置换混叠图像盲分离特征域方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盲分离是现代信号处理领域的一个新的研究热点,在诸多领域有着广泛的应用。单通道盲分离作为盲分离研究的一个前沿研究正日益受到关注。本文研究在图像篡改等实际应用中常遇到的一种特殊的单通道混合方式即置换混叠方式的盲分离问题。由于与传统的叠加混叠方式的单通道信号的混合方式不同,用以往的单信道盲分离的理论和方法很难解决,本文围绕置换混叠图像在特征域上的盲分离方法展开研究。
     置换混叠图像是由不同的源图像非交叠的置换而成的,使得置换混叠图像失去信息的完整性。源图像的来源不同,构成的置换混叠图也具有多样性。同时置换图像的位置、大小和个数都是未知的。检测和分离出置换图像的关键是找到置换图像和被置换图像之间特征差异,即找到显现特征差异的特征域。本文针对不同类型的置换混叠图像,在不同的特征域提出了置换混叠图像盲分离方法。论文的主要工作如下:
     1、在置换区域与被置换区域的图像存在形态差异的条件下,利用形态差异图像在不同字典上表示时有大的稀疏度差异,针对一类存在形态差异的置换混叠图像,提出基于稀疏分解的盲分离算法。首先,根据这类置换混叠图像的数学模型,得到其稀疏表示的模型。根据置换区域与被置换区域图像的特点,选择Contourlet基字典和Local DCT基字典作为特征域。分别迭代地在两个不同的特征域上进行稀疏分解,利用块定位松弛算法求得不同形态图像最稀疏的表示,从而实现置换图像分离。实验结果表明,对于一类包含分片光滑和纹理成分的置换混叠图像,本算法能够较好的把纹理图像从置换混叠图像中分离出来,同时,对纹理图像的大小、位置、个数和类型具有鲁棒性。
     2、置换混叠图像中的被置换图像和置换图像的来源常常是不同的,这些图像在获取、传输和处理等环节常常感染上噪声,从而使得置换后的图像的不同区域存在着噪声差异。针对这类在被置换区域和置换区域之间存在噪声差异的置换混叠图像,提出一种基于噪声检测置换混叠图像盲分离算法。由于学习字典具有高的自适应性,其稀疏表示的稀疏度比参数字典高,选择学习字典作为特征域。通过对置换混叠图像本身采样,利用非零元个数约束的K-SVD字典学习算法得到图像的稀疏表示,以达到去除噪声的目的。并与原图像求差运算来检测含噪置换图像所在的区域和大小,并通过图像形态学操作和设定阈值来实现其分离。实验结果表明该算法能只利用两个确定的值对噪声区域有效的去噪,并有效的分离出不同位置、大小、个数的置换图像。
     3、针对一类存在运动模糊差异的置换混叠图像,提出基于四向差分的运动模糊置换混叠图像盲分离算法。首先,在分析运动模糊的特征后,选择空域作为特征域。对置换混叠图像做四向差分运算,得到四个方向上的差分图像。计算每个差分图像子块的方差值并阈值化得到一个二值图像,以检测置换图像的大致区域。然后利用图像形态学操作优化二值图像,并乘以置换混叠图像以分离出置换图像。实验结果表明该算法有效的分离出不同位置、大小、个数的运动模糊置换图像,并不受运动模糊方向的影响。
     4、针对一类存在高斯模糊差异的置换混叠图像,提出基于差分进化的高斯模糊置换混叠图像盲分离。首先,在分析高斯模糊的特征后,选择空域作为特征域。把置换混叠图像的梯度图像分成小块,并为每个小块设定一个阈值,组成一个阈值向量。利用差分进化算法求得一个最优的阈值向量,利用优化的阈值向量把置换混叠图像阈值化为二值图像,并使用图像形态学操作优化二值图像,利用优化后的二值图像分离出置换图像。实验结果表明,与固定阈值法相比较,本算法能较好的把置换图像从置换混叠图像中分离出来,而不受置换图像位置、大小和个数的限制。
Blind separation is new research direction in modern signal processing field, which has been applied to engineering. There is growing concern on single channel blind separation as frontier of blind separation research. However, in the applications such as image tamering etc, a special single channel alias mode called as permuted alias mode is encountered, which is different from the traditional superposition alias mode. Previous theory and method of single channel blind source separation are difficult to solve this new alias mode. This dissertation focuses on blind separation based characteristic domain method for permuted alias image.
     Information integrity of permuted alias image is losed for it is composed of different segement of source images with unoverlapping permution. Various sources of images make the permuted alias image diversity. At the same time, the position size and number of permuting image are unknown. The key of detecting and seperating permuting images is to find characteristic difference, which can be shown when permuted alias image is projected on a characteristic domain. This dissertation proposes methods of blind separation in various characteristic domain for various type of permuted alias images. The contributions of the dissertation are summarized as follows.
     1. A blind separation method based sparse decomposing is presented according to a type of permuted alias image, when morphological diversity exists betweeen permuted and permuting region of image, which can be expressed sparsity diversity decomposed on different dictionaries. Sparsity representation model of permuted alias image is obtained by its mathematical model. On the base of characteristics of permuting and permuted region image, Contourlet and Local DCT base dictionary are chosen as characteristic domain. Sparse decomposed iterately on two different charactersitic domains, getting sparsity representaion of different morphological images by block coordinate relaxation method, the permuted image can be seperated from the permuted alias image. Results show that, as for a permuted image comprising piecewise smoooth part and texture part, our algorithm can better separate texture image from the permuted image, not affected by size, location, number and types of texture image.
     2. Different region of permuted alias image have noise difference, for permuting and permuted images come from different source images and they usually be infected by noise in the process of acquisition, transmission and processing. An algorithm about permuted alias image blind separation based noise detection is proposed according to a class of permuted alias image with noise difference. Learning dictionary is chosen as characteristic domain, for it has high adaptability and its sparsity representation has high sparsity degrees than that of parameter dictionary. Permuted alias image is denoised by getting its sparsity representation with K-SVD restrained by nonzeros number dictionary learning algorithm with itself smapling. Size and location of permuting region is found out by detecting the subtraction image, which is defined as difference between the denoised permuted alias image and original permuted alias image. The permuting region is optimized by implementing image morphological operation and is separated from the permuted alias image by setting threshold. The results show that the region noised can be effectively denoised only with two constant nonzeros number and permuting image can be separated efficiently from the permuted alias image, not affected by size, location, number of permuting image and noise level on permuting image.
     3. A blind separation algorithm based on four-direction-difference is proposed for a type of permuted alias image with motion blur difference. Firstly, space domain is chosen as characteristic domain after analysing characteristics of motion blur image. Four differential images in four directions are obtained by four direction operating of permuted alias image. A binary image can be obtained by calculating variance value of each differencd image subblock and thresholding it, to detect rough location of permuting image. Permuting images can be seperated from permuted alias image by multiplying binary image which is optimized with image morphological operation. The results show that blurry images can be effectively separated from the permuted alias image without respect to the location, size and number of motion blur image and direction of motion blur.
     4. A blind separation algorithm based on differential evolution is proposed for a type of permuted alias image with gaussian blur difference. Firstly, space domain is chosen as characteristic domain after analysing characteristics of gaussian blur image. Differential image of permuted alias image is divided into sub-blocks which is randomly assigned a threshold and all the thresholds formed a threshold vector. The differential evolution is then performed to obtain the optimal threshold vector for thresholding the differential image into binary one. The permuting image could be separated by permuted alias image multiplid by the binary image optimized with image morphology operating. Experimental results show that the proposed approach could effectively separate the permuting image from the permuted alias image without respect to the location, size and nemuber of permuting image.
引文
[1] Cichocki A, Amari S. Adaptive Blind Signal and Image Processing:Learning Algorithms and Applications[M]. Wiley, 2003.
    [2] Hyvarinen A, Karhunen J, Oja E. Independent Component Analysis [M].Wiley, 2001.
    [3] Jutten C, Herault J. Blind separation of sources, Part 1: An adaptive algorithm based on neuromimetic architecture [J]. Signal Processing, 1991, 24 (1): 1-10.
    [4]张烨.欠定混合信号的盲分离[D].上海:上海大学, 2009.
    [5]周郭许.盲信号分离若干关键问题研究[D].广州:华南理工大学, 2010.
    [6] Flexer A,Bauer H,Pripfl J,et al. Using ICA for removal of ocular artifacts in EEG recorded from blind subjects [J]. Neural Networks, 2005, 18(7):998-1005.
    [7] Moosmann M, Eiehele T, Nordby H, et al. Joint independent component analysis for simultaneous EEG-fMRI: principle and simulation[J]. Inernational Journal of Psyehophysiology. 2008, 67(3): 212-221.
    [8] Casanovas A L, Monaci G, Vandergheynst P. Blind audiovisual source separation using sparse representations [C]. Presented at IEEE International Conference on Image Processing, 2007.
    [9] Elad M, Aharon M. Image denoising via sparse and redundant representations over learned dictionaries [J]. IEEE Trans. Image Processing, 2006, 15(12): 3736-3745.
    [10] Bobin J, Starck J L, Fadili J, et al. Sparsity and morphological diversity in blind source separation [J]. IEEE Trans. Image Processing, 2007, 16(11): 2662-2674.
    [11] Talwar S, Paulraj A. Blind separation of synchronous cochannel digital signals using an antenna array .2. Performance analysis [J]. IEEE Trans. Signal Processing, 1997, 45(3): 706-718.
    [12] Sahlin H, Broman H. Separation of real-world signals [J]. Signal Processing, 1998, 64(2): 103-113.
    [13] Ristaniemi T, Joutsensalo Y. Independent component analysis with code information utilization in DS-CDMA signal separation[C]. Presented at Seamless Interconnection for Universal Services, 1999.
    [14] Makeig S, Jung T P, Bell A J, et al. Blind separation of auditory event-related brain responses into independent components[J]. Proceedingsof the National Academy of Sciences of the United States of America, 1997, 94(20): 10979-10984.
    [15] Mitianoudis N, Davies M E. Audio source separation of convolutive mixtures [J]. IEEE Trans. Speech and Audio Processing, 2003, 11(5): 489-497.
    [16] Lin Q H , Yin F L, Mei T M, et al. A blind source separation based method for speech encryption[J]. IEEE Trans. Circuits and System I, 2006, 53(6): 1320-1328.
    [17] Li S, Li C, Lo K.-T, et al. Cryptanalyzing an encryption scheme based on blind source separation [J]. IEEE Trans. Circuits and System I, 2008, 55(4): 1055-1063.
    [18] Common P. Independent component analysis:A new concept?[J]. Signal Processing, Elsevier, 1994, 36 (3): 287-314.
    [19] Hyvarinen A, Karhunen J, Oja E. Independent Component Analysis[M]. New York: Wiley, 2001.
    [20] Karhunen J, Joutsensalo J. Representation and separation of signals using nonlinear PCA type learning [J]. Neural Netw., 1994, 7(1): 113-127.
    [21] Oja E. The nonlinear PCA learning rule in independent component analysis [J]. Neurocomputing, 1997, 17(1): 25-45.
    [22] Hyvarinen A. Fast and robust fixed-point algorithms for independent component analysis [J]. IEEE Trans. Neural Networks, 1999, 10 (3): 626-634.
    [23] Amari S, Cichocki A. Adaptive blind signal processing-Neural network approaches [C]. In proceedings of the IEEE, 1998, 86, 2026-2048.
    [24] Squartini S, Piazza F, Shawker A. New Riemannian metrics for improvement of convergence speed in ICA based learning algorithms [J]. ISCAS 2005. IEEE International Symposium on Circuits and Systems, 2005, 4: 3603-3606.
    [25] Amari S. Natural gradient works efficiently in learning[J]. Neural Computation, 1998, 10 (2): 251-276.
    [26] Squartini S, Arcangeli A, Piazza F. Stability analysis of natural gradient learning rules in complete ICA: A unifying perspective[J]. IEEE Signal Processing Letters, 2007, 14 (1): 54-57.
    [27] Cardoso J F, Souloumiac A. Blind beamforming for non Gaussian signals [C]. IEE Proceedings-F, 1993, 140, 362-370.
    [28] Hyv?rinen A. New approximations of differential entropy for independentcomponent analysis and projection pursuit[C]. In Proceedings of the 1997 conference on Advances in neural information processing systems, 1998, 273-279.
    [29] Cardoso J F. Infomax and maximum likelihood for blind source separation[J]. IEEE Signal Processing Letters, 1997, 4 (4): 112-114.
    [30] Pearlmutter B, Parra L. A context-sensitive generalization of ICA[C]. International Conference on Neural Information Processing, Hong Kong, September 1996, 613-619.
    [31] Bofill P, Zibulevsky M. Underdetermined blind source separation using sparse representations[J]. Signal Processing, 2001, 81 (11): 2353-2362.
    [32] Li Y Q, Amari S, Cichocki A, et al. Underdetermined blind source separation based on sparse representation[J]. IEEE Trans. Signal Processing,2006, 54(2): 423-437.
    [33] Zibulevsky M, Zeevi Y Y, Kisilev P, et al. Blind Source Separation via Multinode Sparse Representation[C]. In Advances in Neural Information Processing Systems, 2001, 1049-1056.
    [34] O'Grady P D, Pearlmutter B A. Hard-LOST: Modified k-Means for Oriented Lines[C]. In Proceedings of the Irish Signals and Systems Conference, 2003 247-252.
    [35] Li Y Q, Cichocki A, Amari S. Analysis of sparse representation and blind source separation [J]. Neural Computation, 2004, 16(6):1193-1234.
    [36] Zhang W, Liu J, Sun J, et al. A New Two-Stage Approach to Underdetermined Blind Source Separation using Sparse Representation [C]. In IEEE International Conference on Acoustics, Speech and Signal Processing, 2007, 953-956.
    [37] Fang Y, Zhang Y. A robust clustering algorithm for underdetermined blind separation of sparse sources[J], Journal of Shanghai University (English Edition), 2008, 12(3): 228-234.
    [38]邱天爽,毕晓辉.稀疏分量分析在欠定盲源分离问题中的研究进展及应用[J].信号处理,2008, 24(6): 966-970.
    [39]谭北海,谢胜利.基于源信号数目估计的欠定盲分离[J].电子与信息学报, 2008, 30(4): 863-867.
    [40] Kisilev P, Zibulevsky M, Zeevi Y Y. Blind source separation using multinode sparse representation[C]. In Image Processing, International Conference on, 2001, 3:202-205.
    [41] Theis F J, Lang E W, Puntonet C G. A geometric algorithm for overcompletelinear ICA [J]. Neurocomputing, 2004, 56(1):381-398.
    [42]张烨,方勇.基于拉普拉斯势函数的欠定盲分离中源数的估计[J].信号处理, 2009, 25(11):1719-1725.
    [43] Lee T W, Lewicki M S, Girolami M, et al. Blind source separation of more sources than mixtures using overcomplete representations[J]. IEEE Signal Processing Letters, 1999, 6(4): 87-90.
    [44] Lewicki M S, Sejnowski T J. Learning Overcomplete Representations [J]. Neural Comput., 2000, 12(2): 337-365.
    [45]谢胜利,谭北海,傅予力.基于平面聚类算法的欠定混叠盲信号分离[J].自然科学进展, 2007, 17(6): 795-800.
    [46] Washizawa Y, Cichocki A. Sparse blind identification and separation by using adaptive K-orthodrome clustering [J]. Neurocomputing, 2008, 71(10-12): 2321-2329.
    [47]张烨,方勇.基于平面聚类势函数法的欠定混合信号盲分离[J].高技术通讯, 2010, 20(8): 810-815.
    [48] Fevotte C, Godsill S J. A bayesian approach for blind separation of sparse sources[J]. IEEE Trans. Audio, Speech, and Language Processing, 2006, 14(6): 2174-2188.
    [49] Radfar M H, Danserean R M. Single-channel speech separation using soft mask filtering [J]. IEEE Trans. Audio, Speech and Language Processing, 2007, 15(8):2299-2310.
    [50] Duan Z Y, Zhang Y G, Changshui Zhang, et al. Unsupervised single-channel music source separation by average harmonic structure modeling[J]. IEEE Transaction on Audio, Speech, and Language Processing, 2008, 16(4): 766-778.
    [51]崔荣涛,李辉,万坚等.一种基于过采样的单通道MPSK信号盲分离算法[J].电子与信息学报, 2009, 31(3): 566-569.
    [52]涂世龙,陈越新,郑辉.利用纠错编码的同频调制混合信号单通道盲分离[J].电子与信息学报, 2009, 31(9): 2113-2117.
    [53] Lee Y K, Kwon O W. Application of shape analysis techniques for improved CASA-based speech separation[J]. IEEE Trans. Consumer Electronics, 2009, 55(1) :146-149.
    [54] CAI Q W, WEI P, XIAO X C. Single-channel blind separation of overlapped multicomponents based on energy operator [J]. SCIENCE CHINA-Information Sciences, 2010, 53(1):147-157.
    [55]彭耿,王丰华,黄知涛等.单通道混合信号中周期信号的盲分离[J].湖南大学学报(自然科学版), 2010, 37(4):42-45.
    [56] Hopgood J R, Rayner P J W. Single channel nonstationary stochastic signal separation using linear time-varying filters[J]. IEEE Transactions on Signal Processing, 2003, 51(7):1739-1752.
    [57]彭耿,黄知涛,姜文利等.单通道盲信号分离研究进展与展望[J].中国电子科学研究院学报, 2009, 4(3): 268-277.
    [58] Atlas L, Janssen C. Coherent modulation spectral filtering for single-channel music source separation[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing, Philadelphia, PA, USA, 2005, 4: 461-464.
    [59] Ozerov A, Philippe P, Gribonval R, et al. One microphone singing voice separation using source-adapted models[C]. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, New Paltz, NY, USA, 2005:90-93.
    [60] James C J, Lowe D. Single channel analysis of electromagnetic brain signals through ICA in a dynamical systems framework[C]. IEEE International Conference on Engineering in Medicine and Biology Society, Istanbul, Turkey, 2001, 1974-1977.
    [61] Gao P, Ee-Chien Chang, Wyse L. Blind separation of fetal ECG from single mixture using SVD and ICA[C]. International Conference on Information, Communications and Signal Processing, Singapore, 2003, 3:1418-1422.
    [62] Warner E S, Proudler I K. Single-channel blind signal separation of filtered MPSK signals [J]. IEE Proceedings of Radar, Sonar and Navigation, 2003, 150(6): 396-402.
    [63] Lee J, Lee K J, Yoo S K. Development of a new signal processing algorithm based on independent component analysis for single channel ECG data[C]. IEEE International Conference on Engineering in Medicine and Biology Society, San Francisco, CA, USA, 2004, 1: 224-226.
    [64] Jang G J, Te-Won Lee, Yung-Hwan Oh. Single-channel signal separation using time-domain basis functions [J]. IEEE Signal Processing Letters, 2003, 10(6): 168-171.
    [65] Jang G J, Lee Te-Won, Oh Yung-Hwan. Single channel signal separation using MAP-based subspace decomposition[J]. Electronics Letters, 2003, 39(24): 1766-1767.
    [66] Thomas B, Brian D P, and Ole W. Low Complexity Bayesi an Single ChannelSource Separation[ C]. IC ASSP 2004, Montrea, l Quebec,Canada, 2004, 5: 529-532.
    [67] Reyes-Gomez M J, Ellis D P W, Jojic N. Multiband audio modeling for single-channel acoustic source separation[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing, Montreal, Quebec, Canada, 2004, 5: 641-644.
    [68] Tuomas V. Monaural Sound Source Separation by Nonnegative Matrix Factorization with Temporal Continuity and Sparseness Criteria [J]. IEEE Trans. Audio, Speech, and Language Processing, 2007, 15 (3):1066-1074.
    [69] Fevotte C, Godsill S J. A bayesian approach for blind separation of sparse sources[J]. IEEE Trans. Audio, Speech, and Language Processing, 2006, 14(6): 2174-2188.
    [70]徐尚志,苏勇,叶中付.欠定条件下的盲分离算法[J].数据采集与处理, 2006, 21(2): 128-132.
    [71] Szu H, Chanyagorn P, Kopriva I. Sparse coding blind source separation through powerlinee [J]. Neurocomputing, 2002, 48(1):1015-1020.
    [72] Wu M Y, Wang D L, Brown G. J. A multipitch tracking algorithm for noisy speech [J]. IEEE Trans. Speech and Audio Processing, 2003, 11(3): 229-241.
    [73] Hu G N, Wang D L. Monaural speech segregation based on pitch tracking and amplitude modulation[J]. IEEE Trans. Neural Networks, 2004, 15(5):1135-1150.
    [74] Li P, Guan Y, Xu B, et al. Monaural Speech Separation Based on Computational Auditory Scene Analysis and Objective Quality Assessment of Speech [J]. IEEE Trans. Audio, Speech, and Language Processing, 2006, 14(6): 2014-2023.
    [75] Radfar M H, Danserean R M, Sayadiyan A. A maximum likelihood estimation of vocal-tract-related filter characteristics for single channel speech separation [J]. EURASIP Journal on Audio,Speech,and Music Processing, 2007, (1): 1-15.
    [76]张晓冬,王桥,吴乐南.利用脊的特征进行信号盲分离[J].电子学报, 2004, 32(7): 1156-1159.
    [77]蔡权伟,魏平,肖先赐.基于模型拟合的重叠信号盲分离方法[J].电子学报, 2005, 33(10): 1794-1798.
    [78] Vincent E, Gribonval R, Fevotte C. Performance measurement in blind audio source separation [J]. IEEE Trans. Audio, Speech, and Language Processing, 2006, 14(4): 1462 -1469.
    [79]黄青华.基于源信号模型的盲分离技术研究及应用[D].上海:上海交通大学, 2007.
    [80]刘凯.粒子滤波在单通道信号分离中的应用研究[D].合肥:中国科学技术大学, 2007.
    [81]方勇,王伟,王睿.置换混叠信号的盲检测和分离[J].应用科学学报,2009,27(5): 491-497.
    [82]王伟,方勇.基于有限差分的置换图像盲检测方法[J].电子学报, 2010, 38(10): 2268-2272.
    [83] Wang W, Fang Y. Single-Channel Blind Separation of JPEG Permuted Image Using Double Compression [C]. The 2nd IEEE/IET International Conference on Audio, Language and Image Processing, Shanghai, China. 2010:439-443.
    [84]王伟,方勇.基于二次模糊相关性的单通道置换图像盲分离[J].应用科学学报,2011, 29(2):169-175
    [85] FANG Y, WANG W. Blind-restoration-based blind separation method for permuted motion blurred images[J], Journal of Shanghai University (English Edition), 2011, 15 (2): 79-84.
    [86]何超,方勇.基于公共因子提取的数字图像篡改检测[J].系统仿真技术,2011, 7(1): 6-10.
    [87]扈文斌,刘凯.基于量化表不一致性的JPEG图像篡改盲检测[J].中国图像图形学报,2011, 16(3): 316-323.
    [88]张春梅,尹忠科.基于冗余字典的信号超完备表示和稀疏分级[J].科学通报, 2006, 51(6): 628-633.
    [89] Elad M, Ma′rio A T F ,Yi M. On the role of sparse and redundant representations in image processing[J]. Proceedings of the IEEE. 2010, 98(6): 972-982.
    [90] Temlyakov V. Nonlinear Methods of approximation. IMI research reports, Dept of Mathematics, University of South Carolina. 2001, 1: 9
    [91] Ron R, Alfred M B, Elad M. Dictionaries for sparse representation modeling[J]. Proceedings of the IEEE, 2010, 98(6): 1045-1057.
    [92] Yang J Y, Peng Y G, Xu W L, et al. Ways to sparse representation: an overview[J]. Science in china series F:information sciences, 2009, 52(4): 695-703.
    [93] Mallat S, Zhang Z. Matching pursuits with time-frequency dictionaries[J]. IEEE Trans. Signal Processing, 1993, 41(12): 3397-3415.
    [94] Chen S, Donoho D and Saunders M. Atomic decomposition by basis pursuit[J]. SIAM J Sci Comput, 1999, 20(1): 33-61.
    [95] Donoho D, Huo X. Uncertainty principles and ideal atomic decomposition[J]. IEEE Trans. Inf. Theory, 2001, 47(7): 2845-2862.
    [96] Donoho D, Elad M. Maximal sparsity representation via l minimization[J]. Proc. Nat. Acad. Sci., 2003, 100:2197-2202.
    [97] Elad M, Bruckstein A. A generalized uncertainty principle and sparse representation in pairs of bases[J]. IEEE Trans. Inf. Theory, 2002, 48(9): 2558-2567.
    [98] Gribonval R, Nielsen M. Some remarks on nonlinear approximation with schauder bases[J]. East J. Approx., 2001, 7(2): 267-285.
    [99] Starck J L, Elad M , Donoho D. Redundant multiscale transforms and their application for morphological component analysis[J]. Advances in Imaging and Electron Physics, 2004, 132(82): 287-348.
    [100] Bobin J, Starck J L, Fadili M J,et al. Sparsity and morphological diversity in blind source separation[J]. IEEE Trans. Image Processing, 2007, 16(11): 2662-2674.
    [101] Fadili M J, Starck J L, Bobin J,et al. Image decomposition and separation using sparse representations: an overview[J]. Proceedings of the IEEE, 2010, 98(6):983-994.
    [102] Elad M, Starck J L, Donoho D and Querre P. Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA) [J], ACHA, 2005, 19 (3): 340-358.
    [103] Bobin J, Moudden Y, Starck J L and Elad M. Morphological diversity and source separation[J], IEEE Signal Processing Letters, 2006, 13(7): 409-412.
    [104]李映,张艳宁,许星.基于信号稀疏表示的形态成分分析:进展和展望.电子学报[J]. 2009, 37(1): 146-152.
    [105] Antonini M, Barlaud M, Mathieu P, Daubechies I. Image coding using wavelet transform[J]. IEEE Trans. Image Processing, 1992,1(2):205- 220.
    [106] Stark J L , Fadili J , Murtagh F. The undecimated wavelet decomposition and its reconstruction[J]. IEEE Trans.Image Processing , 2007 , 16 (2): 297-309.
    [107] Stark J L, Cand`es E, Donoho D L. The curvelet transform for image denoising[J]. IEEE Trans. Image Processing, 2002, 11(6): 670-684.
    [108] Do M N, Vetterli M. The Contourlet transform: An efficient directional multiresolution image representation[J]. IEEE Trans.Image Processing, 2005, 14(12): 2091-2106.
    [109] Starck J L, Elad M, Donoho D. Image decomposition via the combination of sparse representations and a variational approach[J]. IEEE Trans. Image Process, 2005, 14(10): 1570-1582.
    [110] Bruce A, Sardy S, Tseng P. Block coordinate relaxation method for nonparametric signal denoising[C]. In:Proceeding of International Society for Optical Engineering, Orlando, FL, USA, 1998, 3391: 75-86.
    [111] Engan K, Aase S O, and Husoy J H. Method of Optimal Directions for Frame Design[C]. Proceedings ICASSP’99-IEEE International Conference on Acoustics, Speech, and Signal Processing, 1999, 5: 2443-2446.
    [112] Engan K, Rao B D, and Delgado K K. Frame Design using FOCUSS with Method of Optimal Directions[C]. Proceedings NORSIG’99-Norwegian Signal Processing Symposium, 1999, 65-69.
    [113] Lesage S, Gribonval R, Bimbot F, and Benaroya L. Learning Unions of Orthonormal Bases with Thresholded Singular Value Decomposition[C]. Proceedings ICASSP’05-IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005, 5: 293-296.
    [114] Vidal R, Ma Y, and Sastry S. Generalized principal component analysis (GPCA) [J]. IEEE Trans. Pattern Anal. Mach. Intell., 2005, 27(12): 1945-1959.
    [115] Aharon M, Elad M, and Bruckstein A. K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation[J]. IEEE Trans. Signal Process, 2006, 54 (11): 4311-4322.
    [116] Mairal J, Sapiro G, and Elad M. Learning Multiscale Sparse Representations for Image and Video Restoration[J]. SIAM Multiscale Modeling and Simulation, 2008, 7(1): 214-241.
    [117]张文革,刘芳,焦李成等.基于Bandelets域逐子块阈值的图像去噪[J].电子学报, 2010, 38(2): 290-294.
    [118] Donoho D L. Denoising by soft thresholding [J]. IEEE Trans. Information Theory, 1995, 41(3):613-627.
    [119]杨晓慧,焦李成等.基于第二代bandelets的图像去噪[J].电子学报, 2006, 34 (11): 2063 -2067.
    [120]杨帆,赵瑞珍,胡绍海.基于Contourlet系数相关特性的自适应图像去噪算法[J].光学学报,2009, 29(2): 357-361.
    [121] Bruckstein A M , Donoho D L and Elad M. From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images[J]. SIAM Review, 2009, 51(1): 34-81.
    [122] Chen S, Billings S A and Luo W. Orthogonal Least Squares Methods and Their Application to Non-linear System Identification[J]. International Journal of Control, 1989, 50(5): 1873-1896.
    [123] Davis G, Mallat S and Zhang Z. Adaptive Time-frequency Decompositions. Optical Engineering[J], 1994,33(7): 2183-2191.
    [124] Rafael C. Gonzalez. Digital Image Processing Using MATLAB [M]. Beijin: Publishing House of Electronics Industry, 2005. [冈萨雷斯.数字图像处理(Matlab版) [M].北京:电子工业出版社,2005.
    [125] Marziliano P, Dufaux F, Winkler S, and Ebrahimi T. A No-reference Perceptual Blur Metric[C] , 2002,In ICIP (3), 57-60.
    [126] Chung Y, Wang J, Bailey R, Chen S, and Chang S. A Non-parametric Blur Measure Based on Edge Analysis for Image Processing Applications[C]. IEEE Conference on Cybernetics and Intelligent Systems, 2004, 1:356-360.
    [127] Tong H H, Li M J, Zhang H J, Zhang C S. Blur Detection for Digital Images using Wavelet Transform[C]. IEEE Int. Conf. on Multimedia and Expo(ICME),2004, 17-20.
    [128] Wang J W , Liu G J , Dai Y W , Zhang Z , and Wang Z Q. Image Forensics for Blur Detection Based on Nonsubsampled Contourle Transform[J]. Journal of Computer Research and Development, 2009, 46: 1549-1555.
    [129] Liu R T, Li Z R, Jia J Y. Image Partial Blur Detection and Classification[C]. Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2008, 1-8.
    [130] Tsomko E,Kimh J. Efficient Method of Detecting Gobally Blurry or Sharp Images[C]. Proc. Ninth Int.Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS), Klagenfurt, Austria, 2008, 171-174.
    [131] Tsomko E, Kim H J, Izquierdo E. Linear Gaussian Blur Evolution for Detection of Blurry Images[J]. IET Image Process, 2010, 4:302-312.
    [132]邓泽峰,熊有伦.基于频域方法的运动模糊方向识别[J].光电工程. 2007, 34(10): 98-101.
    [133]陈前荣,陆启生,成礼智.基于方向微分的运动模糊方向鉴别[J].中国图象图形报, 2005, 10(5): 590-595.
    [134] Yitzhaky Y, Kopeika N S. Identification of Blur Parameters from Motion Blurred Images[J]. Graphical Models and Image Processing, 1997, 59(5): 310-320.
    [135]赵云天,郭雷,陈亮.四相位差分图像边缘检测算法[J].微电子学与计算机,2008, 25(8): 72-75.
    [136] Storn R and Price K. Differential Evolution: A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces[J]. J Global Optim. ,1997, 11:341-359.
    [137] Price K. An Introduction to differential evolution[J]. In: D. Corne, M. Dorigo, F. Glover (eds) New Ideas in Optimization, NcGraw-Hill, London(UK), 1999, 79-108.
    [138] Vesterstrom J, Thomsen R. A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems[C]. IEEE Congress on Evolutionary Computation, 2004, 2: 1980-1987.
    [139] Price K, Storn R M, Lampinen J A. Differential Evolution: A Practical Approach to Global Opti-mization (Natural Computing Series)[M]. Springer, 1st Edition, 2005.
    [140] Qing A Y. Differential Evolution: Fundamentals and Applications in Electrical Engineering[M], 2009, 287 - 310.
    [141] Ferrante N, Ville T. Recent Advances in Differential Evolution: A Survey and Experimental Analysis[J]. Journal: Artificial Intelligence Review-AIR, 2010, 33(2): 61-106.
    [142] Das S, Suganthan P N. Differential Evolution: A Survey of the State of the Art[J], IEEE Trans. Evolutionary Computation, 2011, 15(1): 4-31.
    [143]贾东立.改进的差分进化算法及其在通信信号处理中的应用研究[D].上海:上海大学, 2011.
    [144] Pinar C. Removal of Random-Valued Impulsive Noise from Corrupted Images[J], IEEE Trans. Consumer Electronics, 2009, 55(4): 2097-2104.
    [145] Rahnamayan S, Tizhoosh H R, and Salama M M A. Image thresholding using differential evolution[C]. In Proceedings of the International Conference on Image Processing, Computer Vision, and Pattern Recognition, 2006, 244-249.
    [146] Rahnamayan S, Tizhoosh H R. Image Thresholding Using Micro Opposition-Based Differential Evolution [C]. Evolutionary Computation, (IEEE World Congress on Computational Intelligence) HongKong, 2008, 1409-1416.
    [147] Pei Z K, Zhao Y L, Liu Z. Image Segmentation Based on Differential Evolution Algorithm[C]. Image Analysis and Signal Processing, IASP 2009, International Conference on Taizhou, 2009, 48-51.
    [148] Maulik U, Saha I. Automatic Fuzzy Clustering Using Modified Differential Evolution for Image Classification[J], IEEE Trans. Geoscience and Remote Sensing, 2010, 48(9): 3503-3510.
    [149] Aslantas V, Kurban R. Fusion of multi-focus images using differentialevolution algorithm[J]. Expert Systems With Applications -ESWA, 2010, 37(12): 8861-8870.
    [150] Semnani A, Rekanos I T, Kamyab M and Papadopoulos T G. Two-Dimensional Microwave Imaging Based on Hybrid Scatterer Representation and Differential Evolution[J]. IEEE Trans. Antennas and Propagation, 2010, 58(10): 3289-3298.
    [151] Sudhakar G, Polinati V B, Suresh C S and Gunanidhi P. Effective Image Clustering using Differential Evolution technique[J]. Int. J. of Computer and communication Technology, 2010, 2(1):11-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700