基于遗传编程的电力变压器绝缘故障诊断模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力变压器是电力系统中分布广泛、结构复杂、造价昂贵的重要电气设备之一,担负着电压转换和电能传送的重任,它们的安全运行直接关系到整个电力系统的稳定性和安全性。对电力变压器进行绝缘状态检测和潜伏性绝缘故障诊断一直是电力部门面临的重要问题之一。因此,研究电力变压器的故障诊断技术,提高电力变压器的维护水平,具有重要的现实意义。
     油中溶解气体分析(Dissolved Gas Analysis,简称DGA)是目前分析电力变压器等充油电气设备绝缘状态最重要的检测方法,为诊断电力变压器内部故障提供了重要依据。DGA技术通过分析绝缘故障机理和大量的实际故障数据来发现油中溶解气体的组分含量与故障的类型和严重程度之间的关系,进而归纳整理出诊断不同故障的规则。由于这些常规的故障诊断规则主要来源于统计方法和经验积累,在实际应用中仍然存在许多不足之处。
     近年来,神经网络、模糊理论、灰色系统、粗糙集理论以及专家系统等人工智能技术的发展为变压器绝缘故障诊断提供了新的研究途径,逐步成为变压器绝缘故障诊断技术的主要研究方法。但是,采用这些传统的人工智能方法建立故障诊断模型时,往往需要依靠专家的诊断知识和经验事先确定诊断模型的结构等重要的模型要素,或者确定模型结构的方法是局部寻优的,这在一定程度上阻碍了电力变压器绝缘故障诊断系统的发展和推广。
     随着计算机技术和人工智能技术的发展,让计算机自动发现系统内在的规律并自动建立故障诊断系统模型已成为计算智能的研究热点。遗传编程(Genetic Programming,简称GP)算法是计算智能理论中进化算法的重要分支之一,其灵活的动态模型结构表示和借鉴生物界自然选择与遗传机制的全局搜索能力使得它在数据挖掘、控制理论、电子工程、模式识别等研究领域取得了广泛的成功。
     鉴于GP算法的特点,本文将GP算法首次引入电力变压器绝缘故障诊断,以DGA数据为特征参数,提出了四种以GP算法为基础的变压器绝缘故障诊断模型。论文主要包括以下内容:
     ①基于GP和判别函数的变压器绝缘故障诊断模型。判别函数法是模式分类中常用的方法,虽然常规的线性判别函数法用于故障诊断具有简单、方便的特点,但是它是以
Power transformer is one of widely distributed, complex and expensive equipment in the power system. It undertakes the heavy task of voltage conversion and power transmission. And its safety state plays a great effect on the stability and security level of power system. It is one of the most important issues for electricity sector to monitor and detect the potential insulation faults of the power transformers. Therefore, it is of great realistic significance to study the fault diagnosis technology and raise the level of maintenance of power transformers. Currently, Dissolved Gases Analysis (DGA) is the most important means to analyze the incipient insulation fault statement of oil-filled power equipments. The principle of DGA is based on the insulation failure mechanism and a lot of actual DGA data to discover the relationship between dissolved gases with the fault reasons and severity of power transformers and conclude the diagnosis rules from it. However, when applying these rules in the practical application, there are still many deficiencies because these rules are mainly generated from the accumulated experience and statistical methods.
     In recently years, the great development of artificial intelligence technology, such as neural network, fuzzy theory, grey system, rough set and expert system, has provided new research ways to diagnose the faults of power transformers. And it has gradually become the main research method. However, when constructing the diagnosis model based on these traditional artificial intelligence technologies, it usually need to preset the important issues of diagnosis model, such as the model structure, by the experts’knowledge and experience. And the model’s structure is usually locally optimized. In a certain extent, it hinders the development and promotion of insulation fault diagnosis system for power transformers. With the development of computer technology and artificial intelligence, allowing computers to discover the inner relationships of system and build the fault diagnosis models automatically has become a hot research issue in the domain of computational intelligence. Genetic programming (GP) algorithm is one of the important branches of evolutionary algorithms in the theory of computational intelligence. GP has achieved wide success in the domain of data mining, control theory, electrical engineering and pattern recognition because of its flexible expression of model structure and global searching ability.
     In this dissertation, with the characteristics of GP and DGA, four GP-based insulation fault diagnosis models for power transformers have been proposed. The main contents are as
引文
[1] 严璋,高电压绝缘技术,北京:中国电力出版社,2002.
    [2] 电力工业部,电力设备预防性试验规程,北京:中国电力出版社,1997.
    [3] 孙才新,陈伟根,李俭等,电气设备油中气体在线监测与故障诊断技术,北京:科学出版社,2003.
    [4] 操敦奎,变压器油中气体分析诊断与故障检查,北京:中国电力出版社, 2005.
    [5] Halstead W.D., A thermodynamic assessment of the formation of gaseous hydrocarbons in faulty transformers, Jour. of the Inst. of Petroleum, 1973, 59(9): 239-241.
    [6] Rogers R.R., IEEE and IEC codes to interpret incipient faults in transformers using gas in oil analysis, IEEE Trans. on Elect. Insul., 1978, 13(5):348-354.
    [7] IEC Publication 599, Interpretation of the analysis of gases in transformers and other oil-filled electrical equipment in service, First Edition, 1978.
    [8] Dornenburg E., Strittmater W., Monitoring oil cooling transformers by gas analysis, Brown Boveri Review, 1974, 61, 238-274.
    [9] Duval M., Dissovled gas analysis: It can save your transformer, IEEE Elect. Insul. Mag., 1989, 5(6): 22-27
    [10] ANSI/IEEE, c57.104-1991, IEEE guide for the interpretation of gases generated in oil-immerged transformers, IEEE Power Engineering Society, 1992.
    [11] IEC Publication 60599, Mineral oil-impregnated electrical equipment in service-guide to the interpretation of dissolved gas and free gas analysis, Second edition, 1999.
    [12] Duval M., dePablo A., Interpretation of gas-in-oil analysis using new IEC publication 60599 and IEC TC10 database, IEEE Elect. Insul. Mag., 2001,17(2): 31-41.
    [13] 中国人民共和国电力行业标准,变压器油中溶解气体分析和判断导则,DL/T722-2000 中国人民共和国国家经济贸易委员会,2000-11-03 标准.
    [14] Bhattacharya S.K., Smith R.E., and Haskew T.A., A neural network approach to transformer fault diagnosis using dissolved gas analysis data, North America Power Symposium, 1993.
    [15] Ding X., Yao E., Liu Y.L., Griffin P.J., ANN-based transformer fault diagnosis using gas-in-oil analysis, NAPS, 1994.
    [16] Zhang Y., Liu Y.L., Griffin P.J., An artificial neural network approach to transformer fault diagnosis, IEEE Trans. on Power Delivery, 1996, 11(4): 1836-1841.
    [17] Guardado J.L., Naredo J.L., Moreno P., etc., A comparative study of neural network efficiency in power transformers diagnosis using dissolved gas analysis, IEEE Trans. On Power Delivery, 2001, 16(4): 643-647.
    [18] 王财胜,孙才新,廖瑞金,变压器色谱监测中的 BPNN 故障诊断法,中国电机工程学报,1997,17(5): 322-325.
    [19] 王财胜,神经网络在大型电力变压器运行状态监测中的应用研究,重庆大学硕士学位论文,1997.
    [20] 徐文,王大忠,周泽存等,结合遗传算法的人工神经网络在电力变压器故障诊断中的应用,中国电机工程学报,1997,17(3):109-112.
    [21] 马歆,潘力强,綦科,GBP 人工神经网络在变压器故障诊断中的应用,湖南大学学报,1998,25(5):82-86.
    [22] 周建华,胡敏强,周鹗,基于共轭梯度方向的 CP-BP 算法在变压器油中溶解气体诊断法中的应用,中国电机工程学报,1999,17(3):41-45.
    [23] 臧宏志,徐建政,俞晓冬,结合进化算法的人工神经网络在变压器故障诊断中的应用,高压电器,2002,38(4): 37-38.
    [24] 陈江波,文习山,彭宁云等,进化规划算法在变压器故障诊断中的应用,高电压技术, 2003,29(12):10-11.
    [25] 臧宏志,胡玉华,俞晓冬,基于径向基函数的集成神经网络在变压器故障诊断中的应用,电力系统及其自动化学报,2003,15(1):51-53.
    [26] 梁永春,李彦明,改进型组合 RBF 神经网络的变压器故障诊断,高电压技术,2005,31(9):31-33.
    [27] 高宁,高文胜,严璋,基于模糊理论与自适应网络的油中气体分析诊断,高电压技术,1997,23(4):22-25.
    [28] 金明,吴新振,邓忠,基于 Kohonen 网络的电力变压器故障诊断方法,变压器,1997,34(8):28-30.
    [29] 高文胜,高宁,严璋,自适应小波分类网络在充油电力设备故障识别中的应用, 电工技术学报,1998,13(6):54-58.
    [30] Li H.L., Xiao D.M., Chen Y.Z., Wavelet ANN based transformer fault diagnosis using gas-in-oil analysis, Properties and Application of Dielectric Materials,2000, Proceedings of the 6th International Conference on, 2000, 1, 147-150.
    [31] Mao P.L., Aggarwal P.K., A novel approach to the classification of the transient phenomena in power transformers using combined wavelet transform and neural network, IEEE Trans. on Power Delievery, 2001, 16(4): 654-660.
    [32] 李剑敏,卢敦诒,李剑清,小波神经网络在变压器故障诊断中的应用,浙江工业大学学报,2001,29(1): 56-59.
    [33] Huang Y.C., Huang C.M., Evolving wavelet networks for power transformers condition monitoring, IEEE Trans. on Power Delivery, 2002, 17(2): 412-416.
    [34] 钱政,杨莉,严璋,组合神经网络模型中典型样本集的选取,高电压技术,1999,25(4): 1-3.
    [35] Huang Y.C., Yang H.T., Huang C.L., Developing a new transformer fault diagnosis system through evolutionary fuzzy logic, IEEE Trans. on Power Systems, 1997, 12(2): 761-767.
    [36] Yang H.T., Liao C.C., Adaptive fuzzy diagnosis system for dissolved gas analysis of power transformers, IEEE Trans. on Power Delivery,1999, 14(4):1342-1350.
    [37] Su Q., Lai L.L., Austin P., A fuzzy dissolved gas analysis method for the diagnosis of multiple incipient faults in a transformer, IEEE Trans. onPower System, 2000, 15(2):593-598.
    [38] 张鸣柳,孙才新,变压器油中气体色谱分析中以模糊综合评判进行故障诊断的研究,电工技术学报,1998,13(1): 51-54.
    [39] Syed M.I., Wu T., Ledwich G. A novel fuzzy logic approach to transformer fault diagnosis, IEEE Trans. On Dielectrics and Electrical Insulation, 2000, 7(2): 177-186.
    [40] 张冠军,钱政,严璋,变压器绝缘故障诊断中的模糊 ISODATA 法,高电压技术,1999,25(1):1-3.
    [41] 宋斌,于萍,廖冬梅等,变压器故障诊断中溶解气体的模糊聚类分析,高电压技术,2001,27(3):69-71.
    [42] 王子健,何俊佳,尹小根,基于改进模糊 ISODATA 算法的变压器故障诊断,高压电器,2006,42(1):11-13.
    [43] 孙才新,郭俊峰,廖瑞金等,变压器油中溶解气体分析中的模糊模式多层聚类故障诊断方法的研究,中国电机工程学报,2001,21(2):37-41.
    [44] 邓聚龙,灰色系统,北京:国防工业出版社,1985.
    [45] Deng J.L., Introduction to grey theory, The Journal of Grey System, 1989, 1(1): 1-24.
    [46] 傅立,灰色系统理论及其应用,北京: 科学技术文献出版社,1992.
    [47] 邓聚龙,灰色系统理论教程,武汉:华中理工大学出版社,1992.
    [48] 郑海平,孙才新,李俭等,诊断电力变压器故障的一种灰色关联度分析模式及方法,中国电机工程学报,2001,21(10):106-109.
    [49] 孙才新,李俭,邓海平等,基于灰色面积关联度分析的电力变压器绝缘故障诊断方法,电网技术,2002,26(7): 24-29.
    [50] 李俭,孙才新,陈伟根等,基于灰色聚类分析的充油电力变压器绝缘故障诊断的研究,电工技术学报,2000,17(4): 80-83.
    [51] 袁保奎,郭基伟,唐国庆等,基于粗糙集理论的变压器绝缘故障分类,电力系统及其自动化学报,2001,13(5): 1-4.
    [52] 束洪春,孙向飞,司大军,电力变压器故障诊断专家系统知识库建立和维护的粗糙集方法,中国电机工程学报,2002,22(2):31-35.
    [53] 王楠,律方成,李和明,粗糙集用于建立基于多变量决策树的变压器故障诊断模型,电工电能新技术,2004,23(1):21-24.
    [54] 王少芬,蔡金锭,刘庆珍,基于粗糙集理论的电力变压器绝缘故障诊断,继电器,2004, 32(2): 23-26.
    [55] 莫娟,王雪,董明等,基于粗糙集理论的电力变压器故障诊断方法,中国电机工程学报,2004, 24(7): 162-167.
    [56] 尹朝庆,尹浩,人工智能与专家系统,北京:中国水利水电出版社,2002.
    [57] Lin C.E., Ling J.M., Huang C.L., An expert system for transformer fault diagnosis using dissolved gas analysis, IEEE Trans. on Power Delivery, 1993, 8(1): 231-237.
    [58] Wang Z.Y., Liu Y.L., Griffin P.J., Nerual net and expert system diagnose transformer faults, IEEE Computer Applications in Power, 2000, 13(1): 50-55.
    [59] 廖瑞金,姚陈果,孙才新等,多专家合作诊断变压器绝缘故障的黑板型专家系统,电工技术学报,2002,17(1):85-90.
    [60] 彭宁云,文习山,王一等,基于线性分类器的充油变压器潜伏性故障诊断方法,中国电机工程学报,2004,24(6):147-151.
    [61] Yang H.T., Huang Y.C., Intelligent decision support for diagnosis of incipient transformers faults using self-organizing polynomial networks, IEEE Trans. on Power System, 1998, 13(3): 946-952
    [62] Holland J.H., Adapatation in nature and artificial systems, MIT Press, 1992.
    [63] Koza J.R., Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, 1992.
    [64] 王小平,曹立明,遗传算法-理论、应用与软件实现,西安:西安交通大学出版社,2002.
    [65] Baker J.E., Adaptive selection methods for genetic algorithms, Proc. of the Int'l Conf. on Genetic Algorithms and Their Applications, 1985, 101-111.
    [66] Wemer J.C., Kalganova T., Disease modeling using evolved discriminate function, NCS 2610, Proceedings 6th European Conference, EuroGP2003,465-474.
    [67] Dassau E., Grosman B., Lewin D.R., Modeling and temperature control of rapid thermal processing, Computers and Chemical Engineering, 2006, 30(4): 686-697.
    [68] Stefano C.D., Cioppa A.D., Marcelli A., Character preclassification based on genetic programming, Pattern Recognition Letters, 2002, 23(12): 1439-1448.
    [69] Esparcia-Alcazar A.I., Sharman K.C., Genetic programming techniques that evolve recurrent neural network architectures for signal processing, Neural Networks for Signal Processing-Proceedings of the IEEE Workshop, USA, New Jersey, 1996, 139-148.
    [70] Gritz L., Hahn J.k.,Genetic programming for articulated figure motion, The Journal of Visualization and Computer Animation, 1995, 6(3): 129-142
    [71] Richard O. Duda, Peter E.Hart, David G.Stork. Patter Classification, 第2 版,北京:机械工业出版社, 2003.
    [72] 李金宗,模式识别导论,北京:高等教育出版社,1994.
    [73] Fisher R.A., The use of multiple measurements in taxonomic problems, Annals of Eugenics, 1936, (7): 179-188.
    [74] 沈清,汤霖,模式识别导论,长沙:国防科技大学出版社,1997.
    [75] Kishore J.K., Patnaik L.M., Mani V., etc., Application of genetic programming for multi-category pattern classification, IEEE Trans. on Evolutionary Computation, 2000, 4(3): 242-258.
    [76] Chien B.C., Lin J.Y., Hong T.P., Learning discriminant functions with fuzzy attributes for classification using genetic programming, Expert Systems with Applications, 2002, 23(1): 31-37.
    [77] Chien B.C., Lin J.Y., Yang W.P., Learning effective classifiers with Z-value measure based on genetic programming, Pattern Recognition, 2004, 37(10):1957-1972.
    [78] Muni D.P., Pal N.R., Das J., A novel approach to design classifier using genetic programming, IEEE Trans. on Evolutionary Computation, 2004,8(2):183-196.
    [79] Zhang Y., Zhang M.J., A multiplie-output program tree structure in genetic programming, Technical Report CS-TR-04/14, December, 2004.
    [80] Li M., Vitanyi P., An introduction to kolmogorov complexity and its application, Springer-Verlag, 1993.
    [81] 章兢,张小刚,数据挖掘算法及其工程应用,北京:机械工业出版社,2006.
    [82] Hunt E.B., Marin J., Stone P., Experiments in induction, New York: Academic Press, 1966.
    [83] Holte R.C., Acker L.E., Porter B.W., Concept learning and the problem of small disjuncts, Proc. 11th Int'l Joint Conf. on Artificial Intelligence, 1989, 813-818.
    [84] Quinlan J.R., Induction of decision tree, Machine Learning, 1986, (1): 81-106.
    [85] Quinlan J.R., C4.5: Programs for machine learning, Morgan Kauffman, 1993.
    [86] Breiman L., Friedman J.H., Olshen R.A., etc., Classification and regression tree, CA: Wadsworth International Group, 1984
    [87] Quinlan J.R., Simplifying decision trees, Int’l J. Man-Machine Studies, 1987, 27: 221-234.
    [88] Niblett T., Bratko I., Learning decision rules in noisy domains, Proc. Expert Systems 86, Cambridge: Cambridge University Press, 1986.
    [89] Murthy S., Kasif S., Salzberg S., A system for induction of oblique decision trees, Journal of Artificial Intelligence Research, 1994, 2: 1-32.
    [90] Brodley C.E., Utgoff P.E., Multivariate decision trees, Machine Learning, 1995, 19(1): 45-47.
    [91] Gama J., Oblique linear tree, Advances in Intelligent Data Analysis, Germany: Springer-Verlag, 1997, 187-198.
    [92] Papagelis A, Kalles D., GA tree: genetically evolved decision trees, USA: Proceedings of ICTAI 00, 2000.
    [93] Papagelis A, Kalles D., Breeding decision trees using evolutionarytechniques, USA: Proceedings of ICML'01, USA, 2001.
    [94] Carvalho D.R., Freitas A.A., A hybrid decision tree/genetic algorithm method for data mining, Inf. Sci., 2004, 163(1-3): 13-35.
    [95] Cantu-Paz E., Kamath C., Inducing oblique decision trees with evolutionary algorithms, IEEE Trans. on Evolutionary Computation, 2003, 7(1): 54-68.
    [96] Nikolaev N.I., Slavov V., Inductive genetic programming with decision trees, Intelligence Data Analysis 2 (1998), 31-34.
    [97] Bot M.C.J., Langdon W.B., Application of genetic programming to induction of linear classification trees, Proceedings of Third European Conference on Genetic Programming 2000, 247-258.
    [98] Bot M.C.J., Langdon W.B., Improving induction of linear classification trees with genetic programming, Proceedings of the Genetic and Evolutionary Computation Conference 2000, 403-410.
    [99] Zadeh L.A.,Fuzzy sets and their application, New York: Academic Press, 1975.
    [100] Ivakheneko AG,Polynomial theory of complex system, IEEE Trans. on Systems, Man,and Cybernetics, 1971, SMC-1(4):364-378.
    [101] Gallo P., Geresio R., Vicino A., Preprints 7th IFAC Identification and system paramters estimation, York UK, 1985:759-764.
    [102] Akaike H., A new look at the statistical model identification, IEEE Trans. on Automatic Control, 1974, AC-19(6): 716-723.
    [103] 王世儒,王金金,冯有前等,计算方法(第二版),西安:西安电子科技大学出版社,2004.
    [104] Hara K., Yamamoto T., Terada K., Improved dual mode GMDH with automatic switch, International Journal of Systems Science, 1990, 21(8): 1553-1565.
    [105] 劳兰珺,一种改进 GMDH 的新方法,汕头大学学报, 1997,12(1),9-14.
    [106] 赵小梅,宋执环,李平,改进的 GMDH 型神经网络及其在混沌预测中的应用,电路与系统学报,2002,7(1),13-17.
    [107] Oh S.K., Pedrycz W., Park B.J., Polynomial neural networks architecture: analysis and design, Computers and Electrical Engineering, 2003, 29(6):703-725.
    [108] Delivopoulos E., Theocharis J.B.,A modified PNN algorithm with optimal PD modeling using the orthogonal least squares method,Information Sciences, 2004, 168(1-4): 133-170.
    [109] H. Iba, H. de Garis, T. Sato, Temporal data processing using genetic programming,” in Proc. 6th Int. Conf. on Genetic Algorithms, ICGA-95, L. Eshelman, Ed. San Mateo, CA: Morgan Kaufmann, 1995, 279–286.
    [110] Nikolaev N.Y., Iba H., Regularization approach to inductive genetic programming, IEEE trans. on Evolutionary Computation, 2001, 5(4):359-375.
    [111] Nikolaev N.Y., Iba H., Learning polynomial feedforward neuralnetworks by genetic programming and backpropagation, IEEE Trans. on Neural Networks, 2003, 14(2): 337-350.
    [112] 莫宏伟,人工免疫系统原理与应用,哈尔滨:哈尔滨工业大学出版社,2002.
    [113] 莫宏伟,吕淑萍,管凤旭等,基于人工免疫系统的数据挖掘技术原理与应用,计算机工程与应用,2004,40(14):28-33.
    [114] Barron A.R., Predicted squared error: a criterion for automatic model selection, Self-Organizing Methods in Modeling: GMDH Type Algorithms, Marcel-Dekker, New York, 1984, 87-103.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700