基于信号特征的数控交流伺服进给系统摩擦建模与补偿研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工作台进给系统广泛用于机械制造和加工过程中。该系统中存在的多种非线性特性,如摩擦、间隙、磁滞效应、饱和、未建模动态特性和外部扰动等,给系统的性能带来很大影响,其中非线性摩擦对系统运动控制性能的影响最为明显。在消除了滚珠丝杠螺距误差和间隙以后,高精度工作台伺服进给系统中存在的摩擦就成为影响运动控制精度的主要原因,如何有效的消除摩擦的影响已成为研究的关键问题。通过控制摩擦影响,实现期望的运行性能是机电伺服控制系统中一个具有重大科学意义和实际应用价值的研究课题。
     本文以滚珠丝杠与直线滚动导轨组成的交流伺服驱动工作台进给系统为研究对象,进行摩擦测量、识别、建模和补偿技术的研究,从理论和实践上尝试给出利用多信号耦合特征的摩擦分析、建模以及补偿控制的方法。
     首先利用激光多普勒仪对滚珠丝杠的螺距误差进行了测量与分析。基于测量结果的分析和补偿方法的理论分析,采用软硬结合的方法对不同性质的误差进行了分类补偿。通过采用加装原点开关和改进原点捕捉方法,有效提高了系统的重复定位精度;对于系统的周期性误差和偶然性误差,采用了一种误差前馈补偿控制方法;接着分析了其控制精度的改善和算法实现。在XY实验台上的补偿实验结果验证了补偿方法的有效性与理论分析的正确性,从而在不提高成本的情况下较好的改善了数控工作台定位精度。
     详细分析了数控交流工作台进给系统的各个环节,建立了系统动力学模型,进行了系统参数辨识。利用交流伺服驱动器提供的力矩监控信号,测量出摩擦力(矩)和稳态速度之间的关系,根据实验测量数据建立了一个简化的Stribeck摩擦力模型,进行了交流伺服工作台进给系统摩擦特性建模仿真研究,证明了摩擦仿真模型的有效性,为摩擦补偿控制研究打下了必要的基础。
     提出了利用小波分析提取交流伺服电流中摩擦影响的信息特征的方法,该方法能识别出从静摩擦力到动摩擦力转变过程中的信息特征,通过和位移输出信号变化对比分析说明伺服电流里包含摩擦力矩的变化信息,特别是它能提供静动摩擦力发生突变的时间位置;同时,从静摩擦力到动摩擦力转变过程中伺服电流存在突变,并且伺服电流中的突变总是提前于工作台的宏观运动时刻。接着,继续引入工作台的加速度信号,通过实际测试实验验证了工作台从静止到宏观运动的过渡时间与零速度时刻对应的加速度平方根的倒数成正比的定量关系,并且它不受负载变化影响。
     从工程实用性的角度探索摩擦补偿方法,提出了带有摩擦前馈补偿的伺服控
A table feed system is widely used in machine building and machining process. Several nonlinearities of the system, such as friction, backlash, hysteresis, saturation, non-model dynamics and external disturbance etc. bring big influences on system performance, among which nonlinear friction has the most evident impact on the performance of system motion control. After pitch error of ball-screw and backlash eliminated, friction will be the dominate factor influencing precision of motion control of a high-precision table servo feed system. So how to eliminate effectively influences of friction has been a key problem of study. To realize the expected operating performance by controlling influences of friction is a research task of significance and practical application value.
    A subject investigated in this dissertation is an AC servo driven table feed system consisting of ball-screw and linear rolling guide, on which friction measurement, diagnosis, modeling and compensation technologies are studied. From view of theory and practice, the methods of analysis, modeling and compensation of friction based on the feature of multi-signals are attempted to be presented.
    Firstly, pitch error of ball-screw is measured and analyzed by a laser Doppler displacement meter. Based on analysis of measuring results and theoretical analysis of compensation methods, different errors are classified and respectively compensated with the software and hardware method. Installation of an origin switch and improvement of the method of origin trapping effectively enhance repetitive positioning precision of the system. An error feed-forward compensation control means is employed in terms of periodical error and casual error of the system, and its amelioration of control precision and algorithm implementation. Compensation experimental results on the XY worktable verify effectiveness of the compensation method and correctness of theoretical analysis so that positioning precision of the computer-controlled table is improved well without addition of cost.
    Secondly, each section of the CNC AC servo table feed system is investigated in detail, then a dynamical model of the system is built and system parameter identification is carried out. By utilizing torque monitoring signal provided by the AC servo driver, the relationship between friction and steady velocity is determined. A simplified Stribeck friction model is established based on these experimental data.
引文
1 梅雪松,陶涛,堤正臣等.高精度数控伺服工作台摩擦误差的研究.机械工程学报.2001,7(6):76-81
    2 H. Du and S.S.Nair. Low Velocity Friction Compensation. IEEE Control Systems.1998, (3):61~69
    3 E.D.Tung, G. Anwar, M.Tomizuka. Low Velocity Friction Compensation and Feedforward Solution Based on Repetitive Control. Journal of Dynamic Systems, Measurement.1993, 115(7):279~284
    4 李圣怡,朱建忠.超精密加工及其关键技术的发展.中国机械工程.2000,11(1-2):177~179
    5 B.Armstrong-Helouvry, P. Dupont, C.C. De Wit. A Survey of Models, Analysis Tools and Copmpensation Methods for the Control of Machines with Friction. Automatica.1993, 30(7): 1083~1138
    6 B. Armstrong-Helouvry. Control of Machines with Friction. Boston, USA: Kluwer Academic Publishers, 1991
    7 J.A. De Marchi. Modeling of Dynamic Friction, Impact Backlash and Elastic Compliance Nonlinearities in Machining Tools, with Applications to Asymmetric Viscous and Kinetic Friction Identification. Rensselaer Polytechnic Institute Troy, New York, Ph.D. thesis. 1998: 30~45
    8 王鸿,王文.机床摩擦自激振动的研究.烟台大学学报(自然科学与工程版).1997,10(1):59~65
    9 黄进,叶尚辉,陈其昌.含摩擦环节的伺服系统的低速爬行研究.机械设计.1998,(10):39~41
    10 王中华.运动控制器中几个摩擦补偿方法:东南大学博士学位论文.2002年:1~10
    11 M.R. Popovic. Friction Modeling and Control. The University of Toronto, Canada. Ph.D thesis, 1996:1~20
    12 P.E.Dupont and E.P.Dunlap. Friction Modeling and PD Compensation at Very Low Velocities. Journal of Dynamic Systems, Measurement, and Control. 1995,117(3):8~14
    13 E. D. Tung and M. Tomizuka. Feedforward Tracking Controller Design Based on the Identification of Low Frequency Dynamics. Journal of Dynamic Systems, Measurement, and Control. 1993, 115(Sept): 348~356
    14 林正,钟德刚,陈永校等.同步型永磁交流伺服系统控制技术评述.微电机,2005,38(1):58~60
    15 肖正义.滚珠丝杠发展趋势.制造技术与机床.2000,(4):11~13
    16 尹学军,刘经燕,赵轶姝.精密直线滚动导轨副的动态摩擦力波动实验研究.五邑大学学报(自然科学版).1997,11(3):67~70
    17 宋海林.直线滚动导轨的特点及选用.机械工程师.2001,(7):34~35
    18 王波,董申,赵万生.超精密定位中的几项关键技术.航空精密制造技术.1998,34(3):13~16
    19 徐圣林,陈耿.精密超精密定位技术及其应用.中国机械工程.1997,8(4):73~75
    20 B.Armstrong-Helouvry, P. Dupont. Friction Modeling for Control. Proceedings of the American Control Conference. 1993, (2): 1905~1909
    21 P.Dupont. The Effect of Friction on the Forward Dynamic Problem. The International Journal of Robotics Research, 1993, 12(2):164~179
    22 P. Song, P. Kraus, P. Dupont. Analysis of Rigid Dynamic Models for Simulation of Systems with Frictional Contacts. ASME Journal of Applied Mechanics.1999, (6):
    23 P. Dupont, D.Bapna. Perturbation Stability of Frictional Sliding With Varying Normal Force. Journal of Vibration and Acoustics. 1996, 118(7): 491~497
    24 F. Altpeter. Friction Modeling, Identification and Compensation. Institut d'automatique, Ecole Polytechnique Federale de Lausanne. Ph.D thesis. 1999:9~21
    25 C.Candus, H.Olsson, K.J.Astrom, et al. A New Model for Control of Systems with Friction. IEEE Transaction on Automatic Control. 1995, 40(3):419~425
    26 V.J. Majd, M. A.Simaan. A Continuous Model for Servo Systems with Stiction. IEEE on Control Systems.1995:296~304
    27 J.Swevers, F. Al-Bender, C.G.Ganseman. An Integrated Friction Model Structure with Improved Presliding Behavior for Accurate Friction Compensation. IEEE Transactions on Automatic Control.2000, 45(4):675~686
    28 D.Karnopp, Computer Simulation of Stick-slip Friction in Mechanical Dynamic Systems. ASME Journal of Dynamic Systems, Measurement and Control. 1985, 107(1): 100~103
    29 C.T.Johnson, R.D.Lorenz. Experimental Identification of Friction and Compensation in Precise Position Controlled Mechanisms. IEEE Transaction Industrial Application. 1992, 28(6): 1392~1398
    30 D.A.Haessig,Jr. and B.Friedland. On the Modeling and Simulation of Friction. ASME Journal of Dynamic Systems, Measurement and Control. 1991, 113(9): 354~362
    31 V. Hayward, B. Armstrong. A New Computational Model of Friction Applied to Haptic Rendering. In Experimental Robotics Ⅵ, P.Corke and J.Trevelyan(Eds.), Springer: New-York, LNCS 250, 2000:404~412
    32 A.A. Polycarpou, A. Soom. Two-Dimensional Model of Boundary and Mixed Friction at o Line Contact. Journal of Tribology. 1995, 117(1): 178~184
    33 H. Rachoor and A. Harnoy. Modeling of Dynamic Friction in Lubricated Line Contacts for Precise Motion Control. Tribology Transations. 1996, 39(2):476~482
    34 M. R. Popovic and A. A. Goldenberg. Modeling of Friction Using Spectral Analysis. IEEE Transaction on Robotics and Automation. 1998, 14(1): 114~122
    35 P.-Y. Huang, Y.-Y. Chen and M.-S. Chen. Position-dependent Friction Compensation for Ballscrew Tables. Proceedings of 1998 IEEE International Conference on Control Applications. Trieste, Italy. 1-4 September 1998:863~867
    36 H. Du and S. S. Nair. Modeling and Compensation of Low-Velocity Friction with Bounds. IEEE Transaction on Control Systems Technology. 1999, 7(1): 110~121
    37 M.-H.Fun and M.T. Hagan. Modular Neural Networks for Friction Modeling and Compensation. Proceedings of the 1996 IEEE International Conference on Control Applications. Dearborn, 1996:814~819
    38 黄进,叶尚辉.基于CMAC网络的摩擦补偿研究.中国机械工程.1999,10(3):269~272
    39 贾志勇,林廷圻.新型克服摩擦力的方法及其在高精度液压伺服系统的应用.机械科学与技术.1999,18(1):99~100
    40 解旭辉,李圣怡.基于神经网络的超精密机床伺服进给非线性模型辨识.国防大学科技学报.1997,19(3):75~79
    41 陈国安,葛世荣,刘金龙.滑动摩擦力分形预测模型.中国矿业大学学报.2000,29(5):492-495
    42 M. Tomizuka. On the Compensation of Friction Forces in Precision Motion Control. Motion Control Proceedings Asia-Pacific Workshop on Advances in 1993:69~74
    43 S.C. Southward, C.J. Radcliffe and C.R. Maccluer. Robust Nonlinear Stick-slip Friction Compensation. Journal of Dynamic Systems, Measurement and Control. 1991, 111(12):639~645
    44 P.E. Dupont. Avoiding Stick-slip Through PD Control. IEEE Transaction on Automatic Control.1994, 39(5): 1094~1097
    45 P.E.Dupont and E.P. Dunlap. Friction Modeling and Control in Boundary Lubrication. Proceedings of the American Control Conference. 1993, 2:1910~1914
    46 M.S.Kang. Robust Digital Friction Compensation. Proceedings of the 36th Conference on Decision & Control. San Diego, California USA. December 1997:363~364
    47 B. Armstrong. Stick Slip and Control in Low-Speed Motion. IEEE Transaction on Automatic Control. 1993, 38(10): 1483~1496
    48 B. Armstrong, B. Amin. PID Control in the Presence of Static Friction: A Comparison of Algebraic and Describing Function Analysis. Automatica. 1996, 32(5):676~692
    49 黄进,叶尚辉,陈其昌.含摩擦环节的伺服系统的低速爬行研究.机械设计.1998,(10):39~41
    50 黄进,叶尚辉,陈其昌.含有摩擦环节伺服系统的Volterra泛函级数分析.西安电子科技大学学报.1998,25(4):515~520
    51 张锦江,陈兴林,王常虹等.仿真转台克服低速滞滑的判据研究.系统工程与电子技术.2000,22(7):53~56
    52 B. Armstrong, D. Neevel, T. Kusik. New Results in NPID Control: Tracking, Integral Control, Friction Compensation and Experimental Results. IEEE Transaction on Control Systems Technology.2001, 9(2):399~405
    53 J.-Y. Jeon, S.-W. Lee, H.-K.Chae et al. Low Velocity Friction Identification and Compensation Using Accelerated Evolutionary Programming. Proceedings of the IEEE Conference on Evolutionary Computation, ICEC, 1996:372-377
    54 S.Parvez, Z.q.Gao. A Wavelet-Based Multi-Resolution PID Controller.IEEE Industry. Applications Conference; 38th IAS Annual Meeting: Crossroads To Innovation, Oct 12-16 2003, Salt Lake City, UT, United States.2003, (1):1~5
    55 S.-W. Lee, J.-H. Kim. Robust Adaptive Stick-slip Friction Compensation. IEEE Transactions on Industrial Electronics.1995, 42(5):474~479
    56 S. Sivakumar, F.Khorrami. Adaptive Variable Structure Control and Applications to Friction Compensation. Proceedings of the 36th Conference on Decision &Control, San Dicgo, California USA, December 1997:4159~4164
    57 王彦峰,吴希让.高速进给传动的滑模控制设计.兵工自动化.2002,21(1):13~17
    58 郑言海,庄显义,强盛等.考虑摩擦力影响精密伺服系统鲁棒自适应控制.自动化学报.2002,28(3):445~449
    59 Z.Wang, H.Melkote, F.Khorram. Robust Adaptive Friction Compensation in Servo-drive Using Position Measurement Only. Proceedings of the 2000 IEEE International Conference on Control Applications, Anchorage, Alaska, USA.Semptember 25-27, 2000:178~183
    60 G. Denis, S. Krishnaswamy. Adaptive Friction Compensation for Precision Machine Tool Drive. Control Engineering Practice.2004, 12(11): 1451~1464
    61 王中华,王兴松,徐卫良.X-Y定位工作台的鲁棒自适应摩擦补偿.东南大学学报(自然科学版).2002,32(1):69~72
    62 P.I. Ro. and P. I. Hubbel. Model Reference Adaptive Control of Dual-Mode Micro/Macro Dynamics of Ball Screws for Nanometer Motion. Journal of Dynamic Systems, Measurement, and Control.1993, 115(3):103~108
    63 李书训,姚郁,王子才.一种自适应摩擦补偿方法研究.电机与控制学报.1999,3(3):129~133
    64 李书训,姚郁等.基于观测器的伺服系统低速摩擦补偿分析.电机与控制学报.2000,4(3):27~30
    65 M.Feemster, P. Vedagarbha, D.M. Dawson et al. Adaptive Control Techniques for Friction Compensation. Mechatronics. 1999, 9(2): 125~145
    66 张锦江,陈兴林,冯汝鹏等.基于摩擦自适应补偿的转台变结构控制器设计.哈尔滨工业大学学报.2000,32(4):92~95
    67 H. S.Lee, M.Tomizuka. Robust Motion Controller Design for High-accuracy Positioning Systems. 1996, 43 (1):48~55
    68 Y. Funahashi, M. Yamada. Zero Phase Error Tracking Controller With Optimal Gain Characteristics. Journal of Dynamic Systems, Measurement, and Control. 1993, 115(9):311~318
    69 K.K Tan, T. H Lee, S.H Huang, et al. Frictional Modeling and Adaptive Compensation Using a Relay Feedback Approach. IEEE Transaction on Industry Electronics. 2001, 48(1): 169~176
    70 C.Canudas de Wit and S.S. Ge. Adaptive Friction Compensation for Systems with Generalized Velocity/position Friction Dependency. Proceedings of the 36th Conference on Decision &Control, San Dicgo, California USA, December 1997:2465~2470
    71 T.-L. Liao and T.-I Chien. An Exponentially Stable Adaptive Friction Compensator. IEEE Transactions on Automatic Control.2000, 45(5):977~980
    72 董锡君,姚郁,洪兴昌.基于速度观测器的模型参考自适应摩擦补偿.航天控制.2000,(2):56~60
    73 陈娟.自适应低速摩擦补偿.量子电子学报.2001,18(Suppl.):89~91
    74 王军平,王安,敬忠良等.数控系统的自适应鲁棒控制器设计.西安交通大学学报.2002,25(6):623~626
    75 H.Hermann and C.Witte. Experimental Results with Observer-based Nonlinear Compensation of Friction in a Positioning System. Proceedings of the 1998 IEEE International Conference on Robotics & Automation, Leuven, Belgium, May 1998:187~192
    76 A.Taware, N. Paradhan, and G. Tao. Feedback Linearization based Adaptive Friction Compensation for a Sandwich Nonlinear System. Proceedings of the American Control Conference, Arlington,VA, June 25-27,2001:588~593
    77 Y.L. Zhu, P. R.Pagilla. Static and Dynamic Friction Compensation in Trajectory Tracking Control of Robots. IEEE International Conference on Robotics and Automation, Washington, DC, United States, 2002, (3):2644~2649
    78 Y.Zhang, G.Liu, A.A.Goidenberg. Friction Compensation with Estimated Velocity. IEEE International Conference on Robotics and Automation.2002, (3):2650~2655
    79 R.Kelly, V.Santibanez, E.Gonzalez. Adaptive Friction Compensation in Mechanisms Using the Dabl model.Proceedings of the Institution of Mechanical Engineers. Part Ⅰ: Journal of Systems and Control Engineering.2004, 218(1):53~57
    80 J. Moreno, R. Kelly, R. Campa.On Velocity Control Using Friction Compensation. Proceedings of the IEEE Conference on Decision and Control.2002, (1):95~100
    81 C.C. De Wit, P.Lischinsky. Adaptive Friction Compensation with partially Known Dynamic Friction Model. International Journal of Adaptive Control and Signal Processing.1997, 11(1):65~80
    82 S.S. Ge, T.H.Lee and S.X.Ren. Adaptive Friction Compensation of servo Mechanisms. Proceedings of the 1999 IEEE International Conference on Control Applications. Kohala Coast-Island of Hawai'i, Hawai'i, USA, August, 1999:1175~1180
    83 郑言海,王洪祥,庄显义.基于匹配追随算法的摩擦力自适应辨识与补偿研究.高技术通讯.2001,(1):77~80
    84 H.L. Du, S. S. Nair. Robust Adaptive Compensation for a Class of Nonlinear Systems. Journal of Dynamic Systems, Measurements and Control. 2002, 124(3):231~234
    85 K.K. Tan, S.N. Huang, T.H. Lee. Adaptive Friction Compensation with Time-Delay Friction Model. Proceedings of the 4th World Congress on Intelligent and Automation, Shanghai, China, June 10-14, 2002:969~973
    86 Y.L. Tan, J. Chang and H.L.Tan. Adaptive Back-stepping Control and Friction Compensation for AC Servo with Inertia and Load Uncertainties. IEEE Transaction on Industrial Electronics.2003, 50(5):944~952
    87 A.Ramasubramanian and L.R. Ray. Adaptive Friction Compensation Using Extended Kalman-Bucy Filter Friction Estimation: a Comparative Study. Proceedings of the American Control Conference, Chicago, Illinois, June 2000:2588~2594
    88 K.M Misovec, A.M. Annaswaamy. Friction Compensation Using Adaptive Nonlinear Control with Persistent Excitation. International Journal of Control.1999, 72(5): 457~479
    89 H. Du, S. S.Nair. Modeling and Compensation of Low-velocity Friction with Bounds. IEEE Transactions on Control System Technology. 1999, 7(1):110~121
    90 R.M. Sanner, J.J.E. Slotline. Gaussian Networks for Direct Adaptive Control. IEEE Transactions on Neural Networks. 1992, 3(6): 837~863
    91 S.N. Huang, K.K. Tan and T.H. Lee. Adaptive Friction Compensation Using Neural Network Approximation. IEEE Transaction on Systems, Man and Cybernetics-Part C: Applications and Reviews. 2000, 30(4):551~557
    92 王兴松,张正峰,王中华.定位平台非线性摩擦的神经网络补偿.东南大学学报(自然科学版).2002,32(4):605~609
    93 Y.H.Kim,F.L.Lewis.Reinforcement Adaptive Learning Neural-net-based Friction Compensation Control for High Speed and Precision.2000, 8(1): 118~126
    94 G.A.Larsen, S. Cetinkunt, and A. Donmez. CMAC Neural Network Control for High Precision Motion Control in the Presence of Large Friction. Journal of Dynamic Systems, Measurement and Control. 1995, 117(9):415~419
    95 蒋志明,吴伟,林廷圻.高斯基函数CMAC神经网络用于克服摩擦非线性的研究.机床与液压.2000,(2):24~25
    96 J.T.Teeter, M.-y. Chow, J. J.Brickley. A Novel Fuzzy Friction Compensation Approach to Improve the Performance of a DC Motor Control System. IEEE Tractions on Industrial Electronics. 1996, 43(1): 113~120
    97 M.R.Popovic, D.D. Gorinevsky and A.A. Goldenberg. High-precision of a Mechanism with Nonlinesr Friction Using Fuzzy Logic Pulse Controller. IEEE Transactions on Control Systems Technology.2000, 8(1): 151~158
    98 丛爽,李国栋.并联双模糊控制器在摩擦力补偿中的应用.微特电机.2000,(3):3~5
    99 何波,姜复兴,吴广玉.光栅实验台的自适应模糊补偿器设计.中国惯性技术学报.2000,8(2):58~64
    100 黄进,叶尚辉,陈其昌.基于自调整量化因子模糊控制器的摩擦补偿研究.机械设计与研究.1999,(1):27~29
    101 L.-C. LIN and G.-Y. LEE. Hierarchical Fuzzy Control for C-Axis of CNC Turning Centers Using Genetic Algorithms. Journal of Intelligent and Robotic Systems. Journal of Intelligent and Robotic Systems.1999, 25(3):255~275
    102 L.-C.LIN and Y.-J. LIN. Fuzzy-enhanced Adaptive Control for Flexible Drive System with Friction Using Genetic Algorithms. 1998, 23(2-4):379~405
    103 D.-C. LIAW and J.-T. HUANG. Contact Friction Compensation for Robots Using Genetic Learning Algorithms. Journal of Intelligent and Robotic Systems. 1998, 23(2-4):331~349
    104 唐小琦,李曦.基于Fourier级数的自适应非线性学习控制算法的研究.机械与电子.2002,(5):51~53
    105 D.Bi, Y.F.Li, S.K. Tso et al. Friction Modeling and Compensation for Haptic Display Based on Support Vector Machine. IEEE Transactions on Industrial Electronics. 2004, 51 (2):491~500
    106 丛爽.机电系统中模糊与模糊神经元网络控制策略的研究.中国电机工程学报.1999,19(7):30~32
    107 何波,姜复兴.光栅实验台的模糊神经网络补偿器设计.系统工程与电子技术.2000,22(7):82~85
    108 D.S.Necsulecu, J. D. Carufel and C.C. De Wit. Investigation on The Efficiency of Acceleration Feedback in Servomechanism With Friction. Dynamics and Control. 1997, (7):377~397
    109 陈娟,乔彦峰.伺服系统低速摩擦力矩特定及补偿研究概况.光机电信息.2002,(11):30~34
    110 李庆雷,王先逞,石忠东.永磁直线电动机加速度反馈位置控制系统研究.制造技术与机床.2000,(6):27~29
    111 G.Liu. Decomposition-based Friction Compensation of Mechanical System. Mechatronics. 2002, (12):755~769
    112 C.S. Tufekci and K.C.Craig. Mechatronics Design and Control of High-Speed High-Accuracy Positioning under the Influence of Friction. http//:www.meche.rpi.edu/research/mechatronics/
    113 梅生伟,申铁龙,孙元章等.带有干扰的非线性系统的无源化控制.控制理论与应用.1999,16(6):797~801
    114 K.-S. Low, and M.-T.Keck. Advanced Precision Linear Stage for Industrial Automation Application.IEEE Transactions on Instrumentation and Measurement. 2003, 52(3): 785~789
    115 S.Endo, H.Kobayshi, C.J.Kempf et al. Robust Digital Tracking Controller Design for High-Speed Positioning System. Control Engineering Practice.1996, 4(4):527~536
    116 B.Yao, M. Al-Majed, M. Tomizuka. High Performance Robust Motion Control of Machine Tools: An Adaptive Robust Control Approach and Comparative Experiments. Proceedings of the American Control Conference Albuquerque, New Mexico June 1997:2754~2785
    117 H.Henrichfreise and C.Witte. Experimental Comparison if Observer-Based Friction Compensation Scheme for an Electromechanical Positioning System. Internal Paper at Cologne Laboratory of Mechatronics, FB KT, Polytechnic Colonge, 1997
    118 K. Menon, K. Krishnamurthy. Control of Low Velocity Friction and Gear Backlash in a Machine Tool Feed Drive System. Mechanics. 1999(9): 33~52
    119 F.Altpeter. Friction Modeling, Identification and Compensation. Ecole polytechnique federale de Lausanne, Institut d'automatique. Ph.D Thesis. 1999:47~89
    120 M.Ebrahimi. Machine Tool Drive-train Modeling Using Computer-aided Control System Design. International Journal of Computer Applications in Technology. 2000, 13(4/5/6): 221~228
    121 S.Mekid, O. Olejniczak. High Precision Linear Slide. Part Ⅱ: Control and Measurements. International Hournal of Machine Tools & Manufacture.2000, (40): 1051~1064
    122 J.Deur, N. Peric. A Comparative Study of Servosystems with Acceleration Feedback. Conference Record-IAS Annual Meeting (IEEE Industry Applications Society), 2000, (3): 1533~1540
    123 E.Castillo-Castaneda, Y. Okazaki. Static Friction Compensation Approach to Improve Motion Accuracy of Machine Tool Linear Stages. Instrumentation and Development. 2001, 5(1):57~63
    124 E. Castillo-Castaneda, Y.Okazaki. An Alternative Static Friction Control Algorithm for Precision Motion Control of Mechanical Drivers. Proceedings of 2nd euspen International Conference-Turin, Italy-May 27th-31th, 2001:582~58
    125 郑子文,李圣怡.超精密机床进给系统的QFT控制器的设计.国防科技大学学报.2002,24(1):81~84
    126 Z.Z.Liu, F.L.Luo and M.H.Rashid. Robust High Speed and High Precision Linear Motor Direct-drive XY-table Motion System. IEE Proceedings of Control Theory Application. 2004, 151(2):166~173
    127 克晶.高精度转台摩擦补偿研究.哈尔滨工业大学博士研究生学位论文.2003年7月: 56~76
    128 E.-C. Park, H. Lim, and C.-H. Choi. Position Control of X-Y Table at Velocity Reversal Using Presliding Friction Characteristics. IEEE Transactions on Control Systems Technology. 2003, 11(1): 24~31
    129 M.-C.Tsai, I.-F.Chiu and M.-Y.Cheng. Design and Implementation of Command and Friction FeedforwardControl for CNC Motion Controllers. IEE Proceedings of Control Theory Application. 2004, 151(1):13~20
    130 X.S. Mei, M.Tsutsumi, T.Tao et al. Study on the Compensation of Error by Stick-slip for High-precision Table. International of Machine Tools & Manufacture.2004, (44):503~510
    131 J.-Yush, H.-M. Chang. Performance Robustness and Stiffness Analysis on a Machine Tool Servo Design. International of Machine Tools & Manufacture. 2004, (44):523~531
    132 J.L.Stein and W. Wu. Monitoring Stick-slip Motion of Machine Tool Slides Using Feed Motor Current. IEEE International Workshop on Intelligence Motion Control, Bogazici University, Istanbul,20~22 August 1990:611~616
    133 刘毓兰,赵瑞里.长度测量技术.北京:机械工业出版社,1988
    134 郑江,杨春风.螺纹测量.北京:中国计量出版社,1998
    135 C.P.Wang. Laser Doppler Displacement Measurement. Laser and Optronics.1987, 6(9):69~71
    136 C.P.Wang. Using the Laser Doppler Displacement Meter for Precision Positioning and Motion Control. Proceedings of the First Annual Motion Control Technology Conference West, Oct. 30 Nov. 1, 1990:143~149
    137 刘志敏,刘风.有关误差的基本概念与表示.宇航技测技术.1995,15(4):60~63
    138 陈康宁主编.机械工程控制基础.西安:西安交通大学出版社,1999:35~48
    139 User Handbook for GT-400-SV-PCI, Google Technology (HK) Ltd, 2001.
    140 Specification of AC Servo Motor Driver, Panasonic, Japan, 2000.
    141 郭庆鼎,王成元.交流伺服系统.北京:机械工业出版社,1994:260~270
    142 薛定宇.控制系统计算机辅助设计—MATLAB语言及应用.北京:清华大学出版社,1996:80~126
    143 赵长安.控制系统设计手册(上册).国防工业出版社.1991
    144 王新入.高速高精度数控进给伺服系统的研究.西安交通大学硕士学位研究生学位论文.2002年4月:13~17
    145 王中华,王兴松,王群等.新型摩擦模型的参数辨识及补偿研究实验研究.制造业自动化,2001,6:30~32
    146 De wit C Canudas, K. J.Astrom, K.Braun. Adaptive Friction Compensation in DC Motor Drives. IEEE Journal of Robotics and Automation. 1987, RA-3(6): 899~908
    147 徐文明,张梅军,唐建.小波多分辨率在信号奇异性检测中的应用.解放军理工大学学报(自然科学版).2002,3(3):57~59
    148 成礼智,郭汉伟.小波与离散变换理论及工程实践.北京:清华大学出版社.2005:1~79
    149 飞思科技产品研发中心.MATLAB6.5辅助小波分析与应用.北京:电子工业出版社,2003:71~89
    150 秦前清,杨宗凯.实用小波分析.西安:西安电子科技大学出版社,1994.1:23~37
    151 胡昌华 张军波等.基于MATLAB的系统分析与设计——小波分析.西安:西安电子科技大学出版社,1999.12:76~108
    152 周小勇,叶银忠.故障信号检测的小波基选择方法.控制工程.2003,10(4):308~311
    153 陈希平,毛海杰,李炜.基于MATLAB的奇异信号检测中小波基选择研究.计算机仿真.2004,21(11):48~50
    154 解旭辉.超精密机床数控系统与伺服控制技术研究.国防科技大学博士研究生学位论文.1997:80~91
    155 熊静琪 主编.计算机控制技术.北京:电子工业出版社.2003:163~165
    156 郭涛.X-Y工作台误差测量与补偿系统的研究.山东大学硕士学位研究生学位论文.2002年11月:21~30
    157 G. Liu, A.A.Goldenberg. Uncertainty Decomposition-based Robust Control of Robot Manipulators: Analysis and Experiments. International Journal of Robotics. 1996, 15(5):473~491
    158 刘兴堂 主编.应用自适应控制.西安:西北工业大学出版社.2003:325~336
    159 H.Lim, J.-W. Seo, and C.-H.Choi. Torsional Displacement Compensation in Position Control for Machining Center. Control Engineering Practice.2001, 9(1):79~87

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700