近空间飞行器姿态与轨迹的非线性自适应控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近空间飞行器(NSV: Near Space Vehicle)的发展涉及国家安全与和平利用空间,它是各军事大国日益关注的新型飞行器。NSV在飞行过程中呈现出大包络、多飞行状态、多任务模式的特点,并且飞行环境的特殊也使其具有严重非线性、激烈快时变、强动态不确定和强耦合的对象特征,所以NSV飞行控制系统的设计成为了一项创新而又富有挑战性的课题。围绕这一难题,本文在近空间飞行器的建模与分析、不确定环境下姿态与轨迹的非线性自适应控制等方面开展了深入的研究,主要研究成果如下:
     首先,建立了高超声速NSV在变化风场影响下的飞行运动模型。该模型以气流姿态角为主要状态变量,不仅包括推力矢量控制项,还包含了风场干扰项。此工作为NSV具体的飞行控制设计提供了目前国内较为完整的非线性模型。而且,本文对NSV的非线性飞行控制系统采用了系统化的设计思路。根据NSV的物理状态特点,应用串联控制结构来设计非线性自适应姿态与轨迹控制器,并依据实际飞控系统的研制程序来进行需求分析、系统设计和控制方法的选择,进一步贴近了实际系统的研制工作。
     然后,首次将泛函连接网络(FLANN: Functional Link Artificial Neural Network)引入到了不确定控制和飞行控制领域。FLANN比通常的多层NN计算负担小,适合实时逼近NSV受到的参数不确定和外界干扰。文中设计了FLANN干扰观测器来进行不确定和干扰的逼近,提出基于FLANN干扰观测器的非线性广义预测控制(NGPC: Nonlinear Generalised Predicitive Control)方法进行姿态控制,并首先使用了Lyapunov稳定性理论来推导FLANN的自适应控制律。
     之后,提出了一种新的非线性自适应控制方法——基于部分反馈FLANN的稳定自适应NGPC方法,并通过鲁棒增益的自适应调整来提高逼近动态复合干扰的精度。利用Lyapunov理论推导了能够保证误差信号一致最终有界的权值自适应律和鲁棒增益自适应律,并通过仿真验证了该方法对于存在发动机推力偏心和动态参数不确定的NSV姿态系统控制效果良好。
     进一步,设计B样条递归FLANN (BRFLN: B-spline Recurrent Functional Link Network),使得该网络能够学习动态的高阶非线性函数。在此基础上,针对NSV的姿态慢回路提出了PD校正的BRFLN自适应NGPC方法,并设计了完整的NSV非线性姿态控制器。对于存在高空风紊流干扰、大力矩干扰、动态参数不确定的NSV,该方法姿态控制仿真效果良好。
     最后,针对NSV的轨迹控制问题,在姿态控制器的基础上构造了用于稳定空速和高度的BRFLN自适应NGPC轨迹控制器。提出了一种新的群智能优化算法——改进协同微粒群算法来对控制器中BRFLN的自反馈系数进行在线学习。NSV的仿真结果表明在阵风以及姿态复合干扰存在的情况下,轨迹控制方案有效并且能良好地跟踪给定指令。
The development of near space vehicle (NSV) is related to national security and peaceful use of space, and it is a new vehicle which attracts increasing attention of many military powers. The NSV in flight shows characteristics such as large flight envelope, multi-flight status and multi-tasking mode. Moreover, due to its special flight environment, the NSV also possesses objects features of serious nonlinearity, fast time variation, strong uncertainty and intense coupling.?Therefore, the flight control system design of the NSV has become an innovative and challenging issue. Around this problem, the dissertation carries out an intensive study in the NSV modeling and analysis, and the nonlinear adaptive control of attitude and trajectory system in uncertain environments. The main results are as follows:
     First, we establish a flight motion model of the NSV under the influence of changing wind field. Airflow attitude angles are regarded as the main state variables of this model. The state equations not only include thrust vector control, but also contain interference terms of the wind field. This work provides a more comprehensive nonlinear model at home for specific flight control design. Furthermore, a systematic design idea is applied to the design of NSV nonlinear flight control system. According to physical characteristics of the NSV, we employ series control structure to design nonlinear adaptive attitude and trajectory controllers. Also, we conduct demand analysis, system design and control methods selection based on develop procedures of actual flight control systems. This approach is further close to the actual system development work.
     Then, the functional link artificial neural network (FLANN) is introduced into the area of uncertain control and flight control for the first time. The FLANN bears a smaller computational burden than the usual multi-layer NN. It is suitable for the real-time approximation of parameter uncertainties and external disturbances. In this dissertation, FLANN disturbance observer (FLNDO) is designed to learn the uncertainties and disturbances, and FLNDO-based nonlinear generalized predictive control (NGPC) method is presented for the NSV attitude control. Additionally, the Lyapunov stability theory is first utilized to derive FLANN adaptive control law.
     Later, a new nonlinear adaptive control method is proposed. That is the stable adaptive NGPC method based on the partially feedback FLANN. And a robust control item with an adaptive gain is used to improve the accuracy of approximating dynamic lumped disturbances. The adaptive laws of network weights and robust gain are derived by the Lyapunov theory and they can ensure that system errors are uniformly ultimately bounded. Simulation results show that good attitude control effect is attained with the presented method, and the thrust misalignment disturbance and dynamic parameters uncertainties are well surpressed.
     Further, B-spline recurrent FLANN (BRFLN) is designed to learn high-order nonlinear functions. On this basis, PD-correction BRFLN adaptive NGPC method is proposed for the slow-loop attitude system, and then the whole attitude controller is obtained. Simulation results show satisfactory attitude control performance for high-altitude wind turbulence, large torque disturbance and dynamic parameter uncertainties.
     Finally, aiming at the trajectory control problem of the NSV, we construct the BRFLN adaptive NGPC trajectory controller to track the airspeed and altitude based on the attitude controller. A new swarm intelligence optimization algorithm, i.e. improved cooperative particle swarm optimizer (ICPSO), is presented to learn self-feedback coefficients of the BRFLN. Simulation results display that the trajectory control scheme is effective and the outputs can track the given instructions of the NSV which is subjected to gusts and attitude disturbances.
引文
[1]崔尔杰.近空间飞行器研究发展现状及关键技术问题.力学进展, 2009, 39(6): 658-673.
    [2] Young M, Keith S. An overview of advanced concepts for near-space systems, In: 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Colorado, USA, AIAA 2009-4805: 1-18.
    [3] Marcel M J, Baker J. Integration of ultra-capacitors into the energy management system of a near space vehicle, In: 5th International Energy Conversion Engineering Conference and Exhibit, Florida, USA, AIAA 2007-4707: 1-9.
    [4]国家自然科学基金委.重大研究计划“近空间飞行器关键基础科学问题”.2007年度项目指南.
    [5] Schmidt D K. Modeling and near-space stationkeeping control of a large high-altitude airship. Journal of Guidance, Control and Dynamics, 2007, 30(2): 540-547.
    [6] Orton G F, Scuderi L F. A hypersonic cruiser concept for the 21st century, AIAA 98-5525: 1-11.
    [7]杨亚政,李松年,杨嘉陵.高超声速飞行器及其关键技术简论.力学进展, 2007, 37(4): 537-550.
    [8] Fidan B, Mirmirani M, Ioannou P A. Flight dynamics and control of air-breathing hypersonic vehicles: review and new directions, In: 12th AIAA International Space Planes and Hypersonic Systems and Technologies, Norfolk, USA, AIAA 2003-7081: 1-24.
    [9] McClinton C R, Rausch V L, Stiz J, et al. Hyper-X program status. In: 39th AIAA Aerospace Sciences Meeting and Exhibit, Reno, USA, AIAA 2001-0828: 1-11.
    [10] Harsha P T, Keel L C, Castrogiovanni A, et al. X-43A Vehicle Design and Manufacture, In: AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies, AIAA 2005-3334: 1-9.
    [11] Joyce P J, Pomroy J B, Grindle L. The Hyper-X launch vehicle: challenges and design consi- derations for hypersonic flight testing. In: AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies, Reston, USA: AIAA 2005-3333: 1-19.
    [12] Johnson M D, Calise A J, Johnson E N. Evaluation of an adaptive method for launch vehicle flight control, In: AIAA Guidance, Navigation, and Control Conference and Exhibit, Austin, USA, AIAA 2003-5789: 1-11.
    [13]陈予恕,郭虎伦,钟顺.高超声速飞行器若干问题研究进展.飞航导弹, 2009(8): 26-33.
    [14]王彦广,李健全,李勇,等.近空间飞行器的特点及其应用前景.航天器工程, 2007, 16(1):50-57.
    [15]肖存英.临近空间大气动力学特性研究, [博士学位论文].北京:中国科学院研究生院, 2009.
    [16] Johnson D L. Terrestrial environment (climatic) criteria guidelines for use in aerospace vehicle development, 2008 Revision, NASA TM-2008-215633: 49-156.
    [17] Bolender M A, Doman D B. Flight path angle dynamics of air-breathing hypersonic vehicles, In: AIAA Guidance, Navigation, and Control Conference and Exhibit, Keystone, USA, AIAA 2006-6692: 1-25.
    [18]吴宏鑫,孟斌.高超声速飞行器控制研究综述.力学进展, 2009, 39(6): 756-765.
    [19] Yao Z H, Bao W, Jiao H Y. Modeling for coupled dynamics of integrated hypersonic airbreathing vehicle and engine, In: 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Denver, USA, AIAA 2009-5431: 1-10.
    [20] Torrez S M, Driscoll J F, Dalle D J. Hypersonic vehicle thrust sensitivity to angle of attack and mach number, In: AIAA Atomospheric Flight Mechanics Conference, Chicago, USA, AIAA 2009-6152: 1-16.
    [21]常军涛,于达仁,鲍文.攻角引起的高超声速进气道不起动/再起动特性分析.航空动力学报, 2008, 23(5): 816-821.
    [22] Rugh W J, Shamma J S. Research on gain scheduling. Automatica, 2000, 36(10): 1401- 1425.
    [23] Tan S H, Hang C C, Chai J S. Gain scheduling: from conventional to neural-fuzzy. Automatica, 1997, 33(3):411-419.
    [24] Mickle M C, Zhu J J. Skid-to-turn control of the APKWS missile using trajectory linearization technique, In: Proceedings of the American Control Conference, Arlington, USA, IEEE, 2001: 3346-3351.
    [25] Mickle M C, Huang R, Zhu J J. Unstable, non-minimum phase, nonlinear tracking by trajectory linearization control, In: Proceedings of the 2004 IEEE International Conference on Control Applications, Taipei, China, IEEE, 2004: 812-818.
    [26]冯纯伯,费树岷.非线性控制系统分析与设计(第二版).北京:电子工业出版社, 1997.
    [27] Brinker J S, Wise K A. Stability and flying qualities robustness of a dynamic inversion aircraft control law. Journal of Guidance, Control and Dynamics, 1996, 19(6): 1270-1277
    [28] Calise A J, Hovakimyan N, Idan M. Adaptive output feedback control of nonlinear systems using neural networks. Automatica, 2001, 37(8): 1201-1211.
    [29] Meyer G, Su R, Hunt L R. Application of nonlinear transformations to automatic flight control.Automatica, 1984, 20(1): 103-107
    [30] Huang J, Lin C F, Cloutier. C F, et al, Robust feedback linearization approach to autopilot design. First IEEE Conference on Control Applications, 1992, 1: 220-225.
    [31] Singh S N, Yim W. Feedback Linearization and Solar Pressure Satellite Attitude Control. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(2): 732-741.
    [32] Snell S A. Nonlinear dynamic-inversion flight control of supermaneuverable aircraft [PhD Thesis]. Twin Cities: University of Minnesota, 1991.
    [33] McFarland M B, and Calise A J, Neural-adaptive nonlinear autopilot design for an agile anti-air missile, In: AIAA Guidance, Navigation and Control Conference, San Diego, USA, AIAA 96-3914: 1-9.
    [34] McFarland M B, and Calise A J, Multilayer neural networks and adaptive nonlinear control of agile anti-air missiles, In: AIAA Guidance, Navigation and Control Conference, Reston, USA, AIAA 97-3540: 401-410.
    [35] Johnson M D, Calise A J, and Johnson E N, Further evaluation of an adaptive method for launch vehicle flight control, In: AIAA Guidance, Navigation and Control Conference, Providence, AIAA, 2004-5016: 1-17.
    [36]王庆超,李达.基于反馈线性化的动能拦截器姿态控制研究.宇航学报,2005, 26(3): 358-361.
    [37]朱荣刚,姜长生,邹庆元,等.新一代歼击机超机动飞行的动态逆控制.航空学报, 2003, 24(3): 534-539.
    [38] Utkin V I. Variable Structure systems with sliding modes. IEEE Trans. Automat Contr., 1977, 22(2): 212-222.
    [39]刘金琨,孙富春.滑模变结构控制理论及其算法研究与进展.控制理论与应用, 2007,24(3): 407-418.
    [40] Chen M S, Hwang Y R, Tomizuka M. A State-dependent boundary layer design for sliding mode control. IEEE Trans Automat Contr., 2002, 47(10): 1677-1681.
    [41]高为炳.变结构控制的理论及设计方法.北京:科学出版社, 1996.
    [42] Kang B P, Ju J L. Sliding mode controller with filtered signal for robot manipulators using virtual plant controller. Mechatronics, 1997, 7(3): 277-286.
    [43] Ha Q P, Nguyen Q H, Rye D C, et al. Fuzzy sliding-mode controllers with applications. IEEE Transactions on Industrial Electronics, 2001, 48(1): 38-41.
    [44] Schumacher C J, Cottrill G C, Yeh H H, Optimal Slinding Mode Flight Control, In: AIAAGuidance, Navigation, and Control Conference and Exhibit. Portland, USA, AIAA 99-4002: 1-9.
    [45] Tournes C, Shtessel Y B. Sliding mode control for tailless aircraft, In: AIAA Guidance, Navigation, and Control Conference, New Orleans, USA, AIAA 97-3633: 1299-1309.
    [46]胡孟权,王建培.自适应模糊-滑模控制在重构飞行控制中的应用.航空学报, 2002, 23(6): 538-541.
    [47]苏心仪,朱纪红,胡金春,等.基于模糊逻辑的直升机终端滑模控制.清华大学学报(自然科学版), 2004, 44(4): 30-34.
    [48] Zhou D, Mu C D, Xu W L. Adaptive silding mode guidance of a homing missile. Journal of Guidance, Control and Dynamics, 1999, 22(4): 589-592.
    [49] Hess R A, Nejad M B. Sliding mode control of a nonlinear ducted-fan UAV model, In: AIAA Guidance, Navigation, and Control Conference and Exhibit, Keystone, USA, AIAA 2006-6088: 1-15.
    [50] Kanellakopoulos I, Kokotovic P V, Morse A S. Systematic design of adaptive controllers for feedback linearizable systems. IEEE Trans. Automat Contr., 36(11), 1991: 1241-1253.
    [51] Jiang Z P, Hill D J. A robust adaptive backstepping scheme for nonlinear systems with unmodeled dynamics. IEEE Trans. Automat Contr., 1999, 44(9): 1705-1711.
    [52] Li J H, Lee P M. A neural network adaptive controller design for free-pitch-angle diving behavior of an autonomous underwater vehicle. Robotics and Autonomous Systems, 2005, 52(2-3): 132-144.
    [53] Li T S, Yang Y S, Hong B G, et al. A robust adaptive nonlinear control approach to ship straight-path tracking design, In: 2005 American control conference, Portland, 2005: 4016-4021.
    [54] Monahemi M M, Krstic M. Control of wing rock motion using adaptive feedback linearization. Journal of Guidance, Control and Dynamics, 1991, 13(6): 905-912.
    [55] Sharma M, Farrell J A, Polycarpou M, et al. Backstepping flight control using on-line function approximation, In: AIAA Guidance, Navigation, and Control Conference and Exhibit, Austin, USA: AIAA 2003-5713: 1-10.
    [56] Lee T, Kim Y. Nonlinear adaptive flight control using backstepping and neural networks controller. Journal of Guidance, control, and Dynamics, 2001, 24(4): 675-682.
    [57] Hu Y N, Jin Y Q, Cui P Y. RBF NN-based backstepping control for strict feedback block nonlinear system and its application, Lecture Notes in Computer Science, 2004, 3174: 129-137.
    [58] Hull R A, Schumacher D, Qu Z H. Design and evaluation of robust nonlinear missile autopilots from a performance perspective, In: Proc of the American Control Conf., Seattle, USA, 1995:189-193.
    [59] Schierman J D, Hull J R, Gandhi N, et al. Flight test results of an adaptive guidance system for reusable launch vehicles, In: AIAA Guidance, Navigation, and Control Conference and Exhibit, Providence, USA, AIAA 2004-4771: 1-23.
    [60] Azinheira J R, Moutinho A. Hover control of an UAV with backstepping design including input saturations. IEEE Transactions on Control Systems Technology, 2008,16(3): 517-526.
    [61] Doyle F J, Ogunnaike B A, Pearson R K. Nonlinear model-based control using second-order Volterra models, Automatica, 1995, 31(5): 697-714.
    [62] Genceli H, Nikolaou M. Design of robust constrained model predictive controllers with Volterra series. AIChE Journal, 1995, 41 (9): 2098-2107.
    [63] Rohit. S, Patwardhan S, Laksh M. Constrained nonlinear MPC using Hammerstein and Wiener models. AIChE Journal, 1998, 44 (7): 1611-1622.
    [64]王殿辉,柴天佑.基于ANN模型的非线性自校正预测控制器.自动化学报, 1997, 23(3): 396-399.
    [65] Andy Y T, Jang S S, David S, et.al. Predictive control of quality in batch polymerization using hybrid ANN model. AIChE Journal, 1996, 42 (2): 455-465.
    [66] Kittisupakorn P, Thitiyasook P, Hussain M A, et al. Neural network based model predictive control for a steel pickling process. Journal of Process Control, 2009, 19: 579-590.
    [67] Garcia C E. Quadratic dynamic matrix control of nonlinear processes: An application to a batch reaction process, AIChE Annual Meeting. SanFrancisco, 1984, 301-307
    [68] Kothare M V, Balak R V, Morari M. Robust constrained model predictive control using linear matrix inequalities. Automatica, 1996, 32(10): 1361-1379.
    [69] Rouhani R, Mehra R K. Model Algorithmic Control (MAC), Basic Theoretical Properties. Automatica, 1982, 18(4): 401-404.
    [70] Clarke D W, Mohtadi C, Tuffs P S. Generalized predictive control-The basic algorithm. Automatica, 1987, 7(3): 137-148.
    [71] Clarke D W, Mohtadi C, Tuffs P S. Generalized predictive control-II. extensions and interpretations. Automatica, 1987, 23: 149-160.
    [72]顾兴源,毛志忠.一种基于广义预测的极点配置自适应控制方法.控制与决策, 1992, 7(3): 221-224.
    [73]张日东,王树青.基于神经网络的非线性系统多步预测控制.控制与决策, 2005, 20(3): 332-336.
    [74] Abou-Jeyab R A, GuptaY P. Constrained multivariable control of a distillation column using a simplified model predictive control algorithm. Journal of Process Control, 2001, 11(5): 509-517.
    [75]陈增强,孙明玮,袁著祉.具有稳定性的约束预测控制.系统工程学报, 2000, 15(3): 262-266.
    [76] Demircioglu H, Gawthrop P J. Continuous-time generalized predictive control (CGPC). Automatica, 1991, 27(1): 55-74.
    [77] Demircioglu H, Gawthrop, P J. Multivariable continuous-time generalized predictive control. Automatica, 1992, 28(4), 697–713.
    [78] Demircioglu H, Clarke D W. CGPC with guaranteed stability properties. Proceedings of IEE, 1992, 139(4), 371–380.
    [79] Gawthrop P J, Demircioglu H, Siller-Alcala I. Multivariable continuous-time generalized predictive control: A state–space approach to linear and nonlinear systems. Proceedings IEE Part D: Control Theory and Applications, 1998, 145(3), 241–250.
    [80] Lu P. Nonlinear predictive controllers for continuous systems. Journal of Guidance, Control and Dynamics, 1994, 17(3): 553-560.
    [81] Lu P. Optimal predictive control for continuous nonlinear systems. International Journal of Control, 1995, 62(3), 633–649.
    [82] Soroush M, Soroush H M. Input–output linearising nonlinear model predictive control. International Journal of Control, 68(6), 1997, 1449–1473.
    [83] Siller-Alcala I. Generalized predictive control of nonlinear systems [PhD Thesis]. Glasgow: Glasgow University, 1998.
    [84] Chen W H, Ballance D J, Gawthrop P J. Optimal control of nonlinear systems: a predictive control approach. Automatica, 2003, 39: 633-641.
    [85] Hyochoong B. Predictive control for the attitude maneuver of a flexible spacecraft, Aerospace Science and Technology, 2004, 8(1): 443–452.
    [86] Kang Y, Hedrick J K. Design of nonlinear model predictive controller for a small fixed-wing unmanned aerial vehicle, In: AIAA Guidance, Navigation, and Control Conference and Exhibit, Keystone, USA, AIAA 2006-6685: 1-11.
    [87] Gao C, Liu H T, Zhang P. A nonlinear multi-objective receding horizon flight control design, In: AIAA Guidance, Navigation, and Control Conference, Chicago, USA, AIAA 2009-5624: 1-23.
    [88] Talole S E, Phadke S B, Singh R K. Predictive homing guidance using time delay control, In: AIAA Guidance, Navigation, and Control Conference and Exhibit, San Francisco, USA, AIAA2005-6159: 1-9.
    [89] Benito J, Mease K D. Nonlinear predictive controller for drag tracking in entry guidance, AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Honolulu, USA, AIAA 2008-7350: 1-14.
    [90] Myung H S, Bang H. Nonlinear predictive attitude control of spacecraft under external disturbances. Journal of Spacecraft and Rockets, 2003, 40(5): 696-699.
    [91] Bhattacharya R, Balas G J, Kaya M A, et al. Nonlinear receding horizon control of an F-16 aircraft. Journal of Guidance, Control, and Dynamics, 2002, 25(5): 924-931.
    [92] Zhou K. On the parameterization H∞controllers. IEEE Trans. Automat Contr., 1992, 37(9): 1442–1446.
    [93] Glover K, McFarlane D. Robust stabilization of normalized coprime factor plant descriptions with H∞bounded uncertainty. IEEE Trans. Automat Contr., 1989, 34(8): 821-830.
    [94] Fan M K H, Tits A L, Doyle J C. Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics. IEEE Trans. Automat Contr., 1991, 36(1): 25-28.
    [95] Youla D, Jabr H, Bongiorno J. Modern Wiener-Hopf design of optimal controllers part II: the multivariable case. IEEE Trans. Automat Contr., 1976, 21(3): 319–338.
    [96]姜长生,吴庆宪,陈文华,等.现代鲁棒控制基础.哈尔滨:哈尔滨工业大学出版社, 2005.
    [97] Tamaki K, Ohishi K, Ohnishi K. Microprocessor-based robust control of a DC servo motor, IEEE Control Systems Magazine, 1986, 6(5): 30– 36.
    [98] Shahruz S M, Performance enhancement of a class of nonlinear systems by disturbance observer, IEEE/ASME Transactions on Mechatronics, 2000, 5(3):319-323.
    [99] Chen W H, Balance D J, Gawthrop P J, et al. A nonlinear disturbance observer for robotic manipulators, IEEE Transactions of Industrial Electronics, 2000, 47(4): 932-938.
    [100] Kim E, A fuzzy disturbance observer and its application to control, IEEE Transactions on Fuzzy Systems, 2002, 10(1): 77-84.
    [101]陈谋,姜长生,吴庆宪.基于干扰观测器的一类不确定非线性系统鲁棒H∞控制.控制理论与应用, 2006, 23(4): 611-614.
    [102]朱亮,姜长生,张春雨.基于径向基神经网络干扰观测器的空天飞行器自适应轨迹线性化控制.航空学报, 2007, 28(3): 673-677.
    [103] Furuhashi T, Sangwongwanich S, Okuma S. A position-and-velocity sensorless control for brushless DC motors using an adaptive sliding mode observer. IEEE Transactions on Industrial Electronics, 1992, 39(2): 89-95.
    [104] Chen W H, Harmonic disturbance observer for nonlinear systems, Journal of Dynamic Systems, Measurement and Control, 2003, 125: 114-117.
    [105] Chen W H, Nonlinear disturbance observer enhanced dynamic inversion control of missiles. Journal of Guidance, Control, and Dynamics, 2003, 26(1): 161-166.
    [106] Narendra K S, Annaswamy A M. Stable adaptive systems. New Jersey: Prentice Hall, 1989.
    [107] Polycarpou M M, Ioannou P A. A robust adaptive nonlinear control design. Automatica, 1996, 32(3): 423-427.
    [108] Kanellakopoulos I, Kokotovic P V, Morse A S. Systematic design of adaptive controllers for linearizable systems. IEEE Trans. on Automatic Control, 1991, 36(11): 1241-1253.
    [109] Yao B, Tomizuka M. Adaptive robust control of MIMO nonlinear systems in semi-strict feedback forms. Automatica, 2001, 37(9): 1305-1321.
    [110] Jain S, Khorrami F. Decentralized adaptive control of a class of large-scale interconnected nonlinear systems. IEEE Trans. on Automatic Control, 1997, 42(2): 136-154.
    [111] Liu Y S, Li X Y. Decentralized robust adaptive control of nonlinear systems with unmodeled dynamics. IEEE Trans. on Automatic Control, 2002, 47(5): 848-856.
    [112] Ioannou P A, Kokotovic P V. Adaptive systems with reduced models. Berlin: Springer-Verlag, 1983.
    [113] Wang L X. Fuzzy systems and universal approximators, Proceeding of IEEE International Conference on Fuzzy Systems, San Diego, USA, 1992: 1163-1170.
    [114] Park J, Sandberg I W. Universal approximation using radial-basis-function network. Neural Computation, 1991, 3(2): 246-257.
    [115] Hornik K. Approximation capabilities of multiplayer feedforward networks. Neural Networks, 1991, 4(2): 251-257.
    [116] Kamalasadan S, Ghandakly A A. A Neural network parallel adaptive controller for dynamic system control. IEEE Trans. on Instrumentation and Measurement, 2007, 56(5): 1786-1796.
    [117] Sbarbaro D, Johansen T A. Analysis of artificial neural networks for pattern-based adaptive control. IEEE Trans. on Neural Networks, 2006, 17(5): 1184-1193.
    [118] Ge S S, Zhang J, Lee T H. Adaptive neural network control for a class of MIMO nonlinear systems with disturbances in discrete-time. IEEE Trans. on Systems, Man, and Cybernetics-Part B: Cybernetics, 2004, 34(4): 1630-1645.
    [119] Gao W Z, Selmic R R. Neural network control of a class of nonlinear systems with actuator saturation. IEEE Trans. on Neural Networks, 2006, 17(1): 147-156.
    [120] Hayakawa T, Haddad W M, Hovakimyan N. Neural network adaptive control for a class of nonlinear uncertain dynamical systems with asymptotic stability guarantees. IEEE Trans. on Neural Networks, 2008, 19(1): 80-89.
    [121] Tee K P, Ge S S, Tay F E H. Adaptive neural network control for helicopters in vertical flight. IEEE Tran. on Control Systems Technology, 2008, 16(4): 753-762.
    [122] Sanner R M, Slotine J J E. Stable adaptive control and recursive identification using radial Gaussian networks. In: Proc of IEEE Conf on Decision and Control. Piscataway, USA, IEEE, 1991: 2116-2123.
    [123] Sanner R M, Slotine J J E. Gaussian networks for direct adaptive control. IEEE Trans. Neural Networks, 1992, 3(6): 837-863.
    [124] Chen F C, Khalil H K. Adaptive control of nonlinear systems using neural networks. International Journal of Control, 1992, 55(6): 1299-1317.
    [125] Lewis F L, Yesildirek A, Liu K. Multilayer neural net robot controller: structure and stability proofs. IEEE Trans. on Neural Networks, 1996, 7(2): 388-399.
    [126] Rovithakis G A. Tracking control of multi-input affine nonlinear dynamical systems with unknown nonlinearities using dynamical neural networks. IEEE Trans. on Systems, Man, and Cybernetics-Part B: Cybernetics, 1999, 29(2): 179-189.
    [127] Lin F J, Shen P H, Kung Y S. Adaptive wavelet neural network control for linear synchronous motor servo drive. IEEE Trans. on Magnetics, 2005, 41(12): 4401-4412.
    [128] Leu Y G, Wang W Y, Lee T T. Robust adaptive fuzzy-neural controllers for uncertain nonlinear systems. IEEE Trans. on Robotics and Automation, 1999, 15(5): 805-817.
    [129] Peng Y F, Lin C M. RCMAC-based adaptive control for uncertain nonlinear systems. IEEE Trans. on Systems, Man, and Cybernetics-Part B: Cybernetics, 2007, 37(3): 651-666.
    [130] Ahmed-Zaid F, Ioannou P A, Polycarpou M M, et al. Identification and control of aircraft dynamics using radial basis function neural networks, In: AIAA Guidance, Navigation, and Control Conference and Exhibit, Hilton Head Island, USA, AIAA 92-4393: 418-427.
    [131] Hageman J, Smith M, Stachowiak S. Integration of online parameter identification and neural network for in-flight adaptive control, In: AIAA Atmospheric Flight Mechanics Conference and Exhibit, Austin, USA, AIAA 2003-5700: 1-16.
    [132] Shin Y, Johnson M D, Calise A J. Neural network-based adaptive control for nonlinear flight regimes, In: AIAA Guidance, Navigation, and Control Conference and Exhibit, Austin, USA, AIAA 2003-5717: 1-11.
    [133] Suresh S, Omkar S N, Mani V. Direct adaptive neural flight controller for F-8 fighter aircraft. Journal of Guidance, Control, and Dynamics, 2006, 29(2): 454-464.
    [134] Polycarpou M, Zhang X D, Xu R, et al. A neural network based approach to adaptive fault tolerant flight control, In: Proceeding of the 2004 IEEE International Symposium on Intelligent Control, Taipei, China, 2004: 61-64.
    [135] Johnson E N, Calise A J, Turbe M A. Fault tolerance through direct adaptive control using neural networks, In: AIAA Guidance, Navigation, and Control Conference and Exhibit, Keystone, USA, AIAA 2006-6553: 1-20.
    [136] Enns R, Si J. Helicopter flight-control reconfiguration for main rotor actuator failures Journal of Guidance, Control, and Dynamics, 2003, 26(4): 572-584.
    [137] Shin D H, Kim Y. Reconfigurable flight control system design using adaptive neural networks. IEEE Trans. on Control Systems Technology, 2004, 12(1): 87-100.
    [138] Bosworth J. F-15 IFCS: Intelligent flight control system. NASA 2007-35126: 1-23.
    [139] Brinker J S, Wise K A. Reconfigurable flight control for a tailless advanced fighter aircraft, In: AIAA Guidance, Navigation, and Control Conference and Exhibit, Boston, USA, AIAA 98-4107: 75-87.
    [140] Shin Y, Johnson M, Calise A. Neural network-based adaptive control for nonlinear flight regimes, In: AIAA Guidance, Navigation, and Control Conference and Exhibit, Austin, USA, AIAA 2003-5717: 1-11.
    [141] Johnson E N, Calise A J, Corban J E. Reusable lauch vehicle adaptive guidance and control using neural networks, In: AIAA Guidance, Navigation, and Control Conference and Exhibit, Montreal, Canada, AIAA 2001-4381: 1-11.
    [142] Gregory M, Chowdhry R S, McMinn J D, et al. Hypersonic vehicle model and control law development using H∞andμsynthesis. NASA TM-4562, 1994: 1-35.
    [143] Buschek H, Calise A J. Uncertainty modeling and fixed-order controller design for a hypersonic vehicle model. Journal of Guidance, Control, and Dynamics, 1997, 20(1): 42-48.
    [144] Ito D, Ward D T, Valasek J. Robust dynamic inversion controller design and analysis for the X-38, In: AIAA Guidance, Navigation, and Control Conference and Exhibit, Montreal, Canada, AIAA 2001-4380: 1-11.
    [145] Lee H P, Reiman S E, Dillon C H, et al. Robust nonlinear dynamic incersion control for a hypersonic cruise vehicle, In: AIAA Guidance, Navigation, and Control Conference and Exhibit, Hilton Head, USA, AIAA 2007-6685: 1-9.
    [146] Wang Q, Stengel R F. Robust nonlinear control of a hypersonic aircraft. Journal of Guidance, Control, and Dynamics, 2000, 23(4): 577-585.
    [147] Xu H J, Ioannou P A, Mirmirani M. Adaptive sliding mode control design for a hypersonic flight vehicle. Journal of guidance, control and dynamics, 2004, 27(5): 829~838.
    [148] Shtessel Y, Hall C, Jackson M. Reusable launch vehicle control in multiple-time-sale sliding modes. Journal of Guidance, Control, and Dynamics, 2000, 23(6): 1013-1020.
    [149]周丽.基于回馈递推方法的近空间飞行器鲁棒自适应控制, [博士学位论文].南京:南京航空航天大学, 2008.
    [150] Zhu J J, Banker B D, Hal C E. X-33 ascent flight control design by trajectory linearization--A singular perturbation approach, In: AIAA Guidance, Navigation, and Control Conference and Exhibit, Denver, USA, AIAA 2000-4159: 1-19.
    [151]朱亮.空天飞行器不确定非线性鲁棒自适应控制, [博士学位论文].南京:南京航空航天大学, 2006.
    [152] Fiorentini L, Serrani A. Nonlinear robust adaptive control of flexible air-breathing hypersonic vehicles. Journal of Guidance, Control, and Dynamics, 2009, 32(2): 401-415.
    [153] Wilcox Z D, MacKunis W, Bhat S, et al. Robust nonlinear control of a hypersonic aircraft in the presence of aerothermoelastic effects. Journal of Guidance, Control, and Dynamics, 2010, 33(4): 1213-1224.
    [154] Bolender M A, Doman D B. Nonlinear longitudinal dynamical model of an air-breathing hypersonic vehicle. Journal of Spacecraft and Rockets, 2007, 44(2): 374-387.
    [155] Clark A D, Mirmirani M D, Wu C, et al. An aero-propulsion integrated elastic model of a generic airbreathing hypersonic vehicle, In: AIAA Guidance, Navigation, and Control Conference and Exhibit, Keystone, USA, AIAA 2006-6560: 1-20.
    [156] Gibson T E, Annaswamy A M. Adaptive control of hypersonic vehicles in the presence of thrust and actuator uncertainties, In: AIAA Guidance, Navigation, and Control Conference and Exhibit, Honolulu, USA, AIAA 2008-6961: 1-16.
    [157] Kuipers M, Ioannou P, Fidan B, et al. Robust adaptive multiple model controller design for an airbreathing hypersonic vehicle model, In: AIAA Guidance, Navigation, and Control Conference and Exhibit, Honolulu, USA, AIAA 2008-7142: 1-21.
    [158] Sigthorsson D O, Serrani A, Yurkovich S, et al. Tracking control for an overactuated hypersonic air-breathing vehicle with steady state constraints, In: AIAA Guidance, Navigation, and Control Conference and Exhibit, Keystone, USA, AIAA 2006-6558: 1-17.
    [159] Vaddi S S, Sengupta P. Controller design for hypersonic vehicles accommodating nonlinear state and control constraints, In: AIAA Guidance, Navigation, and Control Conference Chicago, USA, AIAA 2009-6286: 1-19.
    [160] Reiman S E, Dillon C H, Lee H P, et al. Robust adaptive reconfigurable control for a hypersonic cruise vehicle, In: AIAA Guidance, Navigation, and Control Conference, Chicago, USA, AIAA 2009-6185: 1-10.
    [161]鲁道夫布罗克豪斯.飞行控制(金长江).北京:国防工业出版社, 1999.
    [162]陈云霞,段朝阳.飞控系统最坏情况分析方法研究.航空学报, 2005, 26(5): 647-651.
    [163] Shaughnessy J D, Pinckney S Z, McMinn J D, et al. Hypersonic vehicle simulation model: winged-cone configuration. NASA TM-102610, 1990: 1-140.
    [164] Keshmiri S, Mirmirani M, Colgren R. Six-DOF modeling and simulation of a generic hypersonic vehicle for conceptual design studies, In: AIAA Modeling and Simulation Technologies Conference and Exhibit, Providence, USA, AIAA 2004-4805: 1-11.
    [165] Clogren R, Keshmiri S, Mirmirani M. Nonlinear ten-degree-of-freedom dynamics model of a generic hypersonic vehicle. Journal of aircraft, 2009, 46(3): 800-813.
    [166] Ehernberger L. Stratospheric turbulence measurements and models for aerospace plane design, In: AIAA 4th International Aerospace Planes Conference, Orlando, USA, AIAA-92-5072: 1-25.
    [167]何庆芝.飞机设计手册:常用公式、符号、数表.北京:?航空工业出版社, 1996.
    [168] Smith O E, Adelfang S I. A compendium of wind statistics and models for the NASA space shuttle and other aerospace vehicle programs. NASA/CR-1998-208859: 22-28.
    [169] Jasper G L, Batts G W. Atmospheric environment for space shuttle Atlandis (STS-43) Launch. NASA/TM 92-34175, 1992: 1-50.
    [170]肖业伦,金长江.大气扰动中的飞行原理.北京:?国防工业出版社, 1993.
    [171]吴森堂,费玉华.飞行控制系统.北京:?北京航空航天大学出版社,2005.
    [172]张军.近空间飞行器非线性不确定飞行运动的鲁棒自适应控制, [博士学位论文].南京:南京航空航天大学, 2009.
    [173]申安玉,申学仁,李云保,等.自动飞行控制系统.北京:?国防工业出版社, 2003.
    [174]郭锁凤,申功璋,吴成富,等.先进飞行控制系统.北京:?国防工业出版社, 2003.
    [175]王永熙.飞机设计手册:飞行控制系统和液压系统设计.北京:?航空工业出版社, 2003.
    [176] Pao Y H. Neural-net computing and intelligent control systems. International Journal of Control, 1992, 56 (2): 263-289.
    [177] Pao Y H. Functional-link net computing: theory, system architecture, and functionalities.Computer 25 (5) (1992) 76–79.
    [178] Bryson A E, Ho Y C. Applied optimal control: optimization, estimation, and control. Washington DC: Hemisphere, 1975.
    [179] Ball J A, Helton J W, Walker M L. H∞control for nonlinear systems with output feedback. IEEE Transactions on Automatic Control, 1993, 38: 546–559.
    [180] Isidori A.非线性控制系统(第三版)(王奔等).北京:电子工业出版社,1995.
    [181] Labiod S, Boucherit M S, Guerra T. M., Adaptive fuzzy control of a class of MIMO nonlinear systems, Fuzzy Sets and Systems, 2005,151: 59–77.
    [182] Lee T T, Jeng J T, The chebyshev-polynomials-based unified model neural networks for function approximation, IEEE Trans. on Systems, Man, and Cybernetics—Part B, 1998, 32(4): 925-935.
    [183] Patra J C, Pal R N, Chatterji B N, et al. Identification of nonlinear dynamic system using functional link artificial neural networks. IEEE Trans. on Systems, Man, and Cybernetics—Part B, 1999, 29(2): 254-262.
    [184] Patra J C, Kot A C. Nonlinear dynamic system identification using chebyshev functional link artificial neural networks. IEEE Trans. on Systems, Man, and Cybernetics—Part B, 2002, 32(4): 505-511.
    [185] Toh K A, Yau W Y. Fingerprint and speaker verification decisions fusion using functional link artificial neural networks, IEEE Trans. on Systems, Man, and Cybernetics—Part C, 2005, 35(3): 357-370.
    [186] Weng W D, Yang C S, Lin R C. A channel equalizer using reduced decision feedback Chebyshev functional link artificial neural networks, Information Sciences, 2007, 177(13): 2642-2654.
    [187] Zhao H Q, Zhang J S. Funtional link neural network cascaded with chebyshev orthogonal polynomial for nonlinear channel equalization. Signal Processing, 2008, 88: 1946-1957.
    [188] Zhao H Q, Zhang J S. Adaptively combined FIR and functional link artificial neural network equalizer for nonlinear communication channel. IEEE Trans. on Neural Networks, 2009, 20(4): 665-674.
    [189] Hu Y C. Functional-link nets with genetic-algorithm-based learning for robust nonlinear interval regression analysis. Neurocomputing, 2009, 72: 1808-1816.
    [190] Hema C R, Paulraj M P, Yaacob S, et al. Functional link PSO neural network based classification of EEG mental task signals, International Symposium on Information Technology,Kuala Lumpur, Aug, 2008:?1-6.?
    [191] Hassanzadeh I, Khanmohammadi S, Jiang J, et al. Implementation of a functional link net- ANFIS controller for a robot manipulator. Third International Workshop on Robot Motion and Control, November, 2002.
    [192] Chen C H, Lin C J, Lin C T. A functional-link-based neurofuzzy network for nonlinear system control. IEEE Trans. on Fuzzy Systems, 2008, 16(5): 1362-1377.
    [193] Lewis F L, Yesildirek A, Liu K. Mutilayer neural-net robot controller with guaranteed tracking performance. IEEE Trans. on Neural Networks, 1996, 7(2): 388-398.
    [194] Du Y L, Wu Q X, Jiang C S, et al. Attitude tracking of a near-space hypersonic vehicle using robust predictive control. The 2nd International Symposium on Systems and Control in Aeronautics and Astronautics, Shenzhen, Dec, 2008: 1-6.
    [195] Lin F J, Shieh H J, Huang P K, et al. An adaptive recurrent radial basis function network tracking controller for a two-dimensional piezo-positioning stage. IEEE Trans. on Ultrasonics, Ferroelectrics, and Frequency Control, 2008, 55(1): 183-198.
    [196] Hsu C F. Adaptive recurrent neural network control using a structure adaptation algorithm. Neural Comput & Applic 2009, 18(2):115-125.
    [197] Capi G. Application of recurrent neural controllers for robot complex task performance. International Journal of Innovative Computing, Information and Control, 2009, 5(5): 1171- 1178.
    [198] Pham D T, Liu X. Training of Elman networks and dynamic system modelling. International Journal of SystemS Science, 1996, 27(2); 221-226.
    [199] Song Q. On the weight convergence of Elman networks. IEEE Trans. on Neural Networks, 2010, 21(3): 463-480.
    [200]李翔.从复杂到有序—神经网络智能控制理论新进展.上海:上海交通大学出版社, 2006.
    [201] Hussain A, Soraghan J J, Durrani T S. A new adaptive functional-link neural-network-based DFE for overcoming co-channel interference. IEEE Trans. on Communications, 1997, 45(11): 1358-1362.
    [202] Polycarpou M M. Stable adaptive neural control scheme for nonlinear systems. IEEE Trans. on Automatic Control, 1996, 41(3): 447-451.
    [203]陈云霞,孙宇峰,段朝阳.推力偏心影响下的飞控系统可靠性研究.北京航空航天大学学报, 2004, 30(2): 143-146.
    [204] Du Y L, Wu Q X, Jiang C S, et al. Adaptive optimal predictive control of a near-space vehicle using functional link network. Transactions of Nanjing University of Aeronautics &Astronautics, 2010, 27(2): 148-154.
    [205] Samadi S, Ahmad M O, Swamy M N S. Characterization of B-Spline digital filters. IEEE Trans on Circuits and Systems—I: Regular Papers, 2004, 51: 808-816.
    [206]颜庆津.数值分析.北京:北京航空航天大学出版社, 2006.
    [207] Juang C. A hybrid of genetic algorithm and particle swarm optimization for recurrent network design. IEEE Transaction on Systems,Man and Cybernetics- Part B: Cybernetics, 2004,34(2): 997-1006.
    [208] Amitava C, Koliya P, Keigo W, et al. A Particle-swarm-optimized fuzzy-neural network for voice-controlled robot systems. IEEE Transaction on Industrial Electronics, 2005, 52(6): 1478-1489.
    [209] Kao C C, Chuang C W, Fung R F. The Self-tuning PID Control in a Slider–crank Mechanism System by Applying Particle Swarm Optimization Approach. Mechatronics, 2006,16(8):513-522.
    [210] Mukherjee V, Ghoshal S.P. Intelligent Particle Swarm Optimized Fuzzy PID Controller for AVR System. Electric Power System Research, 2007,77(12):1689-1698.
    [211]郝万君,强文义,柴庆宣,等.基于粒子群优化的一类模糊控制器设计.控制与决策, 2007,22(5):585-588.
    [212] Van den Bergh F, Engelbrech A P. A cooperative approach to particle swarm optimization. IEEE Trans. on Evolutionary Computation, 2004, 8(3):225-239.
    [213]曾建潮,崔志华.一种保证全局收敛的PSO算法.计算机研究与发展,2004, 41(8):1333-1338.
    [214] Solis F, Wets R. Minimization by random research techniques. Mathematics of Operations Research, 1981, 6(1):19-30.
    [215]都延丽,吴庆宪,姜长生,等.改进协同微粒群优化的模糊神经网络控制系统设计.控制与决策,2008, 23(12): 1327-1332.
    [216]?柯蒂斯F·杰拉尔德.?应用数值分析? (吕淑娟).北京:机械工业出版社, 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700