基于支持向量机的建模方法及其在材料加工中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
众所周知,热加工过程是非线性、多变量、时变、强耦合的,并且涉及大量的不确定因素,因而该过程是典型的复杂过程。对热加工过程采用经典的建模方法获取其精确的数学模型是极为困难的。获取热加工过程中的知识模型,有助于认识复杂热加工过程的规律,获取人类智能的经验知识,甚至升华人类智能的经验知识,从而实现复杂热加工过程的自动化和智能化,所以获取热加工过程的知识模型具有重要意义。
     近年来,用模糊集方法、神经网络方法、粗糙集方法以及混合方法获取热加工过程的知识模型成为科研人员关注的焦点,并取得了许多有意义的成果,但是这些方法仍存在不足,不能完全满足实际需要,有必要对这类复杂过程的建模方法做进一步的研究。
     本文以支持向量机理论和模糊集理论为基础,针对热加工领域知识建模的复杂性,提出了基于支持向量机的模糊规则获取系统(Support Vector Machine-based Fuzzy Rules Discovery System, SVM-FRDS)和权重支持向量回归在线学习(C-weighted On-line Support Vector Regression, COSVR )建模方法,并对建模算法进行了深入的研究,利用Mackey-Glass混沌时间序列进行预测实验。试验证明SVM-FRDS模型具有良好的可理解性和满足要求的精度,COSVR方法获得模型能更好的反映模型的变化。并将SVM-FRDS和COSVR应用于GTAW焊接过程建模与控制、氧势法碳势影响因素分析以及修正模型的建立,验证了SVM-FRDS和COSVR在热加工领域的有效性。
     本文主要研究内容如下:
     1)“可理解性”是可靠系统的必备特性,特别由于热加工行业的复杂性,如果模型是可理解的,甚至是可修改的,模型的可靠度,适用性都将有所改善。本文讨论了一种新的基于支持向量机的模糊规则获取系统(SVM-FRDS)。支持向量机抽取支持向量的特点提供了从训练数据产生模糊规则的机制。在支持向量机抽取模糊规则的基础上,采用模糊基函数做为推理系统,利用梯度算法对模糊规则和模糊基函数推理系统进行自适应学习。在给出SVM-FRDS主要算法的基础上,从规则抽取和推理系统两方面与其他典型模糊规则获取系统做了对比分析。最后,使用Mackey-Glass混沌时间序列进行预测实验。实验结果表明,本文提出的SVM-FRDS在精度和可理解性方面(包括规则条数和推理系统)都有优势。
     2)由于影响因素多,甚至不可控的干扰因素都很多,热加工行业中模型时变特性非常明显。本文在标准支持向量回归在线学习方法的基础上,研究了权重支持向量回归在线学习方法(COSVR),强化新样本对模型的修改,弱化历史样本的影响。使用基准数据Mackey-Glass混沌序列做了相关验证实验,试验结果表明本文提出的COSVR更能反映模型的变化。
     3)将本文提出的SVM-FRDS和COSVR方法应用于铝合金脉冲GTAW焊接动态过程建模与控制:1)运用本文提出的SVM-FRDS和COSVR方法获取铝合金脉冲GTAW焊接动态过程知识模型。实验结果表明SVM-FRDS知识建模方法可以有效的获取铝合金脉冲GTAW焊接动态过程的规则性模型,模型的复杂程度和精度都是可以满足要求的,模型是易于理解的。COSVR实验结果表明,COSVR在焊接过程建模中更能反映模型的改变。2)根据焊接过程特点,提出了基于SVM-FRDS的自适应逆控制,并将其应用于GTAW焊接过程的控制,该方法只需要获得焊接过程的输入输出数据就可以自动抽取易于理解的控制规则,实现对系统的控制,最后通过工艺实验验证了控制器对铝合金脉冲GTAW焊缝成形的良好控制。
     4)氧势法是应用广泛的碳势测量技术,但氧势法测量值与碳势实际值之间存在偏差,研究氧势法测量碳势的修正模型非常重要。论文先根据人工经验,测量并记录了相关数据,然后运用SVM方法分析了碳势的影响因素并建立了单因素和多因素修正模型。在知识模型的引导下,在碳势控制相关理论的基础上,建立了碳势修正模型的机理模型。最后运用本文提出的COSVR方法建立了碳势修正知识模型,提高了修正模型的精度,该方法的应用为修正模型的实际应用提供了重要保障。
     5)设计并实现了基于权重支持向量回归在线学习的热加工知识获取系统(COSVRKDSHW),系统涵盖了支持向量回归及权重支持向量回归在线学习建模过程中的全部所需功能,并集成了一些辅助功能。
It is well known that heat processes are nonlinear, multivariable, timevarying and strong coupled. Thus, the heat processes are typical complex processes. It is too hard to obtain accurate mathematical models of hot work processes using classical modeling methods. Obtaining knowledge models of hot working processes is helpful for understanding the processes, obtaining and even abstracting the experiential knowledge of human and realizing the intelligent control of these processes. Thus, it is of great significance to obtain knowledge models of hot processing of metal.
     In recent years, it is becoming the focus to get knowledge models of hot work processes with the fuzzy set method, the neural network method, the rough set methods and their combination. Many interesting results have been obtained, however, they could not completely satisfy the practical needs. Further modeling techniques are necessary.
     Considering the complexities of hot working process, this dissertation proposes Support Vector Machine-based Fuzzy Rules Discovery System (SVM-FRDS) and C-weighted On-line support vector regression (COSVR) kowledge modeling method of complex processes based on the SVM and fuzzy system theory. Key algorithms of the method are studied in detail. Verifying experiments using chaotic Mackey–Glass are carried out. The experimental results show that the SVM-FRDS model possesses good generalization capability as well as high comprehensibility, the COSVR method can change the model more effectlively. The proposed approaches are applied in the heat processes. The proposed SVM-FRDS and COSVR methods are applied in modeling and control for the aluminum alloy pulse GTAW welding dynamic process. For controlling of carbon potential using an oxygen sensor we analyse the influencing factors and study the amendment model.The experimental results prove that the SVM-FRDS and COSVR method can effectively obtain the knowledge model in the field.
     The main work is as follows:
     1. In general, comprehensibility is one of the required characteristics of reliable systems. Especially in the complex hot work field, if the model is comprehensive, or even revisable, the model may be more reliable and adaptive. This paper discusses a support vector machine-based Fuzzy Rules Discovery System (SVM-FRDS). The character of SVM in extracting support vector provides a mechanism to extract fuzzy IF–THEN rules from the training data set. We construct the fuzzy inference system using fuzzy basis function. The gradient technique is used to tune the fuzzy rules and the inference system. Main algorithm of SVM-FRDS is given. We theoretically analyze the proposed SVM-FRDS on the rule extraction and the inference method comparing with other fuzzy systems. Comparative tests are performed using chaotic Mackey–Glass benchmark data. Comparative analysis and tests about SVM-FRDS with respect to other fuzzy systems show that the new approach possesses satisfactory generalization capability as well as high comprehensibility.
     2. There are many influencing factors, even uncontrollable factors in the hot work processes, so the time-varying model is more acceptable. Based on the on-line support vector reression, this paper investigates C-weighted On-line Support Vector Reression approach (COSVR). In COSVR parameter C varies for different samples. This approach efficiently updates the trained function whenever a sample is added to the training set. Comparative tests are performed using chaotic Mackey–Glass benchmark. The experimental results show that the method can change the model more effectlively.
     3. The proposed SVM-FRDS and COSVR methods are applied in modeling and control for the aluminum alloy pulse GTAW welding dynamic process. 1) Verifying experiments on obtaining knowledge models for GTAW welding process using the proposed SVM-FRDS and COSVR modeling method are carried out. For SVM-FRDS, the model possesses good generalization capability as well as high comprehensibility, and the SVM-FRDS adaptive inverse control method is feasible in welding process control. For COSVR, the method can change the model more effectively. 2) A new adaptive inverse control method based on SVM-FRDS is proposed and applied in GTAW process control. The proposed adaptive inverse control method can automatically extract control rule from the weld process data. The welding experiments results show that the SVM-FRDS adaptive inverse control method can achieve uniform weld formation during the pulsed GTAW welding.
     4.The oxygen sensor is widely used in measuring the carbon potential (CP). There exists a deviation between the real CP value and the measured CP value using an oxygen sensor. It is very important to study the amendment model for controlling of CP using an oxygen sensor. We select the relevant variables according to the practical experience. We measure and record the relevant data according to the practical experience. We analyse the influencing factors and build sinle-variable and multi-variable models using the SVM approach. Under the guidance of the knowledge model, based on the carbon potential relevant theory, we build the mechanics model. We build the knowledge model using the proposed COSVR, and the model has higher precision. The COSVR modeling approach builds an important foundation for the practical application of amendment model.
     5. C-weighted On-line Support Vector Regression Based Knowledge Discovery System for Hot Working (COSVRKDSHW) is designed and developed. The software system includes all functions needed by on-line support vector regression and c-weighted on-line support vector regression modeling method and integrates some auxiliary functions.
引文
[01]孙大涌,屈贤明,张松滨,先进制造技术,北京,机械工业出版社,2000
    [02]宋天虎,李敏贤,先进制造技术的发展与焊接技术的未来,北京,机械工业出版社,第八届全国焊接会议论文集,1997(1),17-27
    [03]房贵如,材料热加工工艺模拟研究的现状与发展趋势,机械工艺师,1999,3/4:26-29
    [04]杜祥瑛,现代高技术在金属热加工中的应用,中国机械工程,1994,5(5),5-7
    [05]潘际銮.二十一世纪焊接科学研究的展望.北京:机械工业出版社,第九次全国焊接会议论文集.1999, (1),D-001-D-017出版社,第八届全国焊接会议论文集.1999(1),17-27
    [06]陈善本,林涛,智能化焊接机器人技术,机械工业出版社,2004
    [07]樊东黎,中国热处理的过去、现状和未来,热处理,2004, (03),3-13
    [08]潘健生,李晓玲,张伟民,中国热处理和表面工程的现状与展望(英文),金属热处理, 2005,(01),1-8
    [09]潘健生,张伟明.,陈乃录,胡明娟,热处理信息化若干问题的思考,金属热处理, 2004,29(1),13-16
    [10]蔡自兴,徐光祐,人工智能及其应用,清华大学出版社,2003
    [11] Mitchell T M, Machine learning, New York,McGraw-Hill, 1997
    [12] U. M.Fayyad, G. Piatesky-Shapiro, P. Smyth, and R. Uthurusamy Eds. Advances in knowledge Discovery and Data Mining. AAAI/MIT Press,1996
    [13]方崇智,萧德云,过程辨识,北京,清华大学出版社,1988
    [14]李少远,席裕庚,陈增强,袁著祉,智能控制的新进展(I),控制与决策,2000,15(1),1-5
    [15]秦勇,贾利民,张锡第,吴连伟,多变量模糊系统建模与控制理论,计算机仿真,1999,16(3),15-18
    [16]张金明,李人厚,模糊控制的系统化设计和稳定性分析,自动化学报,1999,25(4),493-497
    [17]李少远,王群仙,李焕芝,陈增强,袁著祉,Sugeno模糊模型的辨识与控制,自动化学报,1999,25(4),487-492
    [18]王宏伟,马广富,王子才,模糊辨识理论与应用研究,系统仿真学报,2000,12(2),87-90
    [19]孙增圻等,智能控制理论与技术,北京,清华大学出版社,1997
    [20]李少远,席裕庚,陈增强,袁著祉,智能控制的新进展(II),控制与决策,2000,15(2),136-140
    [21]李士勇,模糊控制、神经控制和智能控制论(第二版),哈尔滨,哈尔滨工业大学出版社,1998
    [22] Pawlak Z., Rough sets, International Journal of Computer and Information Science, 1982, 11 (5), 341-356
    [23]王兵,基于粗糙集理论的知识建模方法与焊接动态过程知识模型的研究, [学位论文],上海,上海交通大学, 2003
    [24]王士同,模糊系统、模糊神经网络及应用程序设计,上海,上海科学技术文献出版社,1998
    [25]孙增圻,模糊神经网络及其在系统建模与控制中的应用,南京化工大学学报,2000,22(4),1-6
    [26] Zadeh L. A., Outline of a new approach to the analysis of complex systems and decision processes, IEEE Transaction on Systems, Man and Cybernetics, 1973, 3(1), 28-44
    [27] Mahmoud WH, Abdelrahman M, Haggard RL.Field programmable gate arrays implementation of automated sensor self-validation system for cupola furnaces. Computers & Industrial Engineering, 2004. 46 (3), 553-569
    [28] Liang WZ, Zhang L, Ma XL, et al.Quality assurance expert system for car cylinder casting. Transactions of Nonferrous Metals Society of China, 2001, 11 (6): 912-915
    [29] Ravi R, Prasad YVRK, Sarma VVS.Development of expert systems for the design of a hot-forging process based on material workability. Journal of Materials Engineering and Performance, 2003. 12 (6), 646-652
    [30] Kovacevic R. and Zhang Y. M., On-line measurement of weld fusion state using weld pool image and neurofuzzy model, IEEE International Symposium on Intelligent Control - Proceedings, 1996, 307-312
    [31]王伟,朱六妹,焊接电弧电压模糊模型的相关辨识,电工技术学报,1998,13(1),59-63
    [32]李文,孙辉,陈字刚,模糊系统辨识方法在GTAW焊过程建模中的应用,控制理论与应用,1998,20(6),111-114
    [33]娄亚军,基于图像传感的脉冲GTAW熔池动态过程的智能控制方法研究,[博士学位论文],哈尔滨,哈尔滨工业大学,1999
    [34] Kim KC, Maev RG.Neural network analysis for evaluating welding process. Key Engineering Materials, 2004. 270-273, 2357-2364
    [35] Luo H, Zeng H, Hu LJ, et al.Application of artificial neural network in laser welding defect diagnosis. Journal of Materials Processing Technology, 2005. 170 (1-2), 403-411
    [36] Casalino G, Minutolo FMC.A model for evaluation of laser welding efficiency and quality using an artificial neural network and fuzzy logic. Proceedings of the Institution of Mechanical Engineers, Part B: "Journal of Engineering Manufacture"., 2004. 218 (6), 641-646
    [37] Hascoet JY, Legoff.Optimization of welding process with neural networks. Mecanique Industrielle et Materiaux, 1998. 51 (3): 121-126
    [38] Tarng YS, Tsai HL, Yeh SS.Modeling, optimization and classification of weld quality in tungsten inert gas welding. International Journal of Machine Tools and Manufacture, 1999.39 (9), 1427-1438
    [39] Andersen, K., et al., Artificial neural networks applied to arc welding process modelingand control. IEEE Transactions on Industry Applications, 1990. 26(5), 824-830
    [40] Andersen K., Cook G. E., Karsai G. and Ramaswamy K., Artificial neural networks applied to arc welding process modeling and control, IEEE Transactions on Industry Applications, 1990, 26(5), 824-830
    [41] Cook G. E., Barnett R. J., Andersen K. and Strauss A. M., Weld modeling and control using artificial neural networks, IEEE Transactions on Industry Applications, 1995, 31(6), 1484-1491
    [42] Chan B., Pacey J. and Bibby M., Modelling gas metal arc weld geometry using artificial neural network techno, Canadian Metallurgical Quarterly, 1999, 38(1), 43-51
    [43] Kim I. S. etc., A study on prediction of bead height in robotic arc welding using a neural network, Journal of Materials Processing Technology, 2002, 130-131, 229-234
    [44] Nagesh D. S. and Datta G. L., Prediction of weld bead geometry and penetration in shielded metal-arc welding using artificial neural networks, Journal of Materials Processing Technology, 2002, 123(2), 303-312
    [45] Jin B. Z., Liu W. H. and Ohshima K. J., Control of weld pool width and cooling rate in circumferential GTA welding of pipe by using neural network model, International IEEE/IAS Conference on Industrial Automation and Control: Emerging Technologies, Proceedings, 1995, 41-46
    [46] Ohshima K. J. et al., Sensor fusion using neural network in the robotic welding, Conference Record - IAS Annual Meeting (IEEE Industry Applications Society), 1995, 1764-1769
    [47] Li Di, Srikanthan T., Chandel R. S. and Katsunori I., Neural-network-based self-organized fuzzy logic control for arc welding, Engineering Applications of Artificial Intelligence, 2001, 14, 115-124
    [48] Li P., Fang M. T. C. and Lucas J., Modelling of submerged arc weld beads using self-adaptive offset neutral networks, Journal of Materials Processing Technology, 1997, 71(2), 288-298
    [49] Lin R. H. and Fischer G. W., An on-line arc welding quality monitor and process control system, International IEEE/IAS Conference on Industrial Automation and Control: Emerging Technologies, Proceedings, 1995, 22-29
    [50] Santos CA, Fortaleza EL, Ferreira CRF, et al.A solidification heat transfer model and a neural network based algorithm applied to the continuous casting of steel billets and blooms. Modelling and Simulation in Materials Science and Engineering, 2005. 13 (7), 1071-1087
    [51] Wang XD, Yao M, Chen XF.Application of BP neural network for the abnormity monitoring in slab continuous casting. Lecture Notes in Computer Science, 2004. 3174, 601-606
    [52] Krimpenis A, Benardos PG, Vosniakos GC, et al.Simulation-based selection of optimum pressure die-casting process parameters using neural nets and genetic algorithms. International Journal of Advanced Manufacturing Technology, 2006. 27 (5-6), 509-517
    [53] Srivastava S, Srivastava K, Sharma RS, et al.Modelling of hot closed die forging of an automotive piston with ANN for intelligent manufacturing. Journal of Scientific & Industrial Research, 2004.63 (12), 997-1005
    [54] Hsiang SH, Ho HL.Application of finite element method and artificial neural network to the die design of radial forging processes. International Journal of Advanced Manufacturing Technology, 2004,24 (9-10), 700-707
    [55]黄石生,李迪,宋永伦,焊接过程的神经网络建模及控制研究,机械工程学报,1994,30(3),24-30
    [56] Chen S. B., Wu L. and Wang Q. L., Self-learning fuzzy neural networks for control of the arc welding process, IEEE International Conference on Neural Networks - Conference Proceedings, 1996, 1209-1214
    [57]陈善本,吴林,张铨,张福恩,具有时滞的不确性系统神经网络模糊自学习控制,控制理论与应用,1996,13(3),347-355
    [58] Chen S. B., Lou Y. J., Wu L. and Zhao D. B., Intelligent methodology for sensing, modeling and control of pulsed GTAW: Part 1-bead-on-plate welding, Welding Journal, 2000, 79(6), 151s-163s
    [59] Chen S. B., Zhao D. B., Wu L. and Lou Y. J., Intelligent methodology for sensing, modeling and control of pulsed GTAW: Part 2-butt joint welding, Welding Journal, 2000, 79(6), 164s-174s
    [60] Zhao D. B., Chen S.B., Wu L., Dai M. and Chen Q., Intelligent control for the shape of the weld pool in pulsed GTAW with filler metal, Welding Journal, 2001, 80(11), 253s-260s
    [61] Zhang G. J., Chen S. B. and Liu X. D., Predicting the backside width of weld pool during pulsed GTAW process based on a neural network mode, Proceedings of SPIE - The International Society for Optical Engineering, 2001, 4565, 131-137
    [62]张勇,陈善本,邱涛,吴林,赵冬斌,焊接柔性加工单元中熔池的实时控制,焊接学报,2002,23(4),1-5
    [63] Liu Z. H., Wang Q. L. and Zhang B., Process control based on double-side image sensing of the keyhole in VPPA welding, Journal of Materials Processing Technology, 2001, 115(3), 373-379
    [64] Tarng Y. S., Wu J. L., Yen S. S. and Juang S. C., Intelligent modeling and optimization of the gas tungsten arc welding, Journal of Intelligent Manufacturing, 1999, 10, 73-79
    [65] Juang S. C., Tarng Y. S. and Lii H. R., A comparison between the back-propagation and counter-propagation networks in the modeling of the GTAW welding process, Journal of Materials Processing Technology Journal of Materials Processing Technology, 1998, 75, 54-62
    [66]李文,孙辉,陈善本,一种建立模糊模型的粗糙集方法,控制理论与应用, 2001, 18 (001), 69-75
    [67]王兵,林涛,漏焊智能检测系统中的知识获取,焊接学报, 2001, 22 (003), 29-32
    [68] Wang B., Chen S. B., Lin T., Rough set based knowledge acquiring method in intelligent detecting system for lack of weld, Proceedings of the 4th World Congress on Intelligent Control and Automation, 2002, 4, 2887- 2891
    [69] Wang B., Chen S. B., Wang J. J., Rough set based knowledge modeling for the aluminum alloy pulsed gtaw process, The International Journal of Advanced Manufacturing Technology, 2005, 25 (9), 902-908
    [70]黎文航,基于变精度粗糙集理论的焊接动态过程知识建模方法研究, [学位论文],上海,上海交通大学, 2007
    [71]朱国光,焊接过程粗糙集建模中离散化方法的研究, [学位论文],上海,上海交通大学, 2003
    [72]张淑荣,焊接过程粗糙集建模中推理方法的研究, [学位论文],上海,上海交通大学, 2004
    [73]郑虹,杨鸿雁, Rough知识发现在焊接领域中的应用,鞍山师范学院学报, 2006, 8 (4), 66-67
    [74] Platt, J., Fast training of support vector machines using sequential minimal optimization. In B. Scholkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods - Support Vector Learning. 1998.
    [75] Platt, J., Using sparseness and analytic QP to speed training of support vector machines. In M. S. Kearns, S. A. Solla, and D. A. Cohn, editors, Advances in Neural Information Processing Systems 11. 1999.
    [76] Flake GW, L.S., Efficient SVM regression training with SMO. Machine Learning, 2002. 46 (1-3),271-290
    [77] I.W. Tsang, A. Kocsor, J.T. Kwok. Large-scale maximum margin discriminant analysis using core vector machines. IEEE Transactions on Neural Networks, 2008. 19(4),610-624
    [78] I.W. Tsang, J.T. Kwok, J.M. Zurada. Generalized core vector machines. IEEE Transactions on Neural Networks, 2006.17(5),1126-1140
    [79] I.W. Tsang, J.T. Kwok, P.-M. Cheung. Core vector machines: Fast SVM training on very large data sets. Journal of Machine Learning Research, 2005. 6(4),363-392
    [80] I.W. Tsang, A. Kocsor, J.T. Kwok. Simpler core vector machines with enclosing balls. Proceedings of the Twenty-Fourth International Conference on Machine Learning (ICML), 2007, 911-918, Corvallis, Oregon, USA
    [81] Suykens J A K, Branbanter J K, Lukas L, et al. Weighted least squares support vector machines: robustness and spare approximation. Neurocomputing, 2002, 48(1),85-105.
    [82] Sch?lkoph B, Smola A J, Bartlett P L. New support vector algorithms. Neural Computation, 2000, 12,1207-1245.
    [83] Keoman V, Hadzic I. Support vectors selection by linear programming. Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks[J. Como, Italy, 2000, 5,193-198.
    [84] S Alllari,S Wu. Improving support vector machine classifiers by modifying kernel function . Neura1 Letters,1999,20,1183-1190
    [85]黄伸亮,图像特征提取及基于内容数据库检索理论和研究,博士论文,大连理工大学,2002
    [86] An, Wen-Sen,Sun Yan-Guang.An infonnation-geometrical approach to kemel construction in SVM and its app1ication insoft-sensor modeling. International Conferenceon Machine Learning and Cybemetics (ICMLC),2005,4356-4359
    [87] Howleyl Tom,Madden Michael G.The genetic kernel support vector machine: Description and evaluation. Artificial intelligence Review,2005,24(3-4),379-395
    [88] Smits G.F. , Jordan E.M..Improved SVM regression using mixture of kernels.Proceedings of the Intemationa1 Joint Conference on Neural Networks,2002, 3, 2785-2790
    [89] Lu Yang,Wang Hai-Yan, Tian Na. A support vector machine with a hybrid kernel and its application in underwater target recognition. Technical Acoustics,2005,24(3),144-147
    [90] Debnath Rameswar, Takahashi Haruhisa. Kernel selection for the support vector machine. IEICETransactions on lnformation and systems , 2004 ,E87-D(12),2903-2904
    [91] Ikeda Kazushi.Effects of kernel function on Nu support vector machines in extreme cases. IEEETransactions on Neura1Networks,2006,17(1),1-9
    [92] Rojas Sergio A.,Fernandez-Reyes Delmiro. Adapting multiple kernel parameters for support vector machines using genetic algorithms. IEEE Congress on Evolutionary Computation,2005,626-631
    [93]董春曦,饶鲜,杨绍全,徐松涛,支持向量机参数选择方法研究,系统工程与电子技术,2004,26(8),1117-1120
    [94]李峰,刘国彦,章登勇,朱峰,基于ICA和SVM的虹膜识别方法,小型微型计算机系统,2005,26(l2),2203-2206
    [95] Widjaja Effendi,zheng lei,Zhiwei Huang. Classification of ENT tissue using near-infrared Raman spectroscopy and support vector machines. Progress inBiomedical Optics and imaging-Proceedings of SPIE , Diagnostic Optical Spectroscopy in Biomedicine III,2005,5862,1-6
    [96] Cao L.J.,Chua KS,Chong W.K,Lee H.P.,Gu Q. A comparison of PCA,KPCA and ICA for dimensionaIity reduction in support vector machine. Neurocomputing, 2003,55(1-2),321-336
    [97]燕忠,袁春伟,基于蚂蚁智能和支持向量机的人脸性别分类方法,电子与信息学报,2004,26(8),1177-1182
    [98] Kim Dong Seong, Nguyen Ha-Nam,ohn Syng-Yup,Park Jong Sou. Fusions of GA and SVM for anomaly detection in intrusion detection system .Lecture Notes in Computer sciene , Advances in Neural Networks: Second International Symposium on Neura1 Networks,2005,3498(3),415-420
    [99] Chen Rong chang,Chen Jeanne,Chen Tungshou,Hsieh Chunhung,Chen Teyu,Wu Kaiyang. Building an international detection system based on support vector machine and genetic algorithm. Lecture Notes in Computer science,Advances inNeura1Networks:Second international symposium on Neura1 Networks,2005,3498(3),409-414
    [100] Li Ye,CaiYun-Ze,Li Yuan-Gui,Xu Xiao-Ming. Rough sets method for SVM data preprocessing. IEEE Conference on Cybernetics and Intelligent systems,2004,1038-1041
    [101] SuraJ,Z.,Peters,J.F.,Rzasa.W. , A comparison of different decision algorithms used in volumetric storm cells classification. Fundamenta lnformaticae,2002,51(1-2),201-214
    [102]王俊卿,黄莎白,史泽林,基于复数小波能量特征和支持向量机的图像匹配算法,中国图象图形学报,2004,19(9), l075-1079
    [103]王国锋,刘岩,李言俊,基于支持向量机的曲线重建方法,西北工业大学学报,204,22(1),33-36
    [104] An jinlong, Wang Zheng-Qu,Yang QingXin,Ma ZhenPing. A SVM function approximation approach with good performances interpolation and extrapolation. International Conference on Machine Learning and Cybermetics (ICMLC),2005,164 8-1653
    [105] Chuang Chen-Chia, Sushun-Feng,Jeng Jin-Tsong,Hsiao Chi-Ching. Robust support vector regression networks for function approximation with outliers. IEEE transactions on Neura1Networks,2002,13(6),1322-1330
    [106] De Kruif Bas J.,De Vries Theo J. A. Com parison of four support-vector based function approximators. IEEE Internationa1Conference on Neura Networks,2004,1,549-554
    [107] Lazaro Mareelino , Santamaria Ignacio,Perez一Cruz Ferm and ,Artes-Rodriguez Antonio. Support Vector Regression for the simu1taneous learning of a multivariate function and its derivatives. Neurocomputing,2005,69(1-3),42-61
    [108]奉国和,朱思铭,改进SVM及其在时间序列数据预测中的应用,华南理工大学学报(自然科学版),2005,33(5),19-22
    [109] Kim Kyoung-Jae. Financial time series forecasting using support vector machines.Neuro computing, 2003,55(1-2),307-319
    [110] Lendasse Amaury, WertzVincent,Simon Geoffroy,Verleysen Michel.Fast bootstrap applied to LS-SVM for long term prediction of time series. IEEE intemational Coference on Neura1Networks,2004,1,705-710
    [111] Karras D.A.,Mertzios B.G.TimesSeries modeling of endocardial border motion in ultrasonic images comparing support vector machine, multiplayer perceptrons and linear estimation techniques. Measurement: Journal of the International Measurement Confederation, Imaging Measurement systems,204,36(3-4),331-345
    [112]张平康,王蒙,赵登福,张讲社,基于支撑向量机的电力系统峰负荷预测,西安交通大学学报,2005,39(4),398-401
    [113] Fan Shu, Chen Luonan. Short-term load forecasting based on an adaptive bybrid method. IEEE Transactions on Power Systems,2006,21(1),392-401
    [114] Liu Zunxiong,Zhong Hualan. Zhang DeYun.Jouna1 of Xi’an JiaotoTong University,2005 ,39(6 ), 620-623
    [115]陈春雨,林茂六,张品,基于支持向量机的信号滤波研究,西安交通大学学报,2006 , 40 (4),429-431
    [116] Hill Simon l.,Wolfe Patrick J.,Rayner Peter J. W..Nonlinear perceptual laudio filtering using support vector machines. IEEE Workshop on Statistical signa1 Processsing Proceedings , 2001,488-491
    [117] Cheng Hui,Yu QiuuZe,Tian Jinwen, Liu jian. Image denoising using wavelet and support vector regression. Proceedings-Third international Conference on image and Graphics, 2004,43-46
    [118]习宇缨,李清华,统计学习理论和支持向量机,沈阳大学学报,2005,17(4),42-46
    [119] Vapnik, V., The Nature of Statistical Learning Theory, 1995, New York, USA: Springer
    [120] Vapnik, V., Statistical learning theory, 1998, New York, Wiley
    [121] R. Courant, D.H., Methods of Mathematical Physics,1953, New York, Wiley
    [122]丁海山,毛剑琴,模糊系统逼近理论的发展现状,系统仿真学报, 2006. 18(8),2061-2066
    [123] WANG Li-xin, MENDEL J M. Generating fuzzy rules by learning from examples. IEEE Trans on Systems, Man, and Cybernetics,1992,22(6),1414-1427
    [124] Wang L X.Fuzzy systems are universal approximators, Proceedings of the IEEE International Conference On Fuzzy Systems, New York, NY, USA, IEEE, 1992, 1163-1170
    [125] Wang L X, Mendel J M.Back-propagation fuzzy system as nonlinear dynamic system identifiers, Proceedings of the IEEE International Conference On Fuzzy Systems.New York,NY,USA:IEEE,1992,1409-1418
    [126] Wang Li-Xin, Mendel J.M., Fuzzy Basis Function, Universal Approximation, and Orthogonal Least-Squares Learning. IEEE Transactions on Neural Networks, 1992. 3(5), 807-814
    [127] Lin C.-J., Lin C.-T., An ART-based fuzzy adaptive learning control network. IEEE Transactions on Fuzzy Systems, 1997. 5(11), 477-496
    [128] Chiu S.Fuzzy model identification based on cluster estimation, Journal of Intelligent and Fuzzy Systems (S1064-1246).1994,2(3):267-278
    [129] Wang L X.Universal approximation by hierarchical fuzzy systems, Fuzzy Sets and Systems (S0165-0114).1998,93(2):223-230
    [130] Wang L X.Analysis and design of hierarchical fuzzy systems, IEEE Transactions on Fuzzy Systems, 1999,7(5):617-624
    [131] Chen W,Wang L X.A note on universal approximation by hierarchical fuzzy systems, Information Sciences, 2000,123 (3-4):241-248
    [132] Abe S., Lan M.S., A method for fuzzy rules extraction directly from numerical data and its application to pattern classification. IEEE Transactions on Fuzzy Systems, 1995. 3(2), 353-361
    [133] Takagi T., M.Sugeno, Fuzzy identification of systems and its applications to modeling and control. IEEE Transaction on Systems, Man and Cybernetics, 1985. 1(1), 116-132
    [134] Lee, C.-C., Fuzzy logical in control systems: Fuzzy logic controller, part I. IEEE Transaction on Systems, Man and Cybernetics, 1990. 20(3/4), 404-418
    [135] Keller J. M., Krishnapuram R., Rhee F. C.-H., Evidence aggregation networks for fuzzy logic inference. IEEE Transaction. Neural Networks, 1992. 3(9), 761-769
    [136] Mendel, J.M., Fuzzy logic systems for engineering: A tutorial. Proc. IEEE, 1995. 83 (3), 345-377
    [137] Pedrycz W., Reformat M., Rule based modeling of nonlinear relationships. IEEE Transactions on Fuzzy Systems, 1997. 5(5), 256-269
    [138] Takagi H., Hayashi I., NN-driven fuzzy reasoning. International Journal of Approximate Reasoning, 1991. 5(3), 191-212
    [139] Nie J., Linkens D.A., Learning control using fuzzified self-organizing radial basis function network. IEEE Transactions on Fuzzy Systems, 1993. 1(8), 280-287
    [140] Jang, J.-S.R., ANFIS: Adaptive-network-based fuzzy inference system. IEEE Transaction on Systems, Man and Cybernetics, 1993. 23(5/6), 665-685
    [141] Dickerson J. A., Kosko B., Fuzzy function approximation with ellipsoidal rules. IEEE Transaction on Systems, Man and Cybernetics, 1996. 26(8), 542-560
    [142] Juang C.-F., Lin C.-T., An on-line self-constructing neural fuzzy inference network and its applications. IEEE Transactions on Fuzzy Systems, 1998. 6(2), 12-32
    [143] Lin C.-T., Lee C.-S.G., Neural-network-based fuzzy logic control and decision system. IEEE Transactions on Computers, 1991. 40(12), 1320-1336
    [144] Liu Z.-Q., Yan F., Fuzzy neural network in case-based diagnostic system. IEEE Transactions on Fuzzy Systems, 1997. 5, 209-222
    [145] Mouzouris G. C., Mendel J.M., A single-value-QR decomposition based method for training fuzzy logic systems in uncertain environments. Journal of Intelligent and Fuzzy Systems, 1997. 55, 367-374
    [146] Sun, C.-T., Rule base structure identification in an adaptive network based fuzzy inference system. IEEE Transactions on Fuzzy Systems, 1994. 2 (4), 64-73
    [147] Chiang Jung-Hsien, Hao P.-Y., Support Vector Learning Mechanism for Fuzzy Rule-Based Modeling: A new Approach. IEEE Transactions on Fuzzy Systems, 2004. 12(1), 1-12
    [148] Mackey M. C., Glass L., Oscillation and chaos in physiological control systems. Science, 1977. 197(7), 287-289
    [149] Smola A.J., Scholkopf B., A tutorial on support vector regression. Statistics and Computing, 2004. 14(3), 199-222
    [150] Syed N. A., Liu H. and Sung K.K. Incremental Learning With Support Vector Machines, in: Proceeding of International Joint Conference on Artificial Intelligence.1999
    [151] Csato L., and Opper M. Sparse Representation for Gaussian Process Models, in:T. K. Leen, T. G. Dietterich, and V. Tresp, ed., Advances in Neural Information Processing Systems 13. 2001. Cambridge, MA, MIT Press, 444-450
    [152] Gentile C. A New Approximate Maximal Margin Classification Algorithm, Journal of Machine Learning Research,2001. 2, 213-242
    [153] Graepel T. Herbrich R. and Williamson R. C. From Margin To Sparsity, in: T.K. Leen, T. G. Dietterich, and V. Tresp, ed., Advances in Neural Information Processing Systems 13. 2001. Cambridge, MA, MIT Press, 210-216
    [154] Herbster M.Learning Additive Models Online with Fast Evaluating Kernels, in:Proceedings of 14th Annual Conference on Computational Learning Theory (COLT).2001. Springer, 444-460
    [155] Kivinen J.,Smola A. J., and Willianmson R. C. Online Learning With Kernels,in: T. G. Dietterich, S. Becker, and Z. Ghahramani, ed., Advances in Neural Information Processing Systems 14.2002. Cambridge, MA, MIT Press
    [156] Ralaivola L., and d'Alche-Buc F. Incremental Support Vector Machine Learning:a Local Approach, in: Proceedings of International Conference on Artificial Neural Networks. 2001. Vienna, Austria
    [157] Ma JS, T.J., Perkins S, Accurate on-line support vector regression. Neural Computation, 2003. 15(11), 2683-2703
    [158] Martin M. On-line Support Vector Machines for Function Approximation,Technical Report LSI-02-11-R, Software Department, Universitat Polit ecnica de Catalunya.2002.Spain
    [159] Cauwenberghs, G., and T. Poggio (2001). Incremental and Decremental Support Vector Machine Learning, in: T. K. Leen, T. G. Dietterich, and V. Tresp, ed., Advances in Neural Information Processing Systems 13, Cambridge, MA, MIT Press, 409-415
    [160] Tay F E H, Cao L J. e -Descending support vector machines for financial time series forecasting, Neural Processing Letters, 2002, 15(2): 179-195
    [161] Tay F E H, Cao L J. Modified support vector machines in financial time series forecasting, Neurocomputing, 2002, 48: 847-861
    [162] Lin C-F, Wang S-D. Fuzzy support vector machines, IEEE Transaction on Neural Networks, 2002, 13(2): 464-471
    [163]王建军,铝合金脉冲GTAW焊熔池动态特征的视觉信息获取与自适应控制,[学位论文],上海交通大学, 2003
    [164]樊重建,王建军,陈善本,铝合金GTAW熔池被动视觉传感,上海交通大学学报(英文版)(已录用)
    [165]方崇智,萧德云,过程辨识,北京:清华大学出版社,1988
    [166] Widrow B,Walach E著.刘树棠,韩崇昭译.自适应逆控制.西安:西安交通大学出版社,2000
    [167] HUNT K J, SBARBARO D. Neural networks for nonlinear internal model control. IEE Proc-D,1991,138(5):431-438
    [168] F.J., H., Thermodynamic Aspects of Gas-Metal Heat Treating Reactions. Metallurgical Transaction A, 1978. 9A(11), 1507-1513
    [169] R.Hoffmann,氧探头的原理与实践.热处理技术与装备, 1980(2), 28-37.
    [170] R.collin, Influence of reaction rate on gas carburizing of steel in a CO-H2-CO2-H2O-CH4-N2 atmosphere. JISI, 1972 (10):777~784
    [171]杨世璇,吴光英,滴注式可控气氛热处理. 1991,北京,机械工业出版社. 150-154
    [172] R.Hoffmann., Theorie und Praxis der Sauerstoffsonde. HTM, 1979. 34(3), 130-137
    [173]胡明娟,潘健生编著,钢铁化学热处理原理. 1996,上海,上海交通大学出版社,1-18
    [174] M.J. Bannister, Control of Carbon Potential Using an Oxygen Sensor. Industrial Heating, 1984(4), 24-26
    [175]张伟民,潘健生.可控气氛热处理中的碳势测量方法.热处理,1992,(03), 23-26
    [176]黄细霞,潘健生,钱初钧,石繁槐,陈善本,基于权重支持向量回归在线学习的热处理知识获取系统(COSVRKDSHT),中国,软件著作权,软著登字第076616号,登记号:2007SR10621
    [177]梁海林,密封箱式多用炉炉气成分分析与碳势控制,[学位论文],上海交通大学, 2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700