模糊随机多目标决策模型及其在资产组合选择中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在现实世界中,人们制定决策时经常会碰到各种不确定现象,其中随机现象和模糊现象是两种主要的不确定现象.随机性是指事件是否发生的不确定性,用来描述和刻画随机现象的工具是随机变量.模糊性是指事件本身状态的不确定性,用来描述和刻画模糊现象的根据是模糊集.随机多目标规划和模糊多目标规划可以帮助人们分别在随机不确定环境和模糊不确定环境下做出决策.然而,在实际决策过程中,人们面临的常常是双重不确定性环境,即随机现象和模糊信息同时存在并相互融合,无法截然分开.模糊随机变量是双重不确定变量的一种,它是描述双重不确定性现象(指模糊随机现象)的一种有用的数学工具.模糊随机变量被定义为从概率空间映射到模糊变量构成的集合上的可测函数.简单的说,模糊随机变量就是一个取值为模糊集的随机变量.模糊随机现象在现实生活中广泛存在.关于模糊随机多目标决策问题的研究不但具有理论意义,同时也具有实际应用意义.
     资产组合选择理论研究如何把投资资金分配到不同的资产中,以达到分散风险并确保收益的目的.在证券市场中存在着多种不确定性,既有随机性也有模糊性.到目前为止,多数资产组合选择模型都是以股票的未来收益率是随机变量为前提并建立在概率论基础上的.最近,证券市场中存在的模糊不确定性逐渐被人们认识到,在假设股票的未来收益率为模糊变量的条件下,各种模糊资产组合选择模型被相继提出.模糊资产组合选择问题的研究成为一个新的极有前途的研究方向.实际上,无论是随机或模糊资产组合选择模型,它们往往只考虑了一种不确定性,对在双重不确定环境下的资产组合选择问题需要做进一步的研究.
     为此,本文在广泛借鉴和吸收国内外研究成果的基础上,以模糊随机理论为基础,对模糊随机多目标规划模型和算法进行了研究.同时,利用模糊随机变量刻画证券市场中存在的模糊随机现象,建立了若干在模糊随机环境下的资产组合选择模型(其中包括模糊随机环境下的多目标资产组合选择模型).主要工作如下:
     (1)为刻画证券市场中同时出现的随机不确定性和模糊不确定性,本文将股票的未来收益率处理为模糊随机变量,同时考虑了历史交易数据,专家的经验和知识以及投资者个人对各股票未来收益的预期三方面因素.
     (2)遵循Markowitz提出的均值方差原则,提出了模糊随机λ-均值方差模型,定义了λ-均值方差有效前沿和λ-均值方差有效解的概念,并讨论了位于不同的λ-均值方差有效前沿上的有效解之间的关系.由于不再要求投资者对未来有同质预期,因此,对不同的投资者建立了不同的资产组合选择模型,投资者根据他们对股票收益的不同预期产生自己的最优投资策略.此外,还收集了相关数据对提出的模型进行了实证分析.
     (3)非标准类型的投资者往往会考虑除了投资收益和风险之外的其它目标,如流动性.本文中假设投资者同时考虑投资收益,风险和流动性三个目标,提出了模糊随机环境下的带复杂约束条件的多目标资产组合选择模型,并设计了基于妥协方法的遗传算法求解该多目标资产组合选择模型,从而产生投资者的一个妥协投资策略.
     (4)针对已有的模糊随机机会约束多目标规划模型,本文给出了对一类特殊的模糊随机变量模糊随机机会约束多目标线性规划的确定等价模型,并利用交互式满意算法给出了求解该确定等价模型的传统求解算法.同时,为求解一般的模糊随机机会约束多目标规划模型,综合利用了模糊随机模拟和基于妥协方法的遗传算法提出了新的混合智能算法以获得决策者的一个妥协解.
     (5)参照随机规划中的概率最大模型,利用模糊随机事件的本原机会测度的概念本文提出了模糊随机机会最大多目标规划模型.对一类特殊类型的模糊随机变量,本文给出了模糊随机机会最大多目标线性规划模型的确定等价模型,并给出了找到该确定等价模型的一个弱有效解的方法.此外,为求解一般的模糊随机机会最大多目标规划模型,本文提出了结合模糊随机模拟和妥协遗传算法的混合智能算法以产生一个妥协解.
     (6)参照随机资产组合选择问题的两种安全第一模型的形式,提出了模糊随机机会约束资产组合选择模型和模糊随机机会最大资产组合选择模型.收集了相关数据对以上两个模型进行了实证分析.
     (7)从区间序的角度考虑了区间目标规划模型,将该模型最终转化为一个线性规划问题进行求解.同时,以资产组合的期望收益率的绝对偏差函数度量投资风险,利用区间数表示各股票的期望收益率和绝对偏差,提出了一类基于区间目标规划的资产组合选择模型,并收集了相关数据进行了实证分析.
     (8)将本文中提出的这些模糊随机环境下的资产组合选择模型与已有的随机资产组合选择模型和模糊资产组合选择模型进行了比较分析.
     以模糊随机理论为核心,本文对模糊随机多目标规划模型,传统求解算法以及混合智能算法进行了分析和探讨.同时,紧密结合现有的关于模糊随机多目标规划的研究成果,对在模糊随机环境下的资产组合选择问题进行了模型,算法和实证分析上的讨论.本文的研究工作无疑对模糊随机多目标规划和在模糊随机环境下的资产组合选择问题的研究起到了积极的推动作用.
Among types of uncertainty surrounding real life problems, randomness (stochastic variation) and fuzziness (vagueness) play a pivotal role. Randomness is one type of uncertainty that describes occurrence of affairs, and random variables are used to describe the stochastic phenomena. Fuzzyness is one type of uncertainty that describes the uncertain state of affairs, and fuzzy sets are used to describe fuzzy phenomena. Accordingly, stochastic programming and fuzzy programming have been proposed to make decision under uncertainty environment. However, in a decision-making process, we may face a hybrid uncertain environment where fuzziness and randomness coexist. In such cases, the concept of fuzzy random variable is a useful tool dealing with the two types of uncertainty simultaneously. Roughly speaking, a fuzzy random variable is a measurable function from a probability space to the set of fuzzy variables. In other words, a fuzzy random variable is a random variable taking fuzzy values. Fuzzy random phenomena are existed extensively in real life problems. Therefore, research on fuzzy random multiobjective decision making bear not only academic but also practical significance.
     Portfolio selection theory deals with how to distribute investment money among different assets to maximize return as well as minimize risk. There are many kinds of uncertainty including randomness and fuzziness simultaneously in the stock market. So far, on the assumption that the future return rate of each securities is a random variable, most of the portfolio selection models are based on probability theory. Recently, fuzziness existed in the stock market are gradually recognized by some scholars. Several fuzzy portfolio selection models have been proposed on the assumption that the return rate of each securities is a fuzzy variable. Actually, either the stochastic portfolio selection models or fuzzy portfolio selection models consider only one type of uncertainty. Therefore, portfolio selection under hybrid uncertain environment needs further research.
     Hence, with summarizing the known researches on fuzzy random programming and portfolio selection models, we discuss the fuzzy random multiobjective programming models and algorithms based on the fuzzy random theory in this dissertation. By using fuzzy random variable to describe the fuzzy random phenomena existed in the stock market, we propose several portfolio selection models as well as multiobjective portfolio selection models under fuzzy random environment. The major achievements in this dissertation are listed as follows:
     (1) In order to characterize the randomness and fuzziness existed in the stock market simultaneously, the return rate of each securities is treated as a fuzzy random variable. The historical data, the experts' knowledge and experience as well as the investor's individual expectation about the return rate of each securities are considered in this disseration.
     (2) Following the mean variance principle, the fuzzy randomλ-mean variance model is proposed. Theλ-mean variance efficient frontier and theλ-mean variance efficient solution are defined, and the relations between theλ-mean variance efficient solutions located on differentλ-mean variance efficient frontiers are also discussed. The same expectation assumption on the future return rate of each securities, which is a basic assumption in Markowitz's mean-variance model, is no longer necessary, different investors can built their different portfolio selection models and therefore obtain their optimal investment strategy from the the proposed fuzzy randomλ-mean variance model. Furthermore, with the collection of historical data practical analysis is carried out for the proposed portfolio selection model.
     (3) Non-standard investors always consider more objectives besides return and risk, such as liquidity. Suppose that a investor consider return, risk and liquidity simultaneously, a constrained multiobjective portfolio selection model under fuzzy random environment is proposed, and the compromised-based genetic algorithm is used to obtain a compromise investment strategy.
     (4) Based on the fuzzy random chance constrained multiobjective programming model proposed by Liu, some crisp equivalent models are given for some special kinds of fuzzy random variables. For the general kinds of fuzzy random variables, hybrid intelligent algorithms which combine fuzzy random simulation and compromised-based genetic algorithms are combined together to propose a hybrid intelligent algorithm and therefore a compromised solution can be obtained.
     (5) Similar to the probability maximization model in stochastic programming, a class of fuzzy random chance maximization multiobjective programming model based on the primitive chance of fuzzy random event is proposed. For a special kind of fuzzy random variables, the crisp equivalent models are proposed and a method is also proposed to obtain a weakly efficient solution. For general kinds of fuzzy random variables, hybrid intelligent algorithm which combines fuzzy random simulation and compromised-based genetic algorithms is also designed to obtain a compromised solution.
     (6) Similar to the safety first model, fuzzy random chance maximization portfolio selection model and fuzzy random chance constrained portfolio selection model are proposed. Moreover, with the collection of historical data practical analysis is carried out to verify the effectiveness of the proposed models.
     (7) The interval goal programming is discussed from the view of interval orders and it is converted into a linear programming problem at last. By using the absolute deviation risk function, a portfolio selection model with interval return and interval absolute deviation is proposed based on the interval goal programming model. Moreover, with the collection of historical data practical analysis is carried out to verify the effectiveness of the proposed model.
     (8) The fuzzy random portfolio selection models proposed in this dissertation are compared with some of the existing stochastic and fuzzy portfolio selection models in literature.
     Based on fuzzy random theory, the fuzzy random multiobjective programming models, its traditional algorithms and hybrid intelligent algorithms are discussed in this dissertation. Moreover, the fuzzy random portfolio selection models, its algorithms and practical analysis are also discussed. Undoubtedly, these researches included in the dissertation are helpful to develop, improve and prompt the researches on fuzzy random multiobjective programming and fuzzy random portfolio selection models.
引文
[1] Alefeld G. and Herzberger J. Introduction to Interval Computations. Academic Press, New York, 1983.
    [2] Ammar E. and Khalifa H.A. Fuzzy portfolio optimization a quadratic programming approach. Chaos, Solitons and Fractals 2003, 18:1045-1054.
    [3] Antczak T. A modified objective function method for solving nonlinear multiobjec-tive fractional programming problems. J. Math. Anal. Appl., 2006, 322:971-989.
    [4] Aouni B., Abdelaziz F.B. and Fayedh R.E. Multi-objective stochastic programming for portfolio selection. European Journal of Operational Research, 2007, 177(3): 1811-1823.
    [5] Ballestero E. and Reomero C. Portfolio selection: A compromise programming solution. Journal of Operational Research of Society, 1996, 47:1377-1386.
    [6] Bazaraa M.S. and Shetty CM. Nonlinear Programming: Theory and Algorithms. Wiley, New York, 1979.
    [7] Bellman R. and Zadeh L.A. Decision making in a fuzzy environment. Management Science, 1970, 17:141-164.
    [8] Ben-Israel A. and Robers P.D. A Decomposition method for interval linear programming. Operations Research, 1973, 21:1154-1157.
    
    [9] Bitran G.R. Linear multiple objective problems with interval coefficient. Management Science, 1980, 26:694-706.
    [10] Black F. and Scholes M. The pricing of options and corporate liabilities. Journal of Political Economy, 1973, 81:637-654.
    [11] Buckley J.J. Stochastic versus possibilistic programming. Fuzzy Sets and Systems, 1990, 34:173-177.
    [12] Campos L.M. and Gonzalez A. A subjective approach for ranking fuzzy numbers. Fuzzy Sets and Systems, 1989, 29:143-153.
    [13] Carlsson C. and Fuller R. On possibilistic mean value and variance of fuzzy num-
    ?bers. Fuzzy Sets and Systems, 2001, 122:315-326.
    [14] Carlsson C, Fuller R. and Majlender P. A possibilistic approach to selecting portfolios with highest utility score. Fuzzy Sets and Systems, 2002, 131:13-21.
    [15] Chakraborty M. and Gupta S. Fuzzy mathematical programming for multi-objective linear fractional programming problem. Fuzzy Sets and Systems, 2002, 125:335-342.
    [16] Chanas S. and Kuchta D. Multiple objectiveprogramming in optimization of the interval objective function—a generalized approach. European Journal of Operational Research, 1996, 94:594-598.
    [17] Chang T.J., Meade N., Beasley J.B. and Sharaiha Y. Heuristic for cardinality constrained portfolio optimization. Computers and Operations Research, 2000, 27:1271-1302.
    [18] Chankong V. and Haimes Y.Y. Multiobjective Decision Making: Theory and Methodology. North-Holland, New York, 1983.
    [19] Charnes A. and Cooper W.W. Chance-constrained programming. Management Science, 1959, 6(l):73-79.
    [20] Charnes A. and Cooper W.W. Management Models and Application of Linear Programming. Wiley, New York, 1961.
    [21] Charnes A., Granot F. and Philips F. An algorithm for solving interval linear programming probelms. Operations Research, 1977, 688-695:25.
    [22] Chen M.S., Yao J.S. and Lu H.F. A fuzzy stochastic single-period model for cash management. European Journal of Operational Research, 2006, 170:72-90.
    [23] Chen Y.J. and Liu Y.K. Portfolio selection in fuzzy environment. In Proceeedings of the Fourth International Conference on Machine Learning and Cybernetics, pages 2694-2699, Guangzhou, 2005.
    [24] Chiodi L., Mansini R. and Speranza M.G. Semi-absolute deviation rule for mutual funds portfolio selection. Annals of Operations Research, 2003, 124:245-265.
    [25] Colubi A., Domonguez-Menchero J.S., Lopez-Diaz M. and Ralescu D.A. On the formalization of fuzzy random variables. Information Sciences, 2001, 133:3-6.
    [26] Costa J.P. Computing non-dominated solutions in MOLFP. European Journal of Operational Research, 2007, 181(3): 1464-1475.
    [27] Crama Y. and Schyns M. Simulated annealing for complex portfolio selection problems. European Journal of Operational Research, 2003, 150:546-571.
    [28] Deb K. Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley, New York, 2001.
    [29] Deng X.T., Li Z.F. and Wang S.Y. A minimax portfolio selection strategy with equilibrium. European Journal of Operational Research, 2005, 166:278-292.
    [30] Doerner K., Gutjahr W.J., Hartl R.F., Strauss C. and Stummer C. Pareto ant colony optimization: a metaheuristic approach to multiobjective portfolio Selection. Annals of Operations Research, 2004, 131: 79-99.
    [31] Dubois D. and Prade H. The mean value of a fuzzy number. Fuzzy Sets and Systems, 1987, 24:279-300.
    [32] Dubois D. and Prade H. Possibility Theory. Plenum Press, New York, 1988.
    [33] Ehrgott M., Klamroth K. and Schwehm C. An MCDM approach to portfolio optimization. European Journal of Operational Research, 2004, 155:752-770.
    [34] Elton E.J. and Gruber M.J. The multi-period consumption investment problem and single period analysis. Oxford Economics Papers, 1974, 9:289-301.
    [35] Elton E.J. and Gruber M.J. On the optimality of some multiperiod portfolio selection criteria. Journal of Business, 1974, 7:231-243.
    [36] Elton E.J., Gruber M.J., Brown S.J. and Goetzmann W. Modern Portfolio Theory and Investment Analysis (6th edition). John Wiley, New York, 2002.
    [37] Feng Y., Hu L. and Shu H. The variance and covariance of fuzzy random variables and their appliactions. Fuzzy Sets and Systems, 2001, 120:487-497.
    [38] Fonseca C. and Fleming P. An overview of evolutionary algorithms in multiobjective optimization. Evolutionary Computation, 1995, 3(1):1-16.
    [39] Fuller R. and Majlender P. On weighted possibilistic mean and variance of fuzzy numbers. Fuzzy Sets and Systems, 2003, 136:363-374.
    [40] Gao J. and Liu B. New primitive chance measures of fuzzy random event. International Journal of Fuzzy Systems, 2001, 3(4):527-531.
    [41] Gen M. and Cheng R. Genetic Algorithms & Engineering Optimization. John Wiley & Sons, New York, 2000.
    [42] Gil M.A. and Lopez-Diaz M. The A-average value and the fuzzy expectation of a fuzzy random variable. Fuzzy Sets and Systems, 1998, 99:347-352.
    [43] Gil M.A., Lopez-Diaz M. and Ralescu D.A. Overview on the development of fuzzy random variables. Fuzzy Sets and Systems, 2006, 157:2546-2557.
    [44] Giove S., Funari S. and Nardelli C. An interval portfolio selection problem based on regret function. European Journal of Operational Research, 2006, 170:253-264.
    [45] Gladish B.P., Parra M.A., Terol A.B. and Uria M.V.R. Solving a multiobjective possibilistic problem through compromise programming. European Journal of Operational Research, 2005, 164:748-759.
    [46] Hamza F. and Janssen J. The mean-semivariances approach to realistic portfolio optimization subject to transaction costs. Applied Stochastic Models and Data Analysis, 1998, 14:275-283.
    [47] Henry M., Mok K., Peng J. and Tse W.M. Credibility programming approach to fuzzy portfolio selection problems. In Proceedings of the Fourth International Conference on Maching Learning and Cybernetics, pages 2523-2528, Guangzhou, 2005.
    [48] Horn J. Multicriterion Decision Making. Oxford University Press, New York, 1997.
    [49] Huang X. Two new models for portfolio selection with stochastic returns taking fuzzy information. European Journal of Operational Research, 2007, 180(l):396-405.
    [50] Huang J.J., Tzeng G.H. and Ong C.S. A novel algorithm for uncertain portfolio selection. Applied Mathematics and Computation, 2006, 173:350-359.
    [51] Huang X. Fuzzy chance-constrained portfolio selection. Applied Mathematics and Computation, 2006, 177:500-507.
    [52] Ichihashi H., Inuiguchi M. and Kume Y. Modality constrained programming models: a unified approach to fuzzy mathematical programming problems in the setting of possibilisty theory. Information Sciences, 1993, 67:93-126.
    [53] Ida M. Portfolio selelction problem with interval coefficients. Applied Mathematics Letters, 2003, 16:709-713.
    [54] Ida M. Solutions for the portfolio selection problem with interval and fuzzy coefficients. Reliable Computing, 2004, 10:389-400.
    [55] Ignizio J.P. Linear Programming in Single & Multi-Objective Systems. Prentice-Hall, Englewood Cliffs, 1982.
    [56] Inuiguchi M. and Kume Y. Goal programming problems with interval coefficients and target intervals. European Journal of Operational Reseach, 1991, 52:345-360.
    [57] Inuiguchi M. and Ramik J. Possibilistic linear programming: A brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem. Fuzzy Sets and Systems, 2000, 111:3-28.
    [58] Inguiguchi M., Ramik J., Tanino T. and Vlach M. Satisficing solutions and duality in interval and fuzzy linear programming. Fuzzy Sets and Systems, 2003, 135:151- 177.
    [59] Inuiguchi M. and Sakawa M. Minimax regret solution to linear programming problems with an interval objective function. European Journal of Operational Research, 1995, 86:526-536.
    [60] Inuiguchi M. and Tanino T. Portfolio selection under independent possibilistic information. Fuzzy Sets and Systems, 2000, 115:83-92.
    [61] Ishibuchi H. and Tanaka H. Formulation and analysis of linear programming problems with interval coefficients. J. Jpn. Ind. Manage. Assoc., 1989, 40:320- 329.
    [62] Ishibuchi H. and Tanaka H. Multiobjective programming in optimization of the in- terval objective function. European Journal of Operational Research, 1990, 48:219-225.
    [63] Itoh T. and Ishii H. One machine scheduling problem with fuzzy random due-dates. Fuzzy Optimization and Decision Making, 2005, 4:71-78.
    [64] Katagiri H. and Ishii H. Fuzzy portfolio selection problem. IEEE SMC'99 Confer- ence Proceedings, 3:973-978.
    [65] Katagiri H. and Ishii H. Linear programming problem with fuzzy random constraint. Mathematica Japonica, 2000, 52:123-129.
    [66] Katagiri H., Sakawa M. and Ishii H. Fuzzy random bottleneck spanning tree problems using possibility and necessary measures. European Journal of Operational Research, 2004, 152:88-95.
    [67] Katagiri H., Sakawa M., Kato K. and Nishizaki I. A fuzzy random multiobjective 0-1 programming based on the expectation optimization model using possibility and necessary measures. Mathematical and Computer Modeling, 2004, 40:411-421.
    [68] Kataoka S. A stochastic programming model. Econometrica, 1963, 31:181-196.
    [69] Kato K., Katagiri H., Sakawa M. and Ohsaki S. An interactive fuzzy satisficing method based on the fractile optimization model using possibility and necessity measures for a fuzzy random multiobjective linear programming problem. Electronics and Communications in Japan, 2005, 88(5):20-28.
    [70] Kaufmann A. Introduction to the Theory of Fuzzy Subsets, Vol. I. Academci Press, New York, 1975.
    [71] Kita H., Tamaki H. and Kobayashi S. Multiobjective optimization by genetic algorithms: A review. In D. Fogel, editor, Proceedings of the IEEE International Conference on Evolutionary Computation, pages 517-522, Piscataway, N J, 1996. IEEE Press.
    [72] Konno H. Piecewise linear risk function and portfolio optimization. Journal of Operational Research Society of Japanese, 1990, 33:139-156.
    [73] Konno H. and Suzuki K. A mean-vairance-skewness optimization model. Journal of Operational Research Society of Japan, 1995, 38:173-187.
    [74] Konno H. and Wijayanake A. Mean-absolute deviation portfolio optimization model under transaction costs. Journal of Operations Research of Society, 1999, 42(4):422-435.
    [75] Konno H. and Wijayanayake A. Portfolio optimization under d.c. transaction costs and minimal transaction unit constraints. Journal of Global Optimization, 2002, 22:137-154.
    [76] Konno K. and Yamazika H. Mean absolute deviation portfolio optimization model and its application to Tokyo stock market. Mangement Science, 1991, 37:519-531.
    [77] Korner R. On the variance of fuzzy random variables. Fuzzy Sets and Systems, 1997, 92:83-93.
    [78] Kruse R. and Meyer K.D. Statistics with Vague Data. Reidel Publishing Company, Dordrecht, 1987.
    [79] Kwakernaak H. Fuzzy random variables-definitions and theorems. Information Science, 1978, 15:1-29.
    [80] Lai K.K., Wang S.Y., Xu J.P. and Fang Y. A class of linear interval programming problems and its applications to portfolio selection. IEEE Transaction on Fuzzy Systems, 2002, 10:698-704.
    [81] Lai K.K., Fang Y. and Wang S.Y. Portfolio rebalancing model with transaction costs based on fuzzy decision theory. European Journal of Operational Research, 2006, 175(2) :879-893.
    
    [82] Leon T., Liern V. and Vercher E. Viability of infeasible portfolio selection problems: a fuzzy approach. European Journal of Operational Research, 2002, 139: 178-189.
    [83] Li R. J. and Lee E.S. Ranking fuzzy numbers-A comparison. Proceedings of North American Fuzzy Information Processing Society Workshop, West Lafayette, IL, 169-204, 1987.
    [84] Linter J. The valuation of risk assets and the selection of risky investment in stock portfolios and capital budgets. Review of Economics and Statistics, 1965, 47:13-37.
    [85] Liu B. Fuzzy random chance-constraint programming. IEEE Transactions on Fuzzy Systems, 2001, 9(5):713-720.
    [86] Liu B. Fuzzy random dependent-chance programming. IEEE Transactions on Fuzzy Systems, 2001, 9(5):721-726.
    [87] Liu B. Theory and Practice of Uncertain Programming. Physica Verlag, Heidelberg; New York, 2002.
    [88] Liu B. and Iwamura K. Chance constrained programming with fuzzy parameters. Fuzzy Sets and Systems, 1998, 94:227-237.
    [89] Liu B. and Iwamura K. A note on chance constrained programming with fuzzy coefficients. Fuzzy Sets and Systems, 1998, 100:229-233.
    [90] Liu W.A., Zhang W.G. and Wang Y.L. On admissible efficient portfolio selection: Models and algorithms. Applied Mathematics and Computation, 2006, 176:208-218.
    [91] Liu Y.K. Convergent results about the useof fuzzy simulation in fuzzy optimization problems. IEEE Transactions on Fuzzy Systems, 2006, 14(2):295-304.
    [92] Liu Y.K. and Liu B. A class of fuzzy random optimization: Expected value models. Information Sciences, 2003, 155:89-102.
    [93] Liu Y.K. and Liu B. Fuzzy random variables: A scalar expected value operator. Fuzzy Optimization and Decision Making, 2003, 2:143-160.
    [94] Liu Y.K. and Liu B. On minimum-risk problems in fuzzy random decision systems. Computers & Operations Research, 2005, 32:257-283.
    [95] Lopez-Diaz M. and Angeles Gil M. Constructive definitions of fuzzy random variables. Stochastics & probability Letters, 1997, 36:135-143.
    [96] Luhandjula M.K. Linear programming under randomness and fuzziness. Fuzzy Sets and Systems, 1983, 10:45-55.
    [97] Luhandjula M.K. Fuzziness and randomness in an optimization framework. Fuzzy Sets and Systems, 1996, 77:291-297.
    [98] Luhandjula M.K. and Gupta M.M. On fuzzy stochastic optimization. Fuzzy Sets and Systems, 1996, 81:47-55.
    [99] Luhandjula M.K. Optimisation under hybrid uncertainty. Fuzzy Sets and Systems,2005, 146:187-203.
    [100] Luhandjula M.K. Fuzzy stochastic linear programming: Survey and future research directions. European Journal of Operational Research, 12006, 74:1353-1367.
    [101] Mao J.C.T. Models of capital budgeting, E-V versus E-S. Journal of Financial and Quantitative Analysis, 1970, 5:657-675.
    [102] Mansini R. and Speranza M.G. Heuristic algorithms for the portfolio selection problem with minimum transaction lots. European Journal of Operational Research, 1999, 114:219-233.
    [103] Mansini R., Kellerer H. and Speranza M.G. Selecting portfolios with fixed costs and minimum transaction lots. Annals of Operations Research, 2000, 99:287-304.
    [104] Markowitz H. Portfolio selection. Journal of Finance, 1952, 7:77-91.
    [105] Markowitz H. Portfolio Selection: Efficient Diversification of Investments. John Wiley & Sons, New York, 1959.
    [106] Matlab. Optimization Toolbox for Use with Matlab, Version 7.0.1 (R14). Math-works, Inc., Natick, Massachusetts, 2004.
    [107] Mausser H.E. and Laguna M. A heuristic to minimax absolute regret for linear programs with interval objective function coefficients. European Journal of Operational Research, 1999, 117:157-174.
    [108] Merton R.C. Lifetime portfolio selection under uncertainty: The continuous time case. Review of Economics and Statistics, 1969, 51:247-257.
    [109] Merton R.C. The theory of rational option pricing. Bell Journal of Economics and Management Science, 1973, 4:141-183.
    [110] Metev B. Use of reference points for solving MONLP problems. European Journal of Operational Research, 1995, 80:193-203.
    [111] Metev B. and Gueorguieva D. A simple method for obtaining weakly efficient points in multiobjective linear fractional programming problems. European Journal of Operational Research, 2000, 126:386-390.
    [112] Michalewicz Z. Genetic Algorithms + Data Structures = Evolution Programs. Springer, New York, 1994.
    [113] Mohan C. and Nguyen H.T. An interactive satisfying method for solving mixed fuzzy-stochastic programming problems. Fuzzy Sets and Systems, 2001, 117:67-79.
    [114] Moore R.E. Method and Applications of Interval Analysis. SIAM, Philadelphia, 1979.
    [115] Mossin J. Equilibrium in a capital asset market. Econometrica, 1966, 34:768-783.
    [116] Mossin J. Optimal multi-period portfolio policies. Journal of Business, 1968, 41:215-229.
    [117] Nahmias S. Fuzzy variables. Fuzzy Sets and Systems, 1978, 1:97-110.
    [118] Negoita C.V. and Ralescu D. Simulation, Knowledge-Based Computing, and Fuzzy Statistics. Van Nostrand Reinhold, New York, 1987.
    [119] Nguyen V.H. Fuzzy stochastic goal programming problems. European Journal of Operational Research, 2007, 176:77-86.
    [120] Ogryczak W. Multiple criteria linear programming model for portfolio selection. Annals of Operations Research, 2000, 97:143-162.
    [121] Ong C.S., Huang J.J. and Tzeng G.H. A novel hybrid model for portfolio selection. Applied Mathematics and Computation, 2005, 169:1195-1210.
    [122] Parra M.A., Terol A.B. and Uria M.V.R. A fuzzy goal programming approach to portfolio selection. European Journal of Operational Research, 2001, 133:287-297.
    [123] Philippatos G.C. and Wilson C.J. Entropy, market risk, and the selection of efficient portfolios. Applied Economics, 1972, 4:209-220.
    [124] Parra M.A., Terol A.B., Gladish B.P. and Uria M.V.R. Fuzzy compromise programming for portfolio selection. Applied Mathematics and Computation, 2006, 173:251-264.
    [125] Perold A.F. Large-scale portfolio optimization. Management Science, 1984, 31(10):1143-1159.
    [126] Pratap A., Deb K., Agrawal S. and Meyarivan T. A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 2002, 6(2):182-197.
    [127] Puri M.L. and Ralescu D.A. Fuzzy random variables. J. Math. Annal Appl., 1986, 114:409-422.
    [128] Qi Y., Hirschberger M. and Steuer R.E. Tri-criterion quadratic-linear programming. Technical report, Working paper, Department of Banking and Finance, University of Georgia, Athens, 2006.
    [129] Qi Y., Steuer R.E. and Hirschberger M. Multiple objectives in portfolio selection. Journal of Financial Decision Making, 2005, 1(1):11—26.
    [130] Qi Y., Steuer R.E. and Hirschberger M. Suitable-portfolio investors, nondomi-nated frontier sensitivity, and the effect of multiple objectives on standard portfolio selection. Annals of Operations Research, 2007, 152(1):297-317.
    [131] Qiao Z. and Wang G. On solutions and distributions problems of the linear programming with fuzzy random variable coefficients. Fuzzy Sets and Systems, 1993, 58:155-170.
    [132] Qiao Z., Zhang Y. and Wang G. On fuzzy random linear programming. Fuzzy Sets and Systems, 1994, 65:31-49.
    [133] Ramaswamy S. Portfolio selection using fuzzy decision theory. Working Paper of Bank for International Settlements, No. 59, 1998.
    [134] Rolland E. A tabu search method for constrained real-number search: Applications to portfolio selection. Technical report, Dept. of accounting & management information systems. Ohio State University, 1997.
    [135] Ross S.A. The arbitrage theory of capital asset pricing. Journal of Economic Theory, 1976, 13:341-360.
    [136] Roubens M. and Teghem J. Comparisons of methodologies for fuzzy and stochastic multiobjective programming problems. Fuzzy Sets and Systems, 1991, 42:119-132.
    [137] Roy A.D. Safety-first and the holding of assets. Econometrics, 1952, 20:431-449.
    [138] Sakawa K. Fuzzy Sets and Interactive Multiobjective Optimization. Plenum Press, New York, 1993.
    [139] Sawaragi Y., Nakayama H. and Tanino T. Theory of Multiobjective Optimization. Academic Press, New York, 1985.
    [140] Schaerf A. Local search techniques for constrained portfolio selection problems. Computational Economics, 2002, 20:177-190.
    [141] Schrage L. LINGO User's Guide. Lindo Publishing, Chicago, 2004.
    [142] Sengupta A. and Pal T.K. On comparing interval numbers. European Journal of Operational Research, 2000, 127:28-43.
    [143] Sengupta A., Pal T.K. and Chakraborty D. Interpretation of inequality constraints involving interval coefficients and a solution to interval linear programming. Fuzzy Sets and Systems, 2001, 119:129-138.
    [144] Sharpe W. Capital asset prices: a theory of market equilibrium under conditions of risk. Journal of Finance, 1964, 19:425-442.
    [145] Shih C.J. and Wangsawidjaja R.A.S. Mixed fuzzy-probabilistic programming approach for multiobjective engineering optimization with random variables. Computers and Structures, 1996, 59(2):283-290.
    [146] Shing C. and Nagasawa H. Interactive decision system in stochastic multiobjective portfolio selection. Int. J. Production Economics, 1999, 60-61: 187-193.
    [147] Shukla P.K. and Deb K. On finding multiple pareto-optimal solutions using classical and evolutionary generating methods. European Journal of Operational Research, 2007, 181 (3):1630-1652.
    [148] Siddharha S.S. A dual ascent method for the portfolio selection problem with multiple constraints and linked proposals. European Journal of Operational Research, 1998, 108:196-207.
    [149] Slowinski R. and Teghem J. Stochastic versus Fuzzy Approaches to Multiobjec-tive Mathematical Programming under Uncertainty. Kluwer Academci Publishers, 1990.
    [150] Stancu-Minasian I. M. Stochastic Programming with Mutiple Objective Functions. Rediel, Dordrecht, 1984.
    [151] Stancu-Minasiana I.M. and Pop B. On a fuzzy set approach to solving multiple objective linear fractional programming problem. Fuzzy Sets and Systems, 2003, 134:397-405.
    [152] Steuer R.E. Mulitple objective linear programming with interval criterion weights. Management Science, 1976, 23:305-316.
    [153] Steuer R.E., Qi Y. and Hirschberger M. Developments in Multi-Attribute Portfolio Selection. Working Paper, Department of Banking and Finance, University of Georgia, Athens, 2006.
    [154] Streichert F., Ulmer H. and Zell A. Evolutionary algorithms and the cardinality constrained portfolio selection problem. In D. Ahr, R. Fahrion, M. Oswald, and G. Reinelt, editors, Operations Research Proceedings 2003, Selected Papers of the International Conference on Operations Research (OR 2003), pages 253-260. Springer-Verlag, Berlin, 2003.
    [155] Sturm J. Using SeDuMi 1.02, a MATLAB Toolbox for Optimization Over Symmetric Cones. Optimization Methods and Software, 1999, 11:625-653.
    [156] Takehara H. An interior point algorithm for large scale portfolio optimization. Annals of Operations Research, 1993, 45:373-386.
    [157] Tanaka H. and Guo P. Portfolio selection based on upper and lower exponential possibility distributions. European Journal of Operational Research, 1999, 114:115-126.
    [158] Tanaka H., Guo P. and Turksen I.B. Portfolio selection based on fuzzy probabilities and possibility distributions. Fuzzy Sets and Systems, 2000, 111:387-397.
    [159] Telser L.G. Safety first and hedging. Review of Economic Studies, 1955, 23:1-16.
    [160] Tiryaki F. and Ahlatcioglu M. Fuzzy stock selection using a new fuzzy ranking and weighting algorithm. Applied Mathematics and Computation, 2005, 170:144-157.
    [161] Toyonaga T., Itoh T. and Ishii H. A crop planning problem with fuzzy random profit coefficients. Fuzzy Optimization and Decision Making, 2005, 4:51-69.
    [162] Ulmer H., Streichert F. and Zell A. Evaluating a hybrid encoding and three crossover operations on the constrained portfolio selection problem. In Congress of Evolutionary Computation (CEC 2004), pages 932-939, Portland, Oregon, USA,. 2004. IEEE Press.
    [163] Vandenberghe L. and Boyd S. Semidefinite Programming. SIAM Review, 1996, 38:49-95.
    [164] Wang G. and Qiao Z. Linear programming with fuzzy random variable coefficients. Fuzzy Sets and Systems, 1993, 57:3295-311.
    [165] Wang S.Y., Xia Y.S. and Deng X.T. A compromise solution to mutual funds portfolio selection with transaction costs. European Journal of Operational Research, 2001, 134:564-581.
    [166] Wang S.Y. and Zhu S.S. On Fuzzy Portfolio Selection Problem. Fuzzy Optimization and Decision Making, 1:361-377, 2002.
    [167] Wang Y.Q. and Tang W.S. Research on intelligent algorithm for portfolio selection with credibility criterion. Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, Guangzhou, 18-21 August 2005, 3517-3522.
    [168] Watada J. Fuzzy portfolio model for decision making in investment. In Y. Yoshida, editor, Dynamical Aspects in Fuzzy Decision Making, pages 141-162, Heidelberg, 2001. Physica-Verlag.
    [169] Wierzbicki A. A mathematical basis for satisficing decision making. In J.N. Morse, editor, Organizations: Multiple Agents with Multiple Criteria, Proceedings, pages 465-485, Berlin, 1981. Springer.
    [170] Wierzbicki A. On the completeness and constructiveness of parametric characterization to vector optimization problems. OR Spektrum, 1986, 8:73-87.
    [171] Williams J.O. Maximizing the probability of achieving investment goals. Journal of Portfolio Management, 1997, 24:77-81.
    [172] Xue H.G., Xu C.X. and Feng Z.X. Mean-variance portfolio optimal problem under concave transaction cost. Applied Mathematics and Computation, 2006, 174:1-12.
    [173] Yang X.Q., Zhou X.Y., Cai X,Q. and Teo K.L. Portfolio optimization under a minimax rule. Management Science, 2000, 46:957-972.
    [174] Yazenin A.V. Fuzzy and stochastic programming. Fuzzy Sets and Systems, 1987, 22:171-188.
    [175] Yoshimoto A. The mean-variance approach to portfolio optimization subject to transaction costs. Journal of Operations Research Society of Japan, 1996, 39:99-117.
    [176] Young M.R. A minmax portfolio selection rule with linear programming solution. Management Science, 1998, 44:673-683.
    [177] Yu L., Wang S.Y. and Lai K.K. Neural network-based mean-variance-skewness model for portfolio selection. Computers & Operations Research, in press.
    [178] Zadeh L.A. Fuzzy sets. Inform. and Control, 1965, 8:338-353.
    [179] Zadeh L.A. The concept of a linguistic variable and its application to approximate reasoning. Information Science, 1975, 8:199-251.
    [180] Zadeh L.A. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 1978, 1:3-28.
    [181] Zeleny M. Compromise programming in multiple criteria decision making. in: Cochrane J.L., Zeleny M. (Eds.), University of South Carolina Press, Columbia, 1973.
    [182] Zeng J.H., Lai K.K., Wang S.Y. and Zhu S.S. Portfolio selection models with transaction costs: Crisp case and interval number case. In Li D., editor, Proceedings of the 5th International Conference on Optimization Techniques and Applications, pages 943-950, Hong Kong, 2001.
    [183] Zhang J.P. and Li S.M. Portfolio selection with quadratic utility under fuzzy environment. Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, Guangzhou, 18-21 August 2005, 2529-2533.
    [184] Zhang W.G. and Nie Z.K. On admissible efficient portfolio selection problem. Applied Mathematics and Computation, 2004, 159:357-371.
    [185] Zhang W.G. and Nie Z.K. On admissible efficient portfolio selection policy. Applied Mathematics and Computation, 2005, 169:608-623.
    [186] Zhang W.G., Zhang Q.M. and Nie Z.K. A class of fuzzy portfolio selection problems. Proceedings of the Second International Conference on Machine Learing and Cybernetics, 2003, 2654-2658.
    [187] Zhao R. and Liu B. Redundancy optimization problems with uncertainty of combing randomness and fuzziness. European Journal of Operational Research, 2004, 157:716-735.
    [188] Zmeskal Z. Value at risk methodology under soft conditions approach (fuzzy-stochastic approach). European Journal of Operational Research, 2005, 161:337- 347.
    [189]玄光男,程润伟著,于歆杰,周根贵译.遗传算法与工程优化.清华大学出版社,北京,2004.
    [190]陈志平,袁晓玲,郤峰.多约束投资组合优化问题的实证分析.系统工程理论与实践,2:10-17.2005.
    [191]房勇.模糊投资组合优化.中国科学院系统科学研究所,2003.
    [192]胡毓达.多目标规划有效性理论.上海科学技术出版社,上海,1994.
    [193]李荣钧.模糊多准则决策理论与应用.科学出版社,北京,2002.
    [194]李仲飞,汪寿阳.投资组合优化与无套利分析.科学出版社,北京,2001.
    [195]刘善存.Excel在金融模型分析中的应用.人民邮电出版社,北京,1994.
    [196]刘宝碇,赵瑞清.随机规划与模糊规划.清华大学出版社,北京,1998.
    [197]路应金,唐小我,周宗放.证券组合投资的区间数线性规划方法.系统工程学报,2004,19(1):33-37.
    [198]魏权龄,闫洪.广义最优化理论和模型.科学出版社,北京,2003.
    [199]哈利M.马科维茨著(朱菁,欧阳向军译).资产组合选择和资本市场的均值-方差分析.上海人民出版社,上海,2006.
    [200]朱书尚,李端,周迅宇,汪寿阳.论投资组合与金融优化.管理科学学报,7(6):1-12,200,1.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700