高压共轨喷油系统多学科设计优化及智能控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
具有电控高压共轨燃油喷射系统的清洁节能环保型柴油机在21世纪仍将作为交通运输领域主要动力,其关键核心技术-高压共轨燃油喷射系统是未来燃油喷射系统发展的必然趋势。柴油机高压共轨燃油喷射系统整体最优设计、高压共轨燃油喷射系统多次喷射协调机理、共轨压力的智能控制策略对增强共轨系统运行稳定性、提高油量控制精确度、优化发动机整体性能、实现节能减排目标具有重要的现实意义。
     本文以国家“863”项目子项(2008AA11A116)“新一代环保高效柴油机研发”和湖南大学“985”二期——汽车先进设计制造技术科技创新平台(动力排放与电控子项目)(教重函[2004]1号)为依托,以实现提高高压共轨燃油喷射系统的工作稳定性和改善柴油机动力性、经济性和排放性为目的,采取理论分析与实验研究相结合的方法,主要工作及创新点如下:
     (1)针对高压共轨喷油系统多学科设计优化复杂性问题,建立了高压共轨喷油系统基本物理-数学模型和高压共轨喷油系统多学科设计分布式并行优化基本构架,为高压共轨喷油系统多学科设计优化提供了有力的理论支持。
     (2)将量子计算,混沌理论以及遗传算法理论相结合,采用折叠次数无限的混沌模型产生混沌变量,提出了一种新型的优化算法——自适应变尺度混沌量子遗传算法,为高压共轨喷油系统多学科设计优化和智能控制提供坚实的技术保障。
     (3)首次以高压共轨喷油系统泵油性能、压力波动性能、雾化性能和质量为目标函数,以高压共轨喷油系统的多工况等几何、结构以及状态等为约束条件,系统研究了高压共轨喷油系统的整体优化,结果表明,高压共轨喷油系统泵油性能可提高16.7%,压力损失可下降18.9%,系统质量可减少14.7%,雾化性能可提高6.2%,整体性能可提高9.5%。
     (4)综合考虑环境及电控系统因素,基于分层次设计方法,分环境层、限制层和设定层等关键控制部件进行了算法设计,并采用LS-SVM建立了单工况多次喷射动态组合模型和多工况多次喷射动态组合模型,并验证了多次喷射动态协调控制策略的正确性。
     (5)基于柴油机高压共轨压力设定值确定、高压共轨压力传感器非线性智能校正和柴油机喷油量测量模型智能优化校正等措施,提出了高压共轨压力神经元-模糊推理融合的组合控制策略,仿真与实验结果表明,共轨压力控制曲线波动比较平稳,波动幅度不超过4MPa。
     利用研制的喷雾可视化试验装置进行了高压共轨喷油系统改进前后的喷雾过程对比分析,结果表明:改进后的高压共轨喷油系统燃油雾化较好,其喷雾性能得到较大的改善。
The clean, energy-saving and Environment-protection diesel engine, with electronically controlled high pressure common-rail fuel injection system,will be the main driving force in the field of transportation in the 21st century, and has become the inevitable trend of development in the field of automotive power. The overall optimal design of diesel engine high-pressure common rail fuel injection system, the coordination mechanism of multiple injection and the intelligent control strategy of common rail system have very important practical significance to enhance the stability of common rail system, improve the accuracy of injecting fuel, optimize the overall performance of the engine and reduce the pollution and save the energy.
     Based on National“863”Program(2008AA11A116)“Manufacture of High Efficiency & Low Emission Diesel”and the "985" second stage of Hunan University——the innovation platform of science and technology of automotive design and manufacture (thesub-project of power emission and electric control) (Education accented term [2004] No. 1) , with the method of combining theoretical analysis with experimental study, the goal of the paper is to improve the stability of high-pressure common rail fuel injection system and make the diesel engine’s power and economy better and also to reduce the emissions. This paper’s main work and innovative points are as follows:
     (1) For the complex issues of MDO for the high pressure common rail fuel injection system, the paper establishes the basic physics - mathematical models of the high pressure common-rail fuel injection system and the basic framework of MDO for distributed parallel of high-pressure common rail fuel injection system, it provides a strong theoretical support for MDO for the high pressure common rail injection system.
     (2)Combining quantum computing, chaos theory with the theory of genetic algorithms, the paper uses the chaos model of infinite fold frequency to produce chaotic variables and proposes a novel optimization algorithm——adaptive mutative scale chaos quantum genetic algorithm to provide a solid technical support for MDO and IC for the high pressure common rail injection system.
     (3)This paper takes the oil-pumping performance , the pressure fluctuation performance, spray performance and mass of the high-pressure common rail fuel injection system as the target function and takes the multiple conditions such as geometry, structure, and the state of the high pressure common rail fuel injection system as the constraints in order to study the overall optimization of the high pressure common rail fuel injection system systematically , the results show that the pumping performanceηof the high pressure common rail fuel injection system is increased by 16.7%, pressure lossΔp is decreased by 18.9%,mass M is decreased by 14.7%, atomization performance Vi is enhanced 6.2%, and the overall performance U is increased by 9.5%.
     (4)Considering of environmental and electrical control system factors comprehensively, based on a hierarchical design methodology, the paper designs the control algorithm for the key components of environment layer, constraint layer and set layer etc, and establishes a single-condition multiple injection dynamic combination model and multi-condition repeated injection dynamic combination model with LS-SVM, and it has verified the correction of the multiple injection dynamic coordinated control strategy.
     (5)Based on the determination of the set value of the high pressure common rail pressure, nonlinear intelligent correction of high pressure common rail pressure sensor and intelligent optimization correction of diesel fuel consumption measurement model and other measures, the paper proposes a combination control strategy of neurons of high pressure common rail pressure and integration of fuzzy reasoning. Simulation and experimental results show that the fluctuation of common rail pressure control curve is relatively stable and fluctuation is less than 4MPa.
     With the visualization spray combustion test equipments, the paper carries on the process experiment of spray combustion before and after improving for the high pressure common rail fuel injection system and comparative analysis of spray development map, the results show that: the improved high-pressure common-rail fuel injection system has better atomization performance, the main combustion period is shorter and its spray combustion performance is improved significantly.
引文
[1]何志霞.高压共轨喷射系统内部流动的数值模拟[D].镇江:江苏大学,2004.
    [2]杨林.车用柴油机高压共轨燃油喷射压力控制技术[J].车用发动机,2001,135(5):20-25
    [3]王均效等.柴油机共轨式喷油系统的结构与发展动态[J].汽车技术,2001,(9):11-19
    [4]吴建.柴油机共轨式电控喷射系统喷射过程的模拟计算和研究[D].长沙:湖南大学,2002.
    [5]胡林峰.新型增压式共轨喷油系统的设计和研究[D].镇江:江苏大学,2002.
    [6]黄官升.高压共轨式电控喷油系统的研究与开发[D].北京:北京理工大学,2000
    [7]陈勇华译.柴油机共轨式喷油系统[J].国外内燃机.1998(3):18-28.
    [8]钱大.博世(BOSCH)公司的共轨燃油喷射系统(一)~(八)[J].汽车与配件,2003.
    [9]秦朝举,刘建新,杜慧勇,等.Bosch公司高压共轨喷油系统的研究现状及发展前景[J].拖拉机与农用运输车.2006,33(2):3-5.
    [10]贾志新,张全逾,吕云飞.BOSCH共轨柴油电控喷射系统原理及测试[J].汽车维修,2007(7):13-15.
    [11]江苏,敏瑞.德尔福柴油机电控高压共轨喷油系统(一)~(三)[J].汽车维修与保养,2008.
    [12]钱人一.日本电装公司的ECD-U2柴油机共轨燃油系统(一)~(五)[J].汽车与配件,2003.
    [13]江苏,敏瑞.西门子电控高压共轨喷射系统(上)~(下)[J].汽车维修与保养,2008.
    [13]张煜盛,徐建新,徐波,等.共轨燃油系统高压油泵设计研究[J].内燃机工程,2005,25(1):1-5.
    [14]胡志明,杨林,冒晓建,等.高压共轨式燃油喷射系统用高压油泵的分析与设计[J].柴油机,2004(4):16-19.
    [15]欧大生,刘振明,周加东,等.基于变形补偿技术提高共轨高压泵泵油能力的试验研究[J].内燃机工程,2008,29(3):1-5.
    [16]徐建新,张煜盛,徐波,等.共轨燃油系统高压油泵泄露与密封的研究[J].柴油机设计与制造,2004(4):5-8.
    [17]平涛,周玉成,方祖华,等.一种新型共轨用高压油泵性能特性试验研究[J].现代车用动力,2004(2):15-18.
    [18]安士杰,欧阳光耀.高压共轨燃油系统主要部件特性分析[J].小型内燃机与摩托车.2002,31(1):41-44.
    [19]严雪文,王忠.柴油机共轨喷油系统匹配与计算模型[J].小型内燃机与摩托车,2006,35(1):31-37.
    [20]梁锋,杨林,谭文春,等.高压共轨式电控柴油机故障诊断策略仿真研究[J].内燃机学报,2004,22(6):532-537.
    [21]祝轲卿,王俊席,杨林,等.GD-1柴油机多次喷射协调控制策略研究[J].内燃机工程,2006,27(4):26-30.
    [22]冒晓建,肖文雍,杨林,等.GD-1高压共轨式电控柴油机的怠速控制策略研究[J].内燃机学报,2002,20(4):324-328.
    [23]肖文雍,冒晓建,杨林,等.GD-1高压共轨式电控柴油机的起动控制策略研究[J].内燃机学报,2003,21(2):97-100.
    [24]黄云.玉林要与高端人才无缝对接[N].玉林日报,2008-06-10.
    [25]高献坤.柴油机高压共轨系统模拟计算与仿真[D].郑州:河南农业大学,2005.
    [26]颜松.柴油机高压共轨系统压力动态性能模拟[D].杭州:浙江大学,2005.
    [27]江军,申立中,颜文胜,等.高压共轨系统预喷控制策略研究[J].车用发动机,2008增刊:98-101.
    [28]辽阳新风企业集团吉尔燃油喷射有限公司.宣传资料[R].2008.
    [29]居钰生.“十一五”期间燃油系统零部件资源及发展规划[EB/OL]. http://www.autoinfo.gov.cn/autoinfo_cn/fdj/zlhb/webinfo/2006-05-19/1185523653675011.htm, 2009–04–08.
    [30]刘斌彬,李国岫,郑亚银.柴油机高压共轨燃油喷射系统现状与发展趋势[J].内燃机,2006,(2):1-3.
    [31]De Juhasz, K J. Phenomena in linear flow[J]. J.Franklin Inst. 1937, 233
    [32]Giffen E, Rowe W. Pressure calculations for oil engine fuel injection systems[J]. Proc. Instn. Mech. Engrs,141, 519, 1939
    [33]Knigh B E . Fuel injection system calculations[J] . Proc.Inst.Mech.Engrs(A.D.), 1, 1960-1961
    [34]Brown G W, McCallion H. Simulation of an injection system with delivery pipe cavitation using a digital computer[J]. Proc.Inst.Mech.Engrs, 182, 206, 1967-1968
    [35]Wylie E B , Bolt J A , EI-Erian M F . Diesel fuel injection system simulation and experimental correlation[J]. SAE paper710569, 1971
    [36]Matsouka S, Yokota K, Kaminmoto T and Igoshi M. A study of fuel injection system in diesel engines,PartsⅠ&Ⅱ. SAEpaper , No 760551 and 760552 ,1976
    [37]Goyal M, Modular Approach to Fuel Injection Simulation[J]. SAE paper 780162, 1978.
    [38]Marcic M . Computer simulation of the diesel fuel injection nozzle[J]. SAE Paper 850532 , 1985
    [39]Gibson D H . A flexible fuel injection simulation[J]. SAE Ppper 861567 , 1986
    [40]Kumar K , Gaur R R , Garg R D and Gajendra Babu M K . A Finite Difference Sheme for the Simulation of a Fuel Injection System[J]. SAE Paper831337, 1983
    [41]Wannewetsch P and Egler W . A user-friently program system for digital simulation of hydraulic equipment[J]. SAE Paper850532, 1985
    [42]Hardenberg H . Die Nadelhubabhaugigkeit der Dyrchfluβeiverte von Lochdusen für Direkteinsprita dieselmotoren[J]. MTZ, 46, 4, 1985
    [43]Pischinger R , Staska G , Gao Z . Berechnung eds Einspritzeverlaufes von Diesel anlangen bei Kavitation[J]. MTZ 44,1983(11)
    [44]Digesu P , Ficarella A and Laforgia D. Diesel Elector-Injector: A Numerical Simulation Code[J]. SAE Paper 940193, 1994
    [45]Ficarella A, Laforgia D . Fluid dynamic phenomena in fuel-injection systems[J]. MTZ, 52, 1, 1991:28-35
    [46]Arcoumanis C, Gavaises M, Bostock P G and Horrocks R W. Evaluation of pump design parameters in diesel fuel injection systems[J]. SAE Paper 950078 ,1995
    [47]Arcoumanis C, Fairbrother R J, Gavaises M , Flora H and French B . Development and validation of a computer simulation model for diesel fuel injection systems[J].Proc. ImechE, PartD, 1996,(210):149-160
    [48]Arcoumanis C, Gavaises M, Yamanishi M .and Oiwa J. Application of a FIE computer model to an in-line pumpbased injection system for diesel engines[J]. SAE Paper 970348, 1997
    [49]Arcoumanis C , Gavaises M etc . Modeling of advanced high-pressure fuel injection systems for passenger car diesel engines[J]. SAE1999-01-0910, 1999
    [50]Wickman D D , Tanin K V etc . Methods and results form the development of a 2600 bar diesel fuel injection system[J]. SAE2000-01-0947, 2000
    [51]Kouremenos D A , Hountalas D T . Development and validation of a detailed fuel injection system simulation model for diesel engines[J]. SAE1999-01-0527, 1999
    [52]Lee H K . Modeling and prediction of the filling characteristics of modern diesel fuel injection equipment[D]. Ph.D. Thesis , University of Southampton ,1994
    [53]Lee H K , Russell M F , Bae C S , Shin H D . development of cavitation and enhanced injector models for diesel fuel injection system simulation[C]. Proceedings of Institution of Mechanical Engineers , London, Automobile engineering , 2002, 216(7):607
    [54]Lee H K , Russell M F , Bae C S . Mathematical model of diesel injection equipment incorporating non-linear fuel injection[J]. Proceedings of the Institution of Mechanical Engineers, London , Automobile engineering , 2002,216(3):191
    [55]梁锋,杨林,谭文春,等.高压共轨式电控柴油机故障诊断策略仿真研究[J].内燃机学报,2004,22(6):532-537.
    [56]梁锋,谭文春,肖文雍,等.高压共轨式电控柴油机动态仿真研究[J].车用发动机,2003(6):21-23.
    [57]王尚勇,张才干.两级阀控制的高压共轨喷油系统的计算模拟分析[J].内燃机工程,2003,24(4):23-27.
    [58]王尚勇,张晓力,徐春龙.高压共轨电控喷油器的仿真模拟计算[J].车用发动机,2002(8):16-19.
    [59]许正伟,彭忆强,黎薇,等.天然气发动机高压共轨系统的建模与仿真研究[J].车用发动机,2008(3):40-44.
    [60]李正帅,陆耀祖.高压共轨式电控燃油喷射系统的计算机仿真[J].长安大学学报(自然科学版),2002,22(1):66-69.
    [61]刘镇,常汉宝,邵利民.舰用高压共轨柴油机燃烧与排放的仿真计算[J].武汉理工大学学报(交通科学与工程版),2006,30(1):17-20.
    [62]邵利民,安士杰,常汉宝.高压共轨柴油机燃烧与排放的仿真计算及分析[J].内燃机工程,2005,26(3):1-4.
    [63]邵利民,常汉宝,安士杰.高压共轨柴油机燃烧与排放模型的研究[J].车用发动机,2005(12):28-31.
    [64]王好战,肖文雍,黄镇平,等.高压共轨电控柴油机稳态油压模拟计算及分析[J].内燃机工程,2002,23(6):9-11.
    [65]周升辉,费建国,张幽彤.高压共轨系统调压阀的设计仿真与试验研究[J].车辆与动力技术,2007(2):35-37.
    [66]欧大生,欧阳光耀,张剑平.高压共轨喷油泵漏泄量的有限元计算及试验研究[J].内燃机,2007(2):33-36.
    [67]虞金霞,郭海涛,卓斌.共轨式喷油系统数学模型[J].上海海运学院学报,2002,23(2):30-34.
    [68]董尧清,张万平,顾萌君.共轨喷射系统参数对柴油机性能影响的模拟计算[J].车用发动机,2006(5):23-25.
    [69]蔡珍辉,杨海青,杭勇,等.基于AMESim的高压共轨喷油器的建模及分析[J].柴油机设计与制造,2008,15(1):4-9.
    [70]邓飞,高世伦,蒋方毅,等.柴油机高压共轨式燃油喷射系统的模拟系统和ECU的开发研究[J].现代车用动力,2002(2):7-9.
    [71]刘少彦,张宗杰,胡昆鹏,等.基于Simulink的高压共轨柴油机喷有系统仿真计算[J].柴油机设计与制造,2003(1):20-24.
    [72]平涛,金江善,刘少彦,等.共轨燃油喷射系统高压容积的仿真优化[J].柴油机,2004(5):7-10.
    [73]李晓波,史镜海.柴油机高压共轨式燃油喷射系统的仿真研究[J].哈尔滨工程大学学报,2008,29(5):465-468.
    [74]赵致和等.柴油机喷油系统中的空泡及对发动机性能的影响[J].内燃机学报.1992,10(4).
    [75]徐家龙.柴油机燃油喷射过程的计算系统[J].内燃机学报.1987,5(2).
    [76]汪辅仁,李克,王良璧.小型柴油机燃油喷射系统的模拟计算[J].太原工业大学学报.1987(4):119-129.
    [77]汪辅仁,李克,王良璧.提高柴油机燃油喷射过程模拟精度的一种计算方法[J].内燃机学报.1988,6(3):197-204.
    [78]高宗英,张建芳,朱建新.柴油机喷油系统变声速变密度模拟计算研究[J].内燃机学报.1986,4(2):150-163.
    [79]Raymer D P. Aircraft Design: A conceptual approach[M]. American Institute of Aeronautics and Astronautics,Inc, Washington, D. C., 1989.
    [80]Sobieski J. A linear decomposition method for optimization problems-blueprint for development [J].NASA Technical Memorandum 83248, 1974.
    [81]Kroo I M, Chopra I. Multidisciplinary optimization of aeronautical system[J]. Journal of aircraft, 1990, 27(12): 977-978.
    [82]Sobieszczanski-Sobieski J. Multidisciplinary optimization for engineering systems:Achievements and potential[R]. NASA-TM 101566.
    [83]郭健.多学科设计优化技术研究[D].西安:西北工业大学.2001.
    [84]穆雪峰.多学科设计优化代理模型技术研究和应用[D].南京:南京航空航天大学. 2004.
    [85]AIAA Technical Committee on Multidisciplinary Design Optimization. White Paper on Current State of the Art in Multidisciplinary Design Optimization[R], 1991.
    [86]AIAA Technical Committee on Multidisciplinary Design Optimization,White Paper on Industrial Experience with MDO[R], 1998.
    [87]Sobieszczanski-Sobieski J. Sensitivity of Complex Internally Coupled Systems [J], AIAAJournal, 1990, 28(1): 153-60.
    [88]Sobieszcanski-sobieski J. A Step from Hierarchic to Nonhierarchic System[R] NASA/CP-3031, 1989.
    [89]Renaud J.E..Improved Coordination in Nonhierarchic System Optimization [J]. AIAAJournal, 1993, 131(12):2367-2373.
    [90]Sellar R.S..Response Surface Based Concurrent Subspace Optimization for Multidisciplinary System Design [J]. AIAA-96-0714, 1996.
    [91]Bolebaum C.L.. Formal and Heuristic System Decomposition in StructuralOptimization[J]. NASA/CR-4413, 1991.
    [92]Braun R.D. Use of the Collaborative Optimization Architecture for Launch Vehicle [J],AIAA-96-4018. 1996
    [93]McAllister C D, Simpson T W.Multidisciplinary robust design optimization of an internal combustion engine[J].Journal of Mechanical Design, 2003, 125(1): 124-130.
    [94]Suh M W,Shim M B,Kim M S.Multidisciplinary design optimization of engine mounts with consideration of the driveline[A]. Proceedings of the institution of mechanical engineers part D-Journal of automobile engineering[C]. 2003:217 (D2): 107-114.
    [95]余雄庆,姚卫星等.关于多学科设计优化计算框架的探讨[J] .机械科学与技术. 2003,23(3):286-289.
    [96]龚春林.多学科设计优化技术研究[D].西安:西北工业大学,2004.
    [97]陈琪峰,李晓斌,戴金海.导弹总体参数优化设计的合作协调进化MDO算法[J].国防科技大学学报. 2001, 23(5): 9-11.
    [98]谷良贤,龚春林.多学科设计集成环境的模式和应用.宇航学报,2004,(4):459-462.
    [99]胡峪,李为吉.飞机多学科设计的分级优化方法[[J] .西北工业大学学报. 2001,19(1):144-147.
    [100]尹泽勇.航空发动机多学科设计优化技术[A].中国工程院第八次院士大会学术报告文集[C](机械与运载工程学部). 2006,
    [101]Cai X X, Mi D,Yin Z Y,et al. Multidisciplinary Design Optimization of Aero engine [A]. 2005’s China-Russia Young Scientist Forum[C]. 2005.
    [102]吴立强,尹泽勇,蔡显新.航空发动机涡轮叶片的多学科优化设计[J].航空动力学报,2005(10):795-803.
    [103]李立君,尹泽勇,乔渭阳.基于多目标遗传算法的航空发动机总体性能优化设计[J].航空动力学报,2006,21(1):13-18.
    [104]舒彪.基于多学科涡轮叶片气动设计优化[J].南京航空航天大学学报,2005,37(6):714-719.
    [105]陈琪锋.导弹总体参数优化设计的合作协同进化MDO算法[J].国防科技大学学报,2001,23(5):9-12.
    [106]李响.飞行器多学科设计优化的三种基本类型及协同设计方法[J].宇航学报,2005,26(6):693-697.
    [107]谢常清,鄂加强,彭雨,龚金科,赵延明.制动电阻器多学科设计优化[J].铁道学报,2008,30(5):119-124.
    [108]吴宝贵.汽车设计的多学科设计优化方法[J].应用科学学报,2005,23(4):420-423.
    [109]秦东晨.汽车车身的多学科优化设计(MDO)研究[J].现代机械,2004(5):4-6.
    [110]陈亮.多学科协同设计的约束网络模型研究[J].中国制造业信息化,2005,34(9):98-102.
    [111]陈尹梅.轿车空调制冷系统仿真平台应用研究[D].长沙:湖南大学,2008.
    [112]Fu K. S. Learning Control Systems and Intelligent Control Systems: An Intersection of Artificial Intelligence and Automatic Control[J]. IEEETrans., 1971, 16(1):70-72.
    [113]Saridis G. N.Self organizing Control of Stochastic Systems[M]. NewYork: Marsel Dekker, 1977.1-20.
    [114]Saridis G. N. Towards the Realization of Intelligent Contro[J]. Proceeding of IEEE, 1979, 67(8): 1115-1133.
    [115]Astrom K. J., Anton J. J., Arzen K. E. Expert Control[J]. Automatica, 1986, 22(3): 277-286.
    [116]鄂加强.智能故障诊断及其应用[M].长沙:湖南大学出版社,2006.
    [117]Chen S., Bilings S. A., Luo W. Orthogonal least squares methods and application to non-linear system identification. Int. J. Control, 1989, 50(5): 1873-1896.
    [118]Dumitrescu D. Fuzzy training procedures. Fuzzy sets and systems, 1993, 56(2):155-169.
    [119]Ishibuchi H., Fujioka R., Tanaka H. An architecture of neural networks for input vectors of fuzzy numbers. Proc. IEEE Internat. Conf. On Fuzzy Systems, San Diego, 1992:1293-1300.
    [120]陈跃东,郎朗.用Fuzzy PID控制器实现参数的自整定[J].安徽机电学院学报,2002,17(3):24-28.
    [121]郎朗,陈跃东. Fuzzy PI控制器在双闭环串级调速系统中的应用[J].安徽工程科技学院学报,2003,18(3):10-14.
    [122]郎朗,崔祎,陈跃东.用模糊控制和变频调速实现恒压供水[J].电子科技大学学报,2004,33(1):79-82.
    [123]焦李成.神经网络系统理论[M].西安:西安电子科技大学,1990
    [124]张立明.人工神经网络的模型及其应用[M].上海:复旦大学出版社出版,1993.
    [125]飞思科技产品研发中心. MATLAB6.5辅助神经网络分析与设计[M].北京:电子工业出版社,2003.
    [126]周祖德.基于网络环境下的智能控制[M].北京:国防工业出版社。2004.
    [127]罗公亮,卢强.智能控制和常规控制[J].自动化学报,1994,20(3):335-343.
    [128]蔡自兴.智能控制[M].北京:电子工业出版社,1990.
    [129]王杰,金耀初.智能控制系统理论及应用[M].郑州:河南科学技术出版社,1997.
    [130]秦世引,罗公亮,孙增圻.智能控制研究中的几个问题[J].信息与控制,1996,25(3);137-142.
    [131]诸静.模糊控制原理与应用[M].北京:机械工业出版社,1995.
    [132]戎月莉.计算机模糊控制原理及应用[M].北京:北京航空航天大学出版社,1995.
    [133]冯冬青,谢宋和.模糊智能控制[M].北京:化学工业出版社,1998.
    [134]李士勇.模糊控制和智能控制理论与应用[M].哈尔滨:哈尔滨工业大学出版社,1990.
    [135]Lee C. C. Fuzzy Logic in Control System: Fuzzy Logic Controller. Part I & Part II[J]. IEEE Trans. on System Man and Cybernetics, 1990, 20(2): 404-435.
    [136]焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社,1995.
    [137]杨开俊,郑君里.人工神经网络[M].北京:高等教育出版社,1992.
    [138]李孝安,张晓缋.神经网络与神经计算机导论[M].西安:西北工业大学出版社,1994.
    [139]Wasserman P. D. Advanced Methods in Neural Computing[D]. NewYork: Van Nostrand Reinhold, 1993.
    [140]费敏锐,陈伯时.专家模糊控制方法[J].控制与决策,1996(2):256-261.
    [141]韦巍,蒋静坪.非线性系统的多神经网络自学习控制[J].信息与控制,1995,24(5):30-37.
    [142]张良杰,李桁达.模糊神经网络技术的新近发展[J].信息与控制,1995,24(1):39-46.
    [143]冯纯伯,刘延年.神经网络控制的现状及问题[J].控制理论及应用,1994,11(1):103-106.
    [144]宋秦中.高压共轨柴油机控制策略的研究[D].大连:大连理工大学,2007.
    [145]周升辉.电控柴油机高压共轨系统轨压控制的实验研究[D].昆明:西南林学院,2007.
    [146]黄茂杨.柴油机高压共轨燃油喷射系统-高速电磁阀结构与控制参数优化及其特性测试系统的研制[D].南京:东南大学,2005.
    [147]唐永良. GD-1高压共轨柴油机共轨油压控制策略和试验研究[D].上海:上海交通大学,2005.
    [148]王好战. GD-1高压共轨柴油机起动控制策略研究与试验分析[D].上海:上海交通大学,2003.
    [149]郭海涛.高压共轨喷油系统喷油规律与控制策略的研究[D].上海:上海交通大学,2001.
    [150]王好战,肖文雍,冒晓建,等.车用电控柴油机共轨油压模拟及其控制策略分析[J].柴油机,2002(5):17-20.
    [151]宋秦中,隆武强,杨永平.高压共轨柴油机共轨压力闭环控制算法的研究[J].内燃机,2007(5):12-14.
    [152]宋国民,刘学瑜.基于参数自调整PID控制的高压共轨数字调压系统[J].柴油机,2002(5):25-27.
    [153]金江善,平涛,凌励逊.柴油机高压共轨燃油喷射系统共轨压力控制技术研究[J].柴油机,2006,28(3):5-7.
    [154]黄铁雄,高世伦.柴油机高压共轨系统自适应模糊滑模控制[J].车用发动机,2008(4):57-60.
    [155]赵福堂,宾科,冯国胜,等.共轨燃油压力模糊PID控制器的设计[J].北京理工大学学报,2003,23(3):293-397.
    [156]许海成,李育学,邹开凤.基于高压泵流量控制装置的共轨系统仿真研究[J].航海工程,2008,38(4):39-42.
    [157]Masahiko Miyaki, Hideya Fujisawa. Development of new electronically controlled fuel injection system ECD-U2 for diesel engines[C].SAE 910252.
    [158]Bosh Technical Instruction. Diesel accumulator fuel-injection system common rail[C]. Bosh company, 1999.
    [159]张靖.柴油机高压共轨燃油系统——高速电磁阀的控制及其测试系统研究与开发[D].南京:东南大学,2003.
    [160]冒晓建. GD-1高压共轨喷油系统电子控制的研究与电控供油泵的开发[D].上海:上海交通大学,2002.
    [161]王洪荣,张幽彤,王军,等.高压共轨柴油机喷油量修正及匹配[J].山东大学学报(工学版),2008,38(2):28-32.
    [162]林育蓓.基于改进遗传量子算法的最小权三角剖分[D].广州:中山大学,2005.
    [163]马杰.智能计算在CDMA多用户检测中的应用研究[D].哈尔滨:哈尔滨工业大学,2006.
    [164]Zhou Ming, Sun Shudong. Genetic algorithms:theory and application[M].北京:国防工业出版社,1999.
    [165]雷英杰,张善文,李续武,等. MATLAB遗传算法工具箱及应用[M].西安:西安电子科技大学出版社,2005.
    [166]Kuk-Hyun Han, Jong-Hwan Kim. Genetic quantum algorithm and its application to combinatiorial optimization problem[A]. Proc of IEEE Conference on Evolutionary Computation[C]. Piscataway: IEEE Press,2000, 1354-1360.
    [167]杨俊安,庄镇泉,史亮.多宇宙并行量子遗传算法[J].电子学报,2004,32(6):923-928
    [168]李娟.燃醇基燃料锅炉燃烧系统优化建模与智能控制[D].长沙:湖南大学,2009.
    [169]张兴华,朱筱蓉,林锦国.基于量子遗传算法的PID控制器参数自整定[J].计算机工程与应用,2007,43(21):218-221
    [170]杨俊安,庄镇泉,史亮.多宇宙并行量子遗传算法[J].电子学报,2004,32(6):923-928
    [171]张葛祥,李娜,金炜东,胡来招.一种新量子遗传算法及其应用[J].电子学报,2004,32(3):476-479.
    [172]左兴权,李士勇.采用免疫进化算法优化设计径向基函数模糊神经网络控制器[J].控制理论与应用,2004,21(4):521-525.
    [173]鄂加强.铜精炼过程优化建模与智能控制[M].长沙:湖南大学出版社,2006.
    [174]Jiaqiang E, Chunhua WANG, Yaonan. WANG, Jinke GONG. A new adaptive mutative scale chaos optimization algorithm and its application,CONTROL THEORY & APPLICATIONS,2008, 6 (2): 141-145.
    [175]孙瑞祥,屈梁生.遗传算法优化效率的定量分析[J],自动化学报, 2000,26(4): 552-556
    [176]姚俊峰,梅炽,彭小奇.混沌遗传算法(CGA)的应用研究及其优化效率评价[J].自动化学报,2002,28(6):935-942
    [177]Vapnik V. The nature of statistical learning theory[M]. New York: Springer,1999.
    [178][美]瓦普尼克著,张学工译.统计学习理论的本质[M].北京,清华大学出版社,2000.
    [179]张学工.关于统计学习理论与支持向量机[J].自动化学报,2000 ,26(1):
    [180]边肇祺,张学工.模式识别[M].清华大学出版社,2000.
    [181]牟廉明,统计学习与支持向量机,内江师范学院学报,2002,17(6):3-7.
    [182]崔伟东,周志华,李星,支持向量机研究[J].计算机工程与应用,2001,(1):58~61.
    [183]Vapnik V. Statistical learning theory[M]. New York: Wiley, 1998.
    [184]王晓丹,王积勤.支持向量机研究与应用[J].空军工程大学学报(自然科学版),2004,5(3):49~55.
    [185]Boser B, Guyon I, Vapnik V N. A training algorithm for optimal margin classifiers Fifth Annual Workshop on Computational learning Theory, Pittsburgh ACM:144~152.
    [186]Comes C, Vapnik V N. The soft margin classifier[M]. Technical Memorandum 11359-931209-18TM, AT&T Bell Labs, 1993.
    [187]Cortes C, Vapnik V N. Support vector networks[J]. Machine Learning, 2000, 20: 273~297.
    [188]Vapnik V N, Golowich S, Smola A. Support vector method for function approximation, regression estimation and signal processing[A].. Mozer M. C, Jordan M. I., and Petsche T., Advances in Neural Information Processing Systems 9[C], Cambridge MA: MIT Press 1997: 281~287.
    [189]卢增样,李衍达.交互支持向量机学习算法及其应用[J].清华大学学报(自然科学版),1999,37(9):93~97
    [190]Chapelle O., Vapnik V., Model selection for support vector machines, Advances in Neural Information Processing Systems 12, Cambridge MA: MIT Press, 2000.
    [191]Kulkarni A, Jayaraman V K, Kulkarni B D. Support vector classification with parameter tuning assisted by agent-based technique. Computer & Chemical Engineering 2004,8(3):311~319
    [192]Cherkassky V, Ma Yunqian. Practical selection of SVM parameters and noise estimation for S VM regression. Neural Networks } 2004,17(1):113~127.
    [193]Carl Staelin. Parameter selection for support vector machines. Technical Report, HPL-2002-35481, HP Labs
    [194]吴涛,贺汉根,贺明科.基于插值的核函数构造[J].计算机学报,2003,26 (8):990~996.
    [195]吴涛.核函数的性质、方法及其在障碍检测中的应用[D].长沙:国防科学技术大学,2003.
    [196]Daniel J S, Gabriele S. Hybrid wavelet support vector classification of waveforms[J]. Journal of Computational And Applied Mathematics. 2002, 148: 375~400
    [197]张莉,周伟达,焦李成.尺度核函数支撑矢量机[J].电子学报,2002, 30 (4):527~529.
    [198]Shun-ichi Amari, Si Wu. Improving Support Vector Machine Classifiers by Modifying Kernel Functions[J]. Neural Networks,1999, 12:783~789.
    [199]Mangasarian O. L. Mathematical programming in data mining[J]. Data Mining and Knowledge Discovery, 1997,42(1):183~201.
    [200]褚蕾蕾,陈绥阳,周梦,等.计算智能的数学基础[M].北京:科学出版社,2002.
    [201]Osuna E, Freund R. Girosi F. Training Support machines: an application to face detection[A]. In Proceedings of CVPR’97[C], Puerto Rico, 1997.
    [202]John C P. Fast training of support vector machines using sequential minimal optimization[A]. Scholkopf B. Advances in kernel Methods-Support vector learning[C], Cambridge, MA, MIT Press, 1999:185~208.
    [203]Keerthi S S, Shevede S K, Bhattacharyya C, et al. A fast iterative nearest point algorithm for support vector machine classifier design[J]. IEEE Trans on Neural Networks, 2000,11(1) :124~136.
    [204]Chih-Wei Hsu, Chih-Jen Lin. A simple decomposition method for support vector machines[J]. Machine Learning, 2002, 46: 291~314.
    [205]Suykens J. A. K, Vandewalle J. Least squares support vector machine classifiers[J]. Neural Processing Letters,1999,9(3):293~300.
    [206]Fung G., Mangasarian O L. Proximal support vector machine classifiers[A]. In: Processing of the Conference on Knowledge Discovery and Data Mining[C], San Francisco, 2001.
    [207]Christopher J C Burges. A Tutorial on support vector machine for pattern recognition[J]. Data Mining and Knowledge Discovery.1998, 2:121~167.
    [208]Ma Yong, Ding Xiaoqing. Face detection based on cost-sensitive support vector machines[A]. In: Seong-whan Lee, Alessandro Verri(Eds.), Pattern Recognition with Support Vector Machines[C]. Niagara Falls, Canada, 2002: 260~267.
    [209]陶卿,曹进德,孙德敏.基于支持向量机分类的回归方法[J].软件学报,2002 13(5):1024~1028
    [210]Drucker H., Burges C. J. C., Kaufman L, et al. Support vector regression machines[A]. Advances in Neural Information Processing Systems 9[C], Cambridge, MA, MIT Press, 1997:155~161.
    [211]Steve R Gunn. Support vector machines for classification and regression. Technical Report, Southampton: Department of Electronics and Computer Science of University of Southampton,1998:1~28
    [212]马云潜,张学工.支持向量机函数拟合在分形插值中的应用[J].清华大学学报(自然科学版),2000, 40 (3) : 76~78.
    [213]骆剑承,周成虎,梁怡.支撑向量机及其遥感影像空间特征提取和分类的应用研究[J].遥感学报,2002, 6 (1):50~55
    [214]Danny Roobaert, Marc M. Van Hulle. View-based 3D object recognition with support vector machines[A]. In: Proceeding IEEE International Workshop on Neural Networks for Signal Processing(NNSP99)[C], Madison, Wiscosin, USA, August,1999.
    [215]Isabelle GuYon, Jason Weston, Stephen Barnhill. Gene Selection for Cancer Classification using Support Vector Machines[J]. Machine Learning, 2002, 46: 389~422.
    [216]瞿永杰,王东风,韩璞.基于多类支持向量机的汽轮发电机组故障诊断[J].动力工程,2003, 23 (5):2694~2698.
    [217]李凌均,张周锁,何正嘉.支持向量机在机械故障诊断中的应用研究[J].计算机工程与应用,2002,(19):19-21
    [218]David M. J. Tax, Alexander Ypma, Robert P W Duin. Pump failure detection using support vector data description[A]. Proceedings of the 1999 IEEE Workshop on Neural Networks for Signal Processing[C], Madison, 1999.
    [219]何学文.基于支持向量机的故障智能诊断理论与方法研究[D].长沙:中南大学,2004.
    [220]郭海涛.高压共轨喷油系统喷油规律与控制策略的研究[D].上海:上海交通大学,2001.
    [221]董伟,于秀敏,张斌.预喷射对高压共轨柴油机起动特性的影响[J].内燃机学报,2008,26(4):313-318.
    [222]周海涛.预喷射控制燃烧噪声的仿真计算与试验研究[D].大连:大连理工大学,2006.
    [223]Manfred Durnholz, Helmut Endres,Peter Frisse.Pre-injection a measure to optimize the emission behavior of DI-diesel engine[C]. SAE 940674.
    [224]Toshitaka Minami, Kouichi Takeuchi, Naoki Shimazaki.Reduction of diesel engine NOx using pilot-injection[C]. SAE 950611.
    [225]Zhang L. A study of pilot-injection in a DI diesel engine [C].SAE 1999-01-3493.
    [226]Block B, Westphal H, Oppermann W,et al.Optical detection of the combustion produced by the pre-injected fuel in a DI diesel engine [C].SAE 2002-01-2667.
    [227]Christian Bartsch, Aktuell Entwiklung, Kropp M.新颖的菲亚特1.3L四气门共轨多次喷射柴油机[J].现代车用动力,2005(3):7-10.
    [228]李人宪.柴油机实现高EGR率方法的计算分析[J].内燃机工程,2004,25(3):27-32.
    [229]刘忠长,朱昌吉,张振东.车用柴油机排气再循环控制系统[J].吉林大学学报(工学版).2004,34(3):337-341.
    [230]Hotta Y.Achieving lower exhaust emission and better performance in an HSDI diesel engine with multiple injection[J].R&D Review of Toyota CRDL,2002,37(3):9-16.
    [231]Liu Y,Rolf D,Reitz.Optimizing HSDI diesel combustion and emissions using multiple injection strategies[C].SAE 2005-01-0212.
    [232]Takeda Y,Niimura K.Characteristics of diesel combustion and emissions with a multi-injector system[C].SAE 952511.
    [233]Montgomery D T,Reitz R D.Six-mode cycle evaluation of the effect of EGR and multiple injections on particulate and NOx emissions from a DI diesel engine[C].SAE 960316.
    [234]Han Z,Uludogan A,Hampson G,et al.Mechanism of soot and NOx emission reduction using multiple-injection in a diesel engine[C].SAE 960633.
    [235]Ngunlowo A S.Design modification and control for the operation of a single-cylinder air-cooled naturally-aspirated diesel engine on producer gas using pilot injection of diesel fuel[D], Davis: Department of Agricultural Engineering, University of California, 1979.
    [236]祝轲卿,王俊席,卢成委,等.GD-1电控柴油机主预喷时间间隔的影响[J].农业机械化学报,2007,38(1):52-55.
    [237]裴海灵.高压共轨喷油控制策略及共轨管优化设计研究[D].长沙:中南大学,2009.
    [238]鄂加强,张华美,王耀南,等.基于函数链神经网络的管道煤气流量计量系统.中南大学学报(自然科学版). 2006, 37(5):976-980.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700