous work. With this information, and taking into account the hardware limits, I specify the specifications of the GNSS compass to be researched and propose how to implement a low-cost attitude determination system.
     (2) The attitude determination is done using differential attitude equations developed in a local level frame. A detailed derivation and analysis of ADOP formula is given. The multipath is considered the primary error source and simulation and experiments show the feasibility of mitigating multipath using piecewise difference.
     (3) Considering the jam cases, the low-cost three-axis magnetometer and sigle-baseline GNSS attitude determination were ingerated. For the influence of earth magnetic field, error compensation algorithms were investigated deep. The test platform was built and theory simulations and experiments were carried out.
     (4) For the strict situation, double-antenna GNSS attitude determination and low-cost INS integated technology were investigated. The mutually supporting of the two systems is important for the whole system and the measurement equation and unscented kalman filter (UKF) were built up.
     (5) Based on all the above mentioned, a hardware and software prototype is worked out for improving the performance through diverse experiments, static or dynamic. Results have been given and grouped by different scenarios and conditions.
     The key technology and innovativeness of the thesis are summarized as follows:
     (1) The GNSS integrated attitude determination system has been developed. Based on the research of differenc attitude equation of local level fram (LLF), the error problems of GNSS attitude determination were investigated deep. The attitude dilution of precision (ADOP) of sigle-difference attitude equation was analysed and derived and some useful deduction could be used in the algorithm implementation. The multipath error is the main error source of carrier phase attitude determination. The theory model of multipath was given and the tests in simple and complicated enviroments have been carrier out.
     (2) The GNSS attitude determination equations and magnetmeter linearization equation have been built up and filted by EKF. The attitude/heading precision and continuity become better. The heading output of magnetmeter could be used for constraint condition of integer searching range and the calculation load was reduced greatly.
     (3) Based on single baseline, the deep integration structure of GNSS attitude determination and INS have been built up and filted by unscented kalman filter (UKF). The attitude output of INS could be used for constraint condition of integer searching range and the calculation load was reduced greatly. The mutually supporting of the two systems is important for the whole system.
     The research conclusions of the thesis are summarized as follows:
     (1) The integation of difference attitude equation and ambiguity function method (AFM) has improved the real-time and reliability of integer ambiguity resolution. A number of experiments demonstrate that this improved approach significantly outperforms the traditional ones in terms of the computation load. Compared with the traditional approach, the efficiency of the improved one is faster than the traditional one on average, with equivalent performance in reliability and accuracy.
     (2) In open environment, the standard deviations and means of multipath error have little change. And in complicated environment, the influence of multipath has the same result and could be removed easily under the same test conditon. Considering the ADOP, some processes should be taken into accout in some special positons.
     (3) Low-cost three-axis magnetometer and GNSS integation improves the continuity, reliability and precision and could be implemented in simple way. The cost of the whole system is not more expensive than only GNSS attitude determination.
     (4) The initial attitude output of INS could be used for constraint condition of integer searching range and the calculation load was reduced greatly. The mutually supporting of the two systems provides the better performance. The cost of the whole system increases great and the high precision and good reliability coule be obtained, especially in some advanced application. Finally, different costs have different performance figures depended upon the user’s requirements and choice.
引文
[1] Cohen,C. E.,Attitude Determination Using GPS: Development of an All Solid-State Guidance, Navigation, and Control Sensor for Air and Space Vehicles Based on the Global Positioning System. Ph.D. thesis, Stanford University, Stanford, CA, December 1992.
    [2] Spinney, V. W. Applications of global positioning system as an attitude reference for near earth users. ION National Aerospace Meeting, Naval Air Development Center, Warminster, PA, April 1976.
    [3] Ellis, J. F. and Greswell, G. A. Interferometric Attitude Determination with the Global Positioning System. Journal of Guidance and Control. Nov.-Dec. 1979, pp. 523-527.
    [4] Brown, R. Instantaneous GPS Attitude Determination. Proceedings of IEEE Position, Location and Navigation Symposium (PLANS’92), US, March 1992.
    [5] Brown, A. K., Bowles, W. M. and Thorvaldsen, T. P. Interferometric Attitude Determination Using the Global Positioning System. Proceedings of the Third Geodetic Symposium on Satellite Doppler Positioning, February 1982, Las Cruces, N. M.
    [6] Hermann, B. R. A Simulation of the Navigation and Orientation Potential of the TI-AGR. Marine Geodesy. 1985, 9(2):133-143.
    [7] Evans, A. G. Roll, Pitch and Yaw Determination Using a Global Posotioning System Receiver and an Antenna Periodically Moving in a Plane. Marine Geodesy. 1986, 10(1).
    [8] Kruczynski, L. R., Li, P. C., Evans, A. G. and Hermann, B. R. Using GPS to Determine Vehicle Attitude: USS YORKTOWN Test Results. Proceedings of the Second International Technical Meeting of the Satellite Division of the ION, GPS-89, Colorado Springs,CO,September 26-29,1989.
    [9] Kruczynski, L. R., Li, P. C. Evans, A., G. and Hermann, B. R. Using GPS to Determine Vehicle Attitude. Proceedings of the First International Technical Meeting of the Satellite Division of the ION, GPS-88, Colorado Springs, CO, September 19-23, 1988.
    [10] Ashtech Inc. 3DF 24-Channel GPS Measurement System, Published by Ashtech, Inc., Sunnyvale, CA, May 1991.
    [11] Wilson, G. J. and Tonnemacher, J. D. Trimble Navigation GPS Attitude DeterminationSystem. Proceedings of the Fifth International Technical Meeting of the Satellite Division of the ION, GPS-92, Albuquerque, N. M. 16-18 September 1992.
    [12] Schwarz, K. P., Mowafy, A. E. and Wei, M. Testing a GPS Attitude System in Kinematic Mode. Proceedings of the Fifth International Technical Meeting of the Satellite Division of the ION, GPS-91, Albuquerque, N. M. 16-18 September 1992.
    [13] Cohen, C. E., Lightsey, E. G., Feess,W. A. and Parkinson, B. W. Space Flight Tests of Attitude Determination Using GPS. Proceedings of the sixth International Technical Meeting of the Satellite Division of the ION, GPS-93, Salt Lake City, Utah, 22-24 September 1993.
    [14] Cohen, C. E., McNally, B. D. and Parkinson, B. W. Flight Tests of Attitude Determination Using GPS Compared Against an Inertial Navigation Unit, Proceedings of the National Technical Meeting of The Institute of Navigation, San Francisco, CA, January 20-22, 1993.
    [15] Lu, G. Development of a GPS Multi-Antenna System for Attitude Determination. PhD Thesis, Department of Geomatics Engineering, University of Calgary, 1995.
    [16]许江宁,朱涛,卞鸿巍. GPS姿态测量技术综述.海军工程大学学报, 2003,15(3): 17-22.
    [17] www.pro.magellanGPS.com
    [18]袁建平,罗建军,岳晓奎,方群.卫星导航原理与应用.北京:中国宇航出版社. 2003.
    [19] Cannon, M. E., Berry, E. and King, M. Testing a lightweight GPS/GIS Terminal for Sub-Meter DGPS Positioning. Proceedings of the sixth International Technical Meeting of the Satellite Division of the ION, GPS-93, Salt Lake City, Utah, 22-24 September 1993.
    [20] Fenton, P. C., Falkenberg, B., Ford, T., VanDierendonck, A. J. NoVatel’s GPS Receiver - The High Performance OEM Sensor of the Future, Proceedings of the Fourth International Technical Meeting of the Satellite Division of the ION, GPS-91, Albuquerque, N. M. 11-13 September 1991.
    [21] Lu, G., Cannon, M. E., Lachapelle, G. and Kielland, P. Attitude Determination in a Survey Launch Using Multi-Antenna GPS Technologies. Proceedings of National Technical Meeting of The Institute of Navigation,1993, pp. 251- 260.
    [22] Cannon, M. E., Schleppe, J. B., McLellan, J. F. and Ollevier, T. E. Real-Time Heading Determination Using an Integrated GPS-Dead Reckoning System. Proceedings of the Fifth International Technical Meeting of the Satellite Division of the ION, GPS-92,Albuquerque, N. M. 16-18 September 1992.
    [23]赵琳.卫星导航系统.哈尔滨:哈尔滨工程大学出版社.2001.
    [24] Teunissen, P. J. G., De Jonge, P. J. and Tiberius, C. C. J. M. Performance of the LAMDA Method for Fast GPS Ambiguity Resolution, NAVIGATION: Journal of The Institute of Navigation. 1997, 44(3):373-383.
    [25] Cohen, C. E. and Parkinson, B. W. Aircraft Applications of GPS Based Attitude Determination. Proceedings of the Fifth International Technical Meeting of the Satellite Division of the ION, GPS-92, Albuquerque, N. M. 16-18 September 1992.
    [26] Graas, V., and Braasch, M. GPS Interferometric Attitude and Heading Determination: Initial Flight Test Results. Navigation, Vol. 38, No. 4, Winter 1991-1992.
    [27] Axelrad, P. and Ward, L. M. On-Orbit GPS Based Attitude and Antenna Baseline Estimation. Proceedings of the National Technical Meeting of The Institute of Navigation, San Diego, CA, January 24-26, 1994.
    [28] Axelrad, P. and Ward, L.M. Spacecraft attitude estimation using the Global Positioning System:Methodology and result for RADCAL. Journal of Guidance, and Dynamics.1996, 19(6): 1201-1209.
    [29] Gomez, S.F., Lammers, M.L. Lessons Learned from Two Years of On-Orbit Global Positioning System Experience on International Space Station. ION-GNSS 2004, Long Beach, September 2004.
    [30] Li, Y., Zhang, K., Roberts, C., Murata, M. On-the-fly GPS-based attitude determination using single- and double-differenced carrier phase measurements. GPS Solutions, 8: 93-102.
    [31]许江宁.基于遗传算法的GPS姿态测量技术研究[博士论文].东南大学,2002.
    [32]王庆,万德钧,李滋刚. GPS航姿测定方案及误差分析.中国航海. 1996, 39:36-42.
    [33]范胜林.GPS姿态及定向系统的研究与实现[博士论文].南京航空航天大学.2001.
    [34]段志勇. GPS航姿系统及多天线GPS/惯性组合技术研究[博士论文].南京:南京航空航天大学. 2000.
    [35]张炎华,王立端,战兴群,翟传润.惯性导航技术的新发展及发展趋势.中国造船. 2008,49(83):134-144.
    [36] Wolf, R., Hein, G W., Eissfeller, B., etc. An Integrated Low-cost GPS/INS Attitude Determination and Position Location System. Proceedings of ION GPS-96, Kansas City, Missouri, USA, 1996, 9 17-20: 975-981.
    [37] Mathur, N.G. A New Coning Attitude Algorithm for a Low Cost INS-GPS Integration, in Proceedings of ION GPS-1997, September 16-19, Kansas City, Missouri.
    [38] Kornfeld, R. P., Hansman, R. J., Deyst, J. J. Single antenna GPS based aircraft attitude determination. Institute of Navigation, National Technical Meeting‘Navigation 2000’, Long Beach, CA, USA, 1998, 1, 21-23: 345-354.
    [39] Yang, Y., Farrell, J.A. Fast Ambiguity Resolution for GPS/IMU Attitude Determination. Salt Lake City, UT, USA: Proceeding of ION GPS 2001, 2001.
    [40] Carvalho, H., Moral, P. D. Optimal nonlinear filtering in GPS/INS integration. IEEE Trans. AES. 1997, 33(3): 835-849.
    [41] Brown, A., and Silva, R. Video-aided GPS/INS Positioning and Attitude Determination ION GPS’99, 14-17 September 1999, Nashville, TN. pp.1961-1968.
    [42] Jin, W.R., Zhan, X.Q., Jiang, B.H. Non-contact rail-wear inspecting system based on image understanding. IEEE International Conference on Mechatronics and Automation(ICMA 2007), August 5-8, 2007, Harbin, China, pp.3854-3858.
    [43] Tu, C. H., Tu, K.Y., Chang, F. R., Wang, L.S. GPS Compass: A Novel Navigation Equipment. IEEE Transactions on Aerospace and Electronic Systems. 1997, 33(3): 1063-1068.
    [44] Lu, G., Lachapelle, G., Cannon, M. E. Performance analusis of a shipborne gyrocompass with a multi-antenna GPS system. IEEE PLANS’94, Las Vegas, 11-15 April 1994.
    [45] Koura, Y., Suzuki, H., Ogawa, K., Kamei, Y. and Nakamura, M. GPS COMPASS: A Low Cost GPS Direction Sensor of Two Antenna Type. ION GPS 2001,11-14 September 2001, Salt Lake City, UT. pp. 2700-2707.
    [46] www.sperrymarine.northropgrumman.com
    [47] www.furuno.co.jp
    [48] Jiunhan Keong, Lachapelle, G. Heading and Pitch Determination Using GPS/GLONASS. GPS Solutions. 2000, 3(3):26-36.
    [49]吴美平,逯亮清.北斗双星系统车辆定向技术.国防科技大学学报.2006, 28(3): 89-93.
    [50] Li, Y. MEMS and Platform Orientation & Deep Integration of GNSS/Inertial Systems. Inside GNSS, January-February 2008, 3(1):22-26.
    [51]科学技术部办公厅,国务院发展研究中心国际技术经济研究所. 2007世界前沿技术发展报告.北京:科学出版社,2008
    [52] Pratap Misra, Per Enge著,罗鸣,曹冲等译.全球定位系统——信号、测量与性能(第二版).北京:电子工业出版社,2008.
    [53]靳文瑞,战兴群. GNSS地基集成测试与开发环境.航天控制.2006, 24(6):56-60.
    [54] Gibbons, G. GLONASS——A new look for the 21st century. Inside GNSS, May-June 2008, pp.16-17.
    [55]张国良,曾静.组合导航原理与技术.西安:西安交通大学出版社,2008.
    [56] Kaplan, E. D., Hegarty, C. J.寇艳红(译). GPS原理与应用(第二版).北京:电子工业出版社. 2007.
    [57]王永泉.长航时高动态条件下GPS/GLONASS姿态测量研究[博士论文].上海交通大学, 2008.
    [58]朱涛,许江宁,田华明,卞鸿巍. GPS双星航姿测量研究.海军工程大学学报.2002, 14(3):67-70.
    [59]刘若普.GPS三维姿态测量技术研究[硕士论文].上海交通大学, 2008.
    [60] Buist, P. The Baseline Constrained LAMBDA Method for Single Epoch, Single Frequency Attitude Determination Applications. ION GNSS 20th International Technical Meeting of the Satellite Division, 25-28,September 2007, Fort Worth, TX
    [61] Cohen, C.E. Attitude determination, Global Positioning systems, theory and applications, Volume II, AIAA.
    [62] Crassidis, J.L., Markley, E.G., Lightsey, F.L. Global positioning system integer ambiguity resolution without attitude knowledge. Journal of Guidance Control and Dynamics. 1999, 22(2).
    [63] Verhagen, S., Teunissen, P.J.G. New Global Navigation Satellite System Ambiguity Resolution Method Compared to Existing Approaches. Journal of Guidance Control and Dynamics. 2006, 29(4).
    [64] Turner, K.J., Faruqi, F.A. A Gaussian Sum Filtering Approach for Phase Ambiguity Resolution in GPS Attitude Determination. IEEE International Conference on Acoustics, Speech and Signal Processing, April 1997.
    [65] Draganov, S., Veytsman, B., Haas, L. Space Applications Algorithm and Initial Simulation Results for the ITT Low-Power Transceiver. ION-GPS-2002, Portland, US, September 2002.
    [66] Knight, D. A New Method of Instantaneous Ambiguity Resolution. ION-GPS-1994, Colorado Springs, US, September 1994.
    [67] Park, C., Kim, I., Lee, J.G., Jee, G. Efficient Ambiguity Resolution Using ConstraintEquation. Proceedings of IEEE Position, Location, and Navigation Symposium, PLANS’96, 1996.
    [68] Hatch, R. Instantaneous Ambiguity Resolution. Proceedings of KIS’90, Banff, Canada, December 1990.
    [69] Kim, D., Langely, R.B. An Optimized Least-squares technique for Improving Ambiguity Resolution Performance and Computational Efficiency. ION-GPS- 1999, Nashville, US, September 1999.
    [70] Sutton, E. Optimal Search Space Identification for Instantaneous Integer Cycle Ambiguity Resolution. ION- GPS-1997, Kansas City, US, September 1997.
    [71] Erickson, C. An Analysis of Ambiguity Resolution Techniques for Rapid Static GPS Surveys Using Single Frequency Data. Proceedings Of the ION Satellite Division’s 5th International Meeting, Albuquerque, NM, September 1992, pp. 453-462.
    [72] Counselman, C.C., Gourevitch, S.A. Miniature Interferometer Terminals for Earth Surveying: Ambiguity and Multipath with the Global Positioning System. IEEE Transactions on Geoscience and Remote Sensing. 1981, GE-19(4):244-252.
    [73]刘基余.GPS卫星导航定位原理与方法.北京:科学出版社,2003.
    [74] Juang, JYH-C., Huang, G.S. Development of GPS-Based Attitude Determination Algorithm. IEEE Transactions on Aerospace and Electronic System. 1997, 33(3):968-976.
    [75]王银华,胡小平. GPS精密定向研究的实验.宇航学报, 2001, 22(1):70-74, 104.
    [76]许江宁,万德钧,王庆等.基于遗传算法的GPS姿态测量技术.中国惯性技术学报, 2002, 10(4):9-13.
    [77] van den Brekel, B.J.H. and van Nee, D.J.R. GPS multipath mitigation by antenna movements. Electronics Letters. 1992, 28(25):2286-2288.
    [78] Verhagen, S., Odijk, D., Boon, F., Almansa, J. M. L.Reliable Multi-Carrier Ambiguity Resolution in the Presence of Multipath. ION GNSS 20th International Technical Meeting of the Satellite Division, 25-28, September 2007, Fort Worth, TX.pp.339-350.
    [79] Serrano, L., Kim, D., Langley, R. B. Near Real-Time Carrier-Phase Multipath Mitigation in Kinematic Applications, Using a Dual-Antenna System and Effective Close Range Reflectors. ION GNSS 19th International Technical Meeting of the Satellite Division, 26-29, September 2006, Fort Worth, TX.pp.863-872.
    [80] Closas, P., Fernandez–Prades, C., Fernandez–Rubio, J. A., Ram?rez–Gonzalez, A.Multipath Mitigation Using Particle Filtering. ION GNSS 19th International Technical Meeting of the Satellite Division, 26-29, September 2006, Fort Worth, TX.pp.1733-1740.
    [81] Vorobiev, M., Veitsel, A., Pushkarev, S. Two-element Vertical Antenna for Multipath Mitigation in Field Conditions. ION GNSS 19th International Technical Meeting of the Satellite Division, 26-29, September 2006, Fort Worth, TX.pp.1784-1789.
    [82] Tranquilla, J.M., Carr, J.P., and Al-Rizzo, H.M. Analysis of a choke ring groundplane for multipath control in Global Positioning System(GPS) application. IEEE Transactions on Antennas and Propagation. 1994, 42(7):905-911.
    [83] Axelrad, P., Comp, C.J., and Macforan, P.F., SNR-based multipath error correction for GPS differential phase. IEEE Transactions on Aerospace and Electronic Systems.1996,32(2):650-660.
    [84] Axelard, P., Comp, C.J., MacDoran, P.F. Use of SNR for multipath error correction in GPS differential phase measurements: methodology and experimental results. Proceedings of ION-GPS 94, Salt Lake City, Utah, U.S.A. September 20-23.
    [85] Farrell, J.A. and Barth, M., The Global Positioning System and Inertial Navigation, McGraw-Hill(ISBN-0-07-022045-X), 1999.
    [86] Minami, M., Morikawa, H., Aoyama, T. and Mizumachi, M. An adaptive multipath estimation/elimination technique for GPS signals reception. Transactions of the Institute of Electronics, Informaiton and Communication Engineers B-I vol.J82B-I, (no. 11), Inst.Electron. Inf.&Commun. Eng, Nov. 1999. pp.2030-2050.
    [87] Yang, Y. Low-cost Single Frequency DGPS aided INS for Vehicle Control. Proceeding of ION GPS 2000, Salt Lake City, UT, USA, 19-22 Sept.2000.
    [88] Georgiadou, Y and Kleusberg, A. On carrier signal multipath effects in relative GPS positioning. Manuscripta Geodetica, Springer-Verlag, 13(3): 172– 179.
    [89] Ray, J.K., Cannon, M.E., and Fenton, P. Code range and carrier phase multipath mitigation using SNR, range and phase measurement in a multi-antenna system. Proceedings of ION GPS-99 Nashville, September 14-17, 1999.
    [90] Indriyatmoko, A., Rosihan, Won, D. H., et al. Particle Filter for Reduced Multipath ErrorParameters Estimation. ION GNSS 19th International Technical Meeting of the Satellite Division, 26-29, September 2006, Fort Worth, TX.pp.1763-1770.
    [91] Ray, J.K., Cannon, M.E. and Fenton, P. Mitigation of static carrier phase multipath effects using multiple closely-spaced antennas. Proceedings of ION-GPS 98, The Institute ofNavigation, pp.1025-1634.
    [92] van Nee, R.J., Siereveld, J., Fenton, P.C. and Townsend, B.R. The multipath estimating delay lock loop-approaching theoretical accuracy limits. Proceedings of IEEE PLANS’94, pp.246-251.
    [93] Elhabiby, M., El-Ghazouly, A., El-Sheimy, N. A new wavelet based multipath mitigation technique. ION GNSS 21th International Technical Meeting of the Satellite Division, 16-19, September 2008, Savannah, GA. TX.pp.625-631.
    [94] Michael S. Braasch. On the Characterization of Multipath Errors in Satellite-Based Precision Approach and Landing Systems [PhD. thesis].Ohio University. 1992.
    [95] Park, C., Cho, D.J., Cha, E. J., et al. Error Analysis of 3-Dimensional GPS Attitude Determination System. International Journal of Control, Automation, and Systems, vol. 4, no. 4, pp. 480-485,
    [96] Alban, S. Design and Performance of a Robust GPS/INS Attitude System for Automobile Applications [PhD thesis]. Stanford University, 2004.
    [97] Gomez, S.F., Attitude Determination and ADOP Results for International Space StationGPS Receiver, Proceedings of the ION GPS-00, Salt-Lake City, UT, September 2000.
    [98] JiunHan Keong. GPS/GLONASS Attitude Determination with a Common Clock using a Single Difference Approach. ION GPS‘99, 14-17 September 1999, Nashville, TN.pp.1941-1950.
    [99]徐金华,许江宁,朱涛.GPS/磁罗经导航系统应用研究.海洋测绘.2006, 26(3):42-44.
    [100]吴永航,马洪连,王超.罗盘在车辆导航系统中的应用.电子技术,2002(11): 62-64.
    [101]赵来定,徐江,周月臣.小型三轴数字罗盘测量误差分析.现代雷达,2004,26(11):53-55.
    [102] Itani, K., Hayashi, T. Availability of GPS compass for less satellites. ION GPS‘99, 14-17 September 1999, Nashville, TN. pp. 1293-1302.
    [103]王建琦,曹喜滨,孙兆伟.基于GPS与磁强计组合的姿态确定.中国空间科学技术. 2002, 2: 49-55.
    [104]董绪荣,张守信,华仲春. GPS/INS组合导航定位及其应用.长沙:国防科技大学出版社,1998.
    [105]黄铭媛.高超巡航飞行器组合导航系统研究与算法验证[硕士论文].上海交通大学,2008.
    [106] Yang, Y.C. Tightly Integrated Attitude Determination Methods for Low-Cost InertialNavigation: Two-Antenna GPS and GPS/Magnetometer [PhD. thesis]. Universtiy of Callifornia Riverside, 2001.
    [107] Wagner, J.F. and Kasties, G. Improving the GPS/INS Integrated System Performance by Increasing the Distance Between GPS Antennas and Inertial Sensors. Proceedings of the ION NTM-02, San Diego, CA, January 2002.
    [108] Gebre-Egziabher, D., A Low-Cost GPS/Inertial Attitude Heading Reference System for General Aviation Applications. IEEE PLANS-1998, Palm Springs. 1998, 4, 20-23: 518-525.
    [109]张源,许江宁,卞鸿巍.GPS姿态测量系统对惯性导航系统误差修正能力分析.情报指挥控制系统与仿真技术. 2005, 27(5):96-100.
    [110] Kim, J., A. Complete GPS/INS Integration Technique Using GPS Carrier Phase Measurements. IEEE PLANS-1998, Palm Springs, 1998, 4, 20-23: 526-533.
    [111] Scheninger, B.M., Hutton, J.J., McMillan, J.C., Low cost inertial/GPS integrated position and orientation system for marine applications. IEEE Aerospace and Electronic Systems. 1997, 12(5): 15-19.
    [112]谢洪华译, GPS/INS组合系统的研制概况.导航与雷达动态. 1994, 4: 10-17.
    [113]武静,茅旭初.恶劣环境下GPS定位估计滤波算法的非线性模型.上海交通大学学报.2008,42(2):639-643.
    [114] Julier, S. J., Uhlman, J. K. A new approach for filtering nonlinear systems. Proceedings of the American Con trol Conference. Seattle, USA, 1995. pp.1628-1632.
    [115] Wan, E.A. and van der Merwe R. The unscented Kalman filter for nonlinear estimation. Proceedings of Symposium 2000 on adaptive systems for signal processing, communication and control, IEEE, Lake Louise, Alberta, Canada, October 2000.
    [116]王庆,万德钧. GPS航姿测量及其仿真研究.船舶工程. 1996, 4:44~49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700