风电机组系统分析关键技术研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国的风能资源十分丰富,风力发电产业发展迅速,迫切需要提高国产风力发电装备的设计和制造能力。但是风力发电机组系统设计的关键技术和系统关键零部件制造与国际先进水平还有很大差距,对风电机组系统设计技术的研究也较薄弱,成为制约我国风力发电装备国产化的瓶颈。论文得到重庆市重点科技攻关项目“风电机组系统设计关键技术”的支持,对风力发电机组系统分析的关键技术进行了深入研究,研究的主要内容是:
     ①针对风力发电机组目前常用的空气动力学计算理论——叶素动量理论(BEW理论)不能考虑由空气质量引起的风速滞后效应的缺陷,在分析比较了直升机旋翼和风力发电机组风轮的差异基础上,根据风轮自身特点,将用于直升机悬翼空气动力学计算的动态入流理论(GDW理论)进行了修正,使之适用于风力发电机组的空气动力学分析计算,并提出了基于GDW理论的风轮空气动力学计算方法。
     ②对风力发电机组典型的传动系统设计类型进行系统研究的基础上,提出了包括系统设计、售后服务、尺寸及质量、安装、成本等在内的风电机组传动系统设计的定性评价指标,结合非线性传动系统模型的定量分析结果,构成了风电机组传动系统结构的评价体系。
     ③用修正的GDW理论建立了风力发电机组空气动力学分析模型,同时将联合仿真技术引入风电机组结构动力学分析中,该方法考虑了风电机组结构的气弹性问题,将Matlab计算的气动力和用ADAMS计算的结构变形相互耦合,建立了风力发电机组结构动力学的联合仿真分析模型。
     ④采用风力发电机组联合仿真分析模型,将联合仿真分析技术应用于某失速型600kW风力发电机系统性能仿真分析中。对风力发电机组进行了气动性能分析,分析结果与GH Bladed比较,两者结果非常接近,这验证了联合仿真分析模型的正确性。该分析方法考虑到了风电机组结构的气弹耦合效应,仿真情况更接近于实际风力发电机组的工作情况,提高了计算精度。
     ⑤针对当前风电机组向大功率、高效率、高可靠性方向发展的趋势,在行星齿轮传动的基础上,研究了一种大功率风电机组新型液力变速控制传动系统。这种新型的传动系统应用了行星齿轮传动和导叶可调式液力变矩器的组合,通过导叶可调式液力变矩器对系统进行变速控制,其精度高,响应速度快,超调量小,实现了变速输入、恒速输出,达到发电机功率恒定的目的,从而减小并网时对电网的冲击。并且建立了仿真分析模型,利用ADAMS和MATLAB/SIMULINK软件对该系统的性能进行了动态仿真分析。
     ⑥根据德国船级社制定的风电机组设计规范(GL标准)对关键零部件结构分析的要求,通过风力发电机组结构动力学的联合仿真分析,得到各种典型风况下的载荷,研究了单元类型及边界条件,建立其有限元模型,并采用MSC公司的有限元分析软件对风力发电机组的关键零部件风轮轮毂、主轴以及主轴与轮毂的螺柱联接进行了结构强度分析。
There has plenty of wind energy in china, the industry of Wind Turbine is devel-oped very rapidly, and the manufacturing capacity of wind generator equipment must be improved. However, there has very difference between china and the word that the technology of system design and the manufacturing capacity of key parts, furthermore, the research on system design technology to Wind Turbine is very weakness, which is the bottleneck to restrict the home production of Wind Turbine equipment. This research gained the support from the intensive scientific and technological item of ChongQing city. The item's name is "The Key Technology of System Design for Wind Turbine". This paper has deeply researched the key technology of Wind Turbine system analysis, the primary content is:
     ①Based on the study on the typical styles of Wind Turbine drive system design, the qualitative evaluating indicators to Wind Turbine transmission system were put forword, which include the system design, service and maintenance, quality and size, installation and cost, combined with the quantitative analysis result of Non-linear model of transmission, formed the evaluation system to the structure of Wind Turbine trans-mission system.
     ②The aerodynamic theories are in common use to the modeling and analysis of Wind Turbines, the usual methods used is bladed element theory (BEM theory), which cannot take the time lag into consideration caused by the air quality. Aiming at the shortcoming of BEM theory, the theories applied to the aerodynamics of helicopter (called GDW theory), which is modified based on the rotor characteristics after studying the difference between the wind rotor and helicopter rotor. Sequentially, the GDW theory is introduced to calculate the rotor aerodynamics. The calculation methods for rotor aerodynamics are put forward based on the GDW theory.
     ③The analyzed model for Wind Turbine aerodynamics are set up based on the GDW theory, in the meantime, the combine simulation technology is applied on struc-tural dynamics of Wind Turbine, which can take the coupling into consideration, and the method take the coupling relation between the rotor structure transmutation by ADMAS and aerodynamic load by MATLAB, sequentially, the combined simulation model is established on structural dynamics of Wind Turbine. The result shows that the simula-tion is more close to the work condition, and which can improve the precision of calcu- lation.
     ④The combine simulation technology is applied on system performance simula-tion of 600kW Wind Turbine, which based on the combined simulation model of Wind Turbine. Aiming at the wind standard that defined by the IEC regulation, the perform-ance analysis was actualized to 600kW Wind Turbine, at the same time, the analytic re-sults are compared to the results calculated by GH Bladed. The comparison shows that the results are very contiguous, which validated the correctness of the combine simula-tion model of Wind Turbine. The analytic technique takes the coupling relation into consideration, so the simulation is more close to the work condition of the Wind Tur-bine.
     ⑤Aiming at the tendency of Wind Turbine toward the large power, high efficiency and reliability direction at present, a new-style drive train for Wind Turbines with large capacity is proposed that based on the a planetary transmission system. In the process of modeling and analysis to this transmission system, the dynamic simulation has made that utilizes the software platform of ADAMS and MATLAB/SIMULINK, and per-formance analysis is put up to the drive control system. The new-style drive train sys-tem uses the adjustable torque converter of the reactor blade which is fixed to the servo generator, which has the characteristic of rapidness to response speed, highness to pre-cision and smallness to adjusted quantum. The purpose for variable speed input and constant speed output is realized by controlling the rotation angle of ball screw of the adjusting mechanism of the reactor blade which is fixed to servo generator; conse-quently, the concussion is reduced to the power line.
     ⑥The characteristic and demand of structure analysis were bring forward for key components of Wind Turbine, according to a Wind Turbine needs of manufacturing en-terprises, the structural strength and analysis has made to principal axis and wheel hub of MW Wind Turbine, in the establishment of the spindle and wheel contact strength on the basis of analysis model, with the main focus of the wheel stud connected parts of the connection strength for analysis.On this basis, the structure of the principal axis and wheel hub was optimized, which realized the purpose of weight reduction and cost re-duction.
引文
[1]张新房,徐大平,吕跃刚,柳亦兵.风力发电技术的发展及若干问题[J].现代电力, 2003, 20(5):29-34.
    [2]能源领域组,能源领域科技发展“十五规划”和2015年远景研究[R]. 1999.
    [3] Muller, S, Deicke, M., De Doncker R.W. Doubly Fed Induction Generator Systems for Wind Turbines. Industry Applications Magazine[J]. IEEE, 2002, 8(3):26–33.
    [4]吴捷,杨俊华.绿色能源与生态环境控制[J].控制理论与应用. 2004; 21(6).
    [5]施鹏飞.中国风电开发政策下的发展战略[J], 2004中美合作风电场开发研讨会.
    [6]可再生能源中长期发展规划(2004-2020)[R].国家发改委编制.
    [7]李立本,安玉华.风力发电机气动弹性稳定性的研究[J].太阳能学报, 1996, 17(4).
    [8]薛定宇,陈阳泉.基于MATLAB/SIMULINK的系统仿真技术与应用[M].北京:清华大学出版社, 2006, 151-186.
    [9]曹人靖,刘冥.基于压力表示法的水平轴风力发电机风轮气动弹性稳定模型及应用[J].太阳能学报, 2003, 24(2).
    [10] Chopra I, Dugundji J, Nonlinear Dynamic Response of a Wind Turbine Rotor Under Gravitational. Loading [J], AIAA Journal, 1978,Vol.16, pp773-774.
    [11] Rahnejat, Homer, Multi-body Dynamics[M], Monitoring and Simulation Techniques lll, 2004.
    [12] R. Poore and T. Lettenmaier, WindPACT Advanced Wind Turbine Drive Train Designs Study[J], National Renewable Energy Laboratory, 2003.8
    [13] GL风能有限公司联合风能委员会.风力发电机验证标准[M].德国风能船级出版社, 2003版.
    [14] J V Seguro, T W Lambert. Modern estimation of the parameters of the Weibull wind speed distribution for wind energy anabysis [J]. Journal of Wind Engineering and Industrial Aero-dynamics, 2000,85:75-84.
    [15]林勇刚,徐立,李伟等.电液比例变桨距风力机半物理仿真试验台[J],中国机械工程, 2005, 16(8).
    [16]李德源,叶枝全,包能胜等.风力机旋转风轮振动模态分析[J],太阳能学报, 2004, 25(1).
    [17]李德源,叶枝全,陈严等.风力机叶片载荷谱及疲劳寿命分析[J],工程力学, 2004, 21(6).
    [18]陆城,许洪华.风力发电用双馈感应发电机控制策略的研究[J],太阳能学报.2004.
    [19]姚俊,马松辉. SIMULINK建模与仿真[M].西安:西安电子科技大学出版社.2002.
    [20]沈辉.精通SIMULINK系统仿真与控制[M].北京大学出版社. 2003.
    [21] Mutschler P., Hoffmann R. Comparison of Wind Turbines regarding their energy genera-tion[J]. power electronics specialists conference, 2002. p6–11.
    [22]郑照宁,刘德顺.中国风电投资成本变化预测[J].中国电力, 2004, 37(7):77-80.
    [23] Karam Y. Maalawi . Badawy, A direct method for evaluating performance of horizontal axis Wind Turbines[J]. Renewable and Sustainable Energy Reviews, 2001, 5.
    [24] Xueyong Zhao , Peter Mai?er, A novel power splitting drive train for variable speed Wind Turbine generators[J]. Renewable Energy, 2003(28).
    [25] Alexander Rauh, Joachim Peinke, A phenomenological model for the dynamic response of Wind Turbines to turbulent wind[J], Journal of Wind Engineeringand Industrial Aerodynamics, 92(2004).
    [26]包能胜,陈庆新,姜桐.柔性风力机系统模型参数辨识[J].太阳能学报, 1997, 18(4): 390-394.
    [27]金增,包能胜,陈庆新等.风力机系统的神经网络模型辨识[J].太阳能学报,1998,19(2): 206-211.
    [28]张源,张承来.中国风电发展的现状与对策[J].风力发电, 2001, (2):1~8.
    [29]宫靖远.风电场工程技术手册[M].北京:机械工业出版社, 2004.
    [30]陈志平,施浒立.三维实体建模与有限元分析的关系[J].电子机械工程, 2002, 3.
    [31]黄祖瑗,耿长青.有限元动力分析非线性分析应注意的问题[J].机械强度, 2000, 6.
    [32]王章奇,安利强等.有限元分析结果的可视化处理方法[J].工程图学学报, 2002.1.
    [33]朱渝春,蹇开林.工程机械底架结构有限元分析的技术处理[J].工程机械, 2002.1.
    [34]尹柏生.有限元分析系统的发展现状与展望[J].计算机世界, 2000.3.
    [35] Ekanayake, J.B. Holdsworth, L. etc. Dynamic modeling of doubly fed induction generator Wind Turbines[J].IEEE Transactions on Power Systems 2003 18(2):803-809.
    [36] Arantxa Tapia, Gerardo Tapia, etc. Modeling and Control of a Wind Turbine Driven Doubly Fed Induction Generator[J]. IEEE Transactions on Energy Conversion, 2003, 18(2):194-204.
    [37] Xueyong Zhao, Peter Maiβer. A novel power splitting drive train for variable speed Wind Turbine generators[C]. In:Renewable Energy, Germany. 2003, 28:2001-2011.
    [38]闫国军,董泳,张辉,陆肇达.液力变矩器及其控制系统动特性研究[J].机械工程学报, 2002, 2(2):62-66.
    [39]骆清国,桂勇.基于matlab/SIMULINK的发动机与液力变矩器匹配仿真[J].车辆与动力技术. 2005.3.
    [40]刘金琨.先进PID控制及其MATLAB仿真[M].电子工业出版社. 2003.
    [41]侯建勋.变矩器部分充液特性用于控制系统的研究[D].哈尔滨工业大学. 2004.
    [42] Cadirci, I. Ermis, M. Double-output induction generator operating at subsynchronous andsupersynchronous speeds[J]: steady-state performance optimisation and wind-energy recovery. IEE Proceedings-Electric Power Applications. 1992, 139(5):429–442.
    [43]孙冬野,秦大同.液力变矩器-机械无级变速器自动变速汽车综合控制策略研究[J].机械工程学报, 2003, 39(2).
    [44]马洪文,马彪,孙宪林.动力传动系统变矩器输入转矩测定方法研究[J].中国机械工程, 2002, 14(16).
    [45] Gene F. Franklin, J. David Powell, Abbas Emami-Naeini. Feedback Control of Dynamic Systems Fourth Edition,动态系统的反馈控制[M]. (朱齐丹,张丽珂,原新,等译).电子工业出版社, 2004:15-119.
    [46]王伟,张晶涛. PID参数先进整定方法综述[J].自动化学报, 2000, 26(3):347-353.
    [47]谢峰,赵吉文,沈维蕾等. 600kW风力机塔架结构的仿真设计[J].系统仿真学报, 2004, 16(1):70-72, 90.
    [48]周勃,费朝阳,陈长征.风力机塔架的振动特性研究[J].振动工程学报, 2004, 17(z2): 903-905.
    [49]陆萍,秦惠芳.基于有限元法的风力机塔架结构动态分析[J].机械工程学报, 2002, 38(9):127-130.
    [50]刘雄,陈严,叶枝全.水平轴风力机气动性能计算模型[J].太阳能学报, 2005, 26(6):792-800.
    [51] Wenbin Yu, Volovoi Vitali V, Validation of the Variational Asymptotic Beam sectional Analy-sis[J]. Georgia Institute of Technology, 2002,vol.40,pp2105-2112.
    [52] Bossanyi, E.A., Development in close-loop controller design for Wind Turbines[J], Proceed-ing of the Ninth ASME wind Energy Symposium. AIAA/ASME, 2000.
    [53] Dominguez Rubira, S. McCulloch, M.D. Control method comparison of doubly fed wind generators connected to the grid by asymmetric transmission lines[J]. IEEE Trans on Industry Applications. 2000, 36(4):986-991.
    [54] Anderson P M. Bose A. Stability simulation of Wind Turbine system[J]. IEEE Trans on Power Apparatus and systems, 1983, PAS-102(12):3791-3795.
    [55]吴学光,张学成等.异步风力发电系统动态稳定性分析的数学模型及其应用[J].电网技术, 1998, 22(6):68-72.
    [56] Hansen, A.C., User’s Guide to the Wind Turbine Dynamics Computer Programs YawDyn and AeroDyn for ADAMS[J], Version 11.0, Mechanical Engineering Department, University of Utah, Salt Lake City, UT. 1998.
    [57] Wilson, R.E., Technical and User’s Manual for the FAST_AD Advanced Dynamics Code[R], OSU/NREL Report 99-01, Oregon State University, Corvallis, OR, 1999.
    [58] Mechanical Dynamics, Inc., Using ADAMS/Solver (v9.1), Mechanical Dynamics, Inc. Ann Arbor, MI, 1998.
    [59]陈严,欧阳高飞,叶枝全.大型水平轴风力机传动系统的动力学研究[J].太阳能学报.2003, 24(5): 729-734.
    [60]王介龙,陈彦,薛克宗.风力发电机偶合转子/机舱/塔架的气弹响应[J].清华大学学报(自然科学版), 2002, 42(2):211-215.
    [61] Bossayi E. A. Bladed for windows theory manual[J]. England: Grarad Hassan and PartnersLtd, 1999,19-35.
    [62]张新房,徐大平,吕跃刚,柳亦兵.大型变速风力发电机组的自适应模糊控制[J].系统仿真学报, 2004, 16(3), P: 573-577.
    [63] Parsons B K, Wan Y, Kirby B. Wind Farm Power Fluctuations, Ancillary Services and System Operating Impact Analysis Activities in the United States[J]. European Wind Energy Confer-ence, 2001,7(5):298-307.
    [64]蔺红,晁勤,风力发电系统简单建模及稳定性分析[J].新疆大学学报, 2001, 18(1):60-64.
    [65] M.Machmoum, F. Poitier, et al. Dynamic Performances of a Doubly-fed Induction Machine for a Variable-speed Wind Energy Generation[J]. International Conference on Power System Technology. 2002, Vol(4): 2431– 2436.
    [66]陈雷.大型风力发电机组技术发展趋势[J].可再生能源.国际电力, 2003, 7(6).
    [67]闫国军,董泳,陆肇达.导叶可调式液力变矩器数学模型建立[J].哈尔滨工业大学学报, 2001, 33(2).
    [68] Anders Ahlstrom. Aeroelastic Simulation of wind Turbine Dynamics [D]. Doctoral Thesis. Royal Institute of Technology Department of Mechanics, Sweden, 2005.
    [69] Jesper Winther Larsen. Nonlinear Dynamics of Wind Turbine Wings[D].Doctoral Thesis. Aalborg University, 2005.
    [70] D-P. Molenaar, Duwecs versus Flexlast - A comparison of two non-linear Wind Turbine simulation programs. Mechanical Engineering[J], Systems and Control group, Delft Univer-sity of Technology, The Netherlands, August 1996.
    [71] Lee Donghoon, Multi-flexible-body Analysis for Application to Wind Turbine Control De-sign[D].Doctoral Thesis. Georgia Institute of Technology, 2003.
    [72] Mangialardi L, Mantriota L. Dynamic behavior of Wind Turbine systems equipped with automatically regulated continuously variable transmission[J]. Renewable Energy, 996,7(2):185-203.
    [73] Kendall David Arthur. Hinged Blade Model Dynamics for a Horizontal Axis Wind Turbine [D]. Doctoral Thesis. University of Massachusetts Amherst, 2003.
    [74]李德源,叶枝全,陈严,包能胜.风力机玻璃钢叶片疲劳寿命分析[J].太阳能学报. 2004.11.
    [75]吴冶坚,叶枝全,沈辉.新能源和可再生能源的利用(第一版)[M].北京:机械工业出版社, 2006. 157-158.
    [76]叶杭冶.风力发电机组的控制技术[M].机械工业出版社. 2002.
    [77] Astrom K J, Hagglund T. Automatic Tuning of PID Controllers. Research Triangle park[J]. North Carolina:Instrument Society of America, 1988.
    [78] BLADE FOR WINDOWS, Theory Manual, Garrad Hassan and partners Limited,June,2006.
    [79] Tomilson Andrew Gordon. Frequency and Voltage Control of a High-Penetration, No-storage Wind-diesel System [D].Master Thesis. Memorial University of Newfoundland(Canada), 1998.
    [80] Pasupulati Subbaiah V. Modelling of Wind Turbine Generators [D].Master Thesis. The Uni-versity of Texas at Arlington, 2004.
    [81] R I Rawlinson-Smith, Load calculations for a Generie1.5MW Wind Turbine to IECⅡA Con-ditions[R], January 2004.
    [82]杨永臻.控制器参数的在线实时自整定[J].自动化与仪器仪表, 1996, 67(5):1-7.
    [83]互晚霞,于玲玲,戴义保.控制器参数快速整定的新方法[J].自动化与仪器仪表, 1996, 67(5):13~16.
    [84]吴晓莉,林哲辉. MATLAB辅助模糊系统设计[M].西安电子科技大学出版社. 2002:67-89.
    [85] Katsuhiko Ogata. Modern Control Engineering,现代控制工程[M]. (卢伯英,于海勋,等译).电子工业出版社, 2003:633-650.
    [86]熊光楞,郭斌,陈晓波.协同仿真与虚拟样机技术[M].清华大学出版社. 2004.8
    [87]包能胜,曹人靖,叶枝全.风力机桨叶结构振动特性有限元分析[J].太阳能学报, 2000, 21(1):77-81.
    [88] Ye Zhequan, Ma Haomin, Bao Nengsheng etc. Structure Dynamic Analysis of a Horizontal Axis Wind Turbine System Using a Analysis Method[J]. Wind Engineering, 2001, 25(4):237-248.
    [89]陈家权,杨新颜.风力机叶片立体图的设计[J].机电工程, 2006, 23(4):37-40.
    [90]杨自栋,杜白石.风力机叶片三维线框图的设计和显示[J].西北农林科技大学学报, 1997, 25(6):69-74.
    [91] Rolf Hoffmann. A comparison of control concepts for Wind Turbines in terms of energy cap-ture[J]. Doctor thesis. Technology University Darmstadt, 2002.
    [92]秦立学.兆瓦级风力发电机组变桨距系统研究[D].沈阳:沈阳工业大学, 2006.
    [93]马洪飞,徐殿国.几种变速恒频风力发电系统控制方案对比[J].电工技术杂志, 2000.
    [94] R. Pena, J. C. Clare, G. M. Ather. Doubly fed induction generator using back to back PWM converters and its application to variable-speed wind-energy generation[J]. IEE Proceeding on Elctric Power Applicatons, 1996, 143(3):231-241.
    [95] Z. Chen, E. Spooner. Grid interface options for variable-speed permanent magnet generator[J]. IEE Proceeding on Elctric Power Applicatons, 1998, 145(4):273-283.
    [96] J. G. Slootweg, S. W. H. de Haan, H. Polinder, W. L. Kling. Aggregated Modelling of Wind Parks with Variable Speed Wind Turbines in Power System Dynamic Simulations[J]. 14 thPSCC, Sevilla, June 2002:24-28.
    [97] C. Brune, R. Spee, A. K. Wallance. Experimental Evaluation of a Variable-Speed Doubly-Fed Wind-Power Generation System[J]. IEEE Proceeding on IAS, 1993:480-487.
    [98] Schlveter R A, Sigari G, Costi A. Wind Array Power Prediction for Improved Operating Eco-nomics and Reliability[J]. IEEE Transactions on Power Apparatus and Systems, 1985, 104(7): 137-142.
    [99] Rohit Tirumala, Ned Mohan. Dynamic Simulation and Comparison of slip Ring Induction Generators Used for Wind Energy Generation [C]. IPEc-Tokyo 2000,1597-1602.
    [100] Vachtsevanos G J, Kalaitzakis K C. penetration of Wind Electric Conversion System into the Utility Grid, IEEE Transaction on Power Apparatus and Systems, 1985,104(7).
    [101] Luis, Ferreira A F M. Evaluation of Short-Term Wind Predictability[J], IEEE Transactions on Energy Conversion, 1992,7(3):409-417.
    [102] Parsons B K, Wan Y, Kirby B. Wind Farm Power Fluctuations, Ancillary Services and System Operating Impact Analysis Activities in the United States[J]. European Wind Energy Confer-ence, 2001,7(5):298-307.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700