基于溃坝数值模拟的海河流域环境风险分析理论与技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海河流域大部分水库标准低、质量差,病险情况严重,一旦失事,产生的洪水波必将对下游的人民生命财产造成灾难性破坏。目前,溃坝数值模拟的研究多集中于一、二维,三维模型较少,并且未考虑下游研究区域复杂下垫面的影响。在溃坝环境风险分析方面,主要是关于生命损失、经济损失及社会与环境影响等单方面的研究,直到近年来溃坝综合风险分析才逐渐成为学者的研究热点。因此,开展复杂下垫面情况下的三维溃坝洪水演进数值模拟,研究基于数值模拟的海河流域环境风险分析具有重要的理论与现实意义。
     在国内外研究的基础上,本文建立了耦合VOF法的三维非稳态水气两相流k ?ε模型,VOF法能够精确模拟溃坝水流强烈变化的自由表面,同时边界条件考虑了具有复杂的下垫面的下游城市建筑群的作用。基于溃坝数值模拟提取的关键水情信息,首先提出了基于属性测度的溃坝后果综合评价方法,它包括影响因素、评语集、评价标准、因素权重、属性测度函数五个部分,其中属性测度函数是最核心的部分,它将各影响因素的取值转化为属性测度,采用主客观权重结合的组合权重计算影响因素的综合属性测度,并根据置信度准则进行综合风险识别。其次,采用TOPSIS法对群坝进行了综合风险排序,通过引入模糊数学综合评价中广泛应用的TOPSIS法,从最优理想解和最劣理想解两方面进行群坝风险排序。
     结合海河流域病险水库,选取东武仕水库、临城水库、友谊水库、云州水库、庙工水库等五座典型病险大(2)型水库进行了耦合VOF法的溃坝洪水演进数值模拟、溃坝后果综合评价及TOPSIS群坝综合风险排序,结果表明:
     (1)东武仕水库五种溃决方式下,随着溃口逐渐增大,洪水淹没时间逐渐减小;水深和流速逐渐增大;溃坝严重程度增大。
     (2)东武仕水库五种溃决方式下溃坝后果综合评价等级均为特别重大事故。
     (3)采用TOPSIS法对五座典型病险大(2)型水库的综合风险排序按病险程度从大到小依次为:东武仕水库、临城水库、庙工水库、云州水库、友谊水库。
The most reservoirs in Haihe basin are of low standard, bad quality and serious condition. The people’s life and property of downstream will be seriously damaged once accident takes place. Most of the studies were concentrated on one and two dimensional model in dam-break numerical simulation. Three-dimensional models from publication of literatures didn’t consider the influence of the complex underlying surface in the downstream. The dam-break environment risk analysis was mainly concerning single influence factor, for example, life loss, economic loss, social and environmental influence. The research hotspot focused on the comprehensive risk analysis in recent years. Therefore environment risk anlysis of Haihe basin based on three-dimensional dam-break flood evolution numerical simulation is of important theoretical and realistic meaning, considering complex underlying surface.
     Based on studies at home and abroad, the three-dimension standard k ?εmodel of water-air two-phase flow coupled with Volume of Fluid (VOF) method was built. The strong-changing free surface of dam-break flood was simulated by VOF method and the influence of urban buildings of complex underlying surface on dam-break flood was considered in the condition of the boundary. Firstly, based on the flood information of dam-break numerical simulation, the attribute measure model of dam-break comprehensive evaluation was proposed, which contained influence factor, comment set, evaluation standard, factor weight, and attribute measure function. The attribute measure function was the most key part. The value of every influence factor was transformed to attribute measure and the comprehensive attribute measure was obtained by the sum of each attribute measure square combination, which was the combination of subjective weight and objective weight. According to the comprehensive attribute measure and the confidence criterion, the comprehensive risk degree could be identified. Secondly, the group-dam comprehensive risk sequence was gotten by the TOPSIS method. The group-dam risk was sequenced from the positive and negative ideal solutions.
     Combined with the dangerous reservoirs in the Haihe basin, dam-break flood evalution was simulated, the comprehensive evaluation of dam-break was obtained and the group-dam comprehensive risk was sorted by TOPSIS method. The typical dangerous reservoirs of type large II were chosen to illustrate the methods above, for example, Dongwushi reservoir, Lincheng reservoir, Youyi reservoir, Yunzhou reservoir and Miaogong reservoir. The results show as follows:
     (1) With the dam breach growing, time of flood submergence becomes shorter, depth and speed of water becomes larger and the dam-break severity increases in the five outburst forms of Dongwushi reservoir.
     (2) The comprehensive evaluation degrees for the five outburst forms of Dongwushi reservoir are extraordinarily serious.
     (3) According to the degree of harmfulness, the sequence of five typical dangerous reservoirs of type large II by the TOPSIS method in turn is the Dongwushi reservoir, Lincheng reservoir, Miaogong reservoir, Yunzhou reservoir, Youyi reservoir.
引文
[1] Christopher Zoppou, Stephen Roberts. Numerical solution of the two-dimensional unsteady dam break[D]. Applied Mathematical Modeling, 2000, 24(7): 457-475.
    [2] Guido Gottardi, Maurizio Venutelli. Central schemes for open-channel flow[J]. International Journal for Numerical Methods in Fluids, 2003, 41(8): 841-861.
    [3] Guido Gottardi, Maurizio Venutelli. Central scheme for two-dimensional dam-break flow simulation[J]. Advances in Water Resources, 2004, 27(3): 259-268.
    [4] David A. Ham Julie Pietrazk, Guus S.Stelling. A scalable unstructured grid 3-dimensional finite volume model for the shallow water equations[J]. Ocean Modeling, 2005, 10(2): 153-169.
    [5] Zhengang Wang, David S. Bowles. Three-dimensional non-cohesive earthen dam breach model. Part 1: Theory and methodology[J]. Advances in Water Resources, 2006, 29(10): 1528-1545.
    [6] Zhengang Wang, David S. Bowles. Three-dimensional non-cohesive earthen dam breach model. Part 2: Validation and applications[J]. Advances in Water Resources, 2006, 29(10): 1490-1503.
    [7] Musandji Fuamba, Najib Bouaanani. Modeling of dam break wave propagation in a partially ice-covered channel[J]. Advances in Water Resources, 2007, 30(12): 2499-2510.
    [8] Patricio Bohorquez, Ramon Fernandez-Feria. Transport of suspended sediment under the dam-break flow on an inclined plane bed of arbitrary slope[J]. Hydrological Processes, 2008, 22(14): 2615-2633.
    [9] M. Aliparast. Two-dimensional finite volume method for dam-break flow simulation[J]. International Journal of Sediment Research, 2009, 24(1): 99-107
    [10] Stéphane Vincent, Guillaume Balmigère. Eulerian-Lagrangian multiscale methods for solving scalar equations-Application to incompressible two-phase flows[J]. Journal of Computational Physics, 2010, 229(1): 73-106.
    [11]魏文礼,沈永明,孙广才等.二维溃坝洪水波演进的数值模拟[J].水利学报, 2003(9): 43-47
    [12]史宏达,邱田金.有限体积法在一维平底溃坝问题研究中的应用[J].港工技术, 2005(3): 7-9.
    [13]强娟,汪德. TVD-MUSCL格式模拟二维溃坝波的演进过程[J].吉林水利, 2007(1): 38-40.
    [14]符传君,练继建.溃坝水流在复杂河道中传播的三维数值模拟[J].水利学报, 2007, 38(10): 1511-1517.
    [15]黄金池.堰塞坝漫顶溃口流量变化过程的数值模拟[J].水利学报, 2008, 39(10): 1235-1240.
    [16]张大伟,李丹勋,王兴奎.基于非结构网格的溃坝水流干湿变化过程数值模拟[J].水利发电学报, 2008, 27(5): 98-102.
    [17]姚志坚,高时友.溃坝洪水演进计算中建筑群糙率的模拟[J].人民珠江, 2008(5): 8-9.
    [18]吕彪.基于非结构化网格的具有自由表面水波流动数值模拟研究[D].大连:大连理工大学水利工程学院, 2009.
    [19]曹志先,郑力,钱忠东.溃坝水流三维湍流的试验与数值分析[J].武汉大学学报, 2010, 43(2): 137-142.
    [20]翁磊,程国胜,卢长娜.基于有限体积HWENO格式的二维溃坝流模拟[J].武汉大学学报, 2011, 44(5): 628-632.
    [21]刘庆红,付湘.梯级水库群洪水溃坝模拟[J].中国农村水利水电, 2011(3): 173-177.
    [22] Wayne J. Graham. A procedure for estimating loss of life caused by dam failure[J]. Sedimentation & River Hydraulics, 1999, 6(5): 1-43.
    [23] Aboelata Maqed, Bowles David S, McClelland Duane M. GIS model for estimating dam failure life loss[C]// Risk-Based Decisionmaking in Water Resources X: Proceedings of the Tenth Conference. Santa Barbara, 2003: 126-145.
    [24] Jonkman S. N, Penning-Rowsell E. Human instability in flood flows[J]. Journal of the American Water Resources Association, 2008, 44(5): 1208-1218.
    [25] Sujit Das, Russell Lee. A nontraditional methodology for flood stage-damage calculations[J]. Water Resources Bulletin, 1988, 24(6): 1263-1272.
    [26] N. Vrisou van Eck, M. Kok. Standard method for predicting damage and casualties as a result of floods[R]. The Netherlands Delft: Ministry of Transport, Public Works and Water Management, 2001, 22-41.
    [27] Francisco J. Colomer Mendoza, Antonio Gallardo Izquierdo. Environmental riskindex: A tool to assess the safety of dams for leachate[J]. Journal of Hazardous Materials, 2009, 162(1): 1-9.
    [28] Shaoqing Chen, Brian D. Fath, Bin Chen. Ecological risk assessment of hydropower dam construction based on ecological network analysis[J]. Procedia Environmental Sciences, 2010(2): 725-728.
    [29]王正旭.美国的大坝安全管理[J].水利水电科技进展, 2003, 23(3): 60-64.
    [30] Doug Johnson.美国华盛顿州采用以风险为基础的大坝安全分析方法的十年成功经验[J].大坝与安全, 2001(1): 46-51.
    [31] G赫尔姆, A弗雷泽.风险评估在某大坝管理应用中的一些经验[J].水利水电快报, 1999, 20(4): 13-15.
    [32]匡少涛,李雷.澳大利亚大坝风险评价的法规与实践[J].水利发展研究, 2002, 2(10): 55-58.
    [33]李雷,王仁钟,盛金保.大坝风险评价与风险管理[M].北京:中国水利水电出版社, 2006.
    [34]周克发,李雷,盛金保.我国溃坝生命损失评价模型初步研究[J].安全与环境学报, 2007, 7(3): 145-149.
    [35]王志军,顾冲时,娄一青.基于支持向量机的溃坝生命损失评估模型及应用[J].水力发电, 2008, 34(1): 67-70.
    [36]陈实.哈尔滨市城市上游水库的防洪作用及溃坝影响分析[J].水利科技与经济, 2004, 10(4): 230-236.
    [37]陈朋成,周孝德,冯民权.金盆水库溃坝洪灾损失预测研究[J].水土保持通报, 2008, 28(1): 99-101.
    [38]王仁钟,李雷,盛金保.水库大坝的社会与环境风险标准研究[J].安全与环境学报, 2006, 6(1): 8-11.
    [39]向波,纪昌明,罗庆松.洪水生态环境风险管理浅议[J].广西水利水电, 2007(1): 5-7.
    [40]黄海燕.土坝漫坝与坝体失稳模糊风险分析研究[D].南宁:广西大学土木建筑工程学院, 2003.
    [41]李新华.基于模糊综合理论的水库堤坝风险分析[D].天津:天津大学建筑工程学院, 2006.
    [42]傅琼华,段智芳.群坝风险评估指数排序方法的探讨[J].中国水利水电科学研究院学报, 2006, 4(2): 107-110.
    [43]叶棽.溃坝后果综合评估方法研究[D].南京:河海大学水利水电学院, 2008.
    [44]赵利.基于模糊层次综合模型的溃坝后果评价研究[J].安全与环境学报,2009, 9(2): 176-180.
    [45]孙玮玮,李雷.基于模糊数学理论的大坝风险后果综合评价[J].水利水运工程学报, 2010(4): 16-20.
    [46]邹强,周建中.属性区间识别模型在溃坝后果综合评价中的应用[J].四川大学学报, 2011, 43(2): 45-50.
    [47]王晓玲,段琦琦,佟大威等.长距离无压引水隧洞水气两相流数值模拟[J].水利学报, 2009, 40(5): 596-602.
    [48]谢任之.溃坝水力学[M].济南:山东科学技术出版社, 1993.
    [49]万洪涛.地理信息系统支持下的水文模型建模[D].北京:中国科学院地理科学与资源研究所, 2000.
    [50]陶文铨.数值传热学[M].西安:西安交通大学出版社, 2001.
    [51]王为术,徐维晖,翟肇江等. PISO算法的实现及与SIMPLE, SIMPLER, SIMPLEC算法收敛性的比较[J].华北水利水电学院学报, 2007, 28(4): 33-36.
    [52]周克发.溃坝生命损失分析方法研究[D].南京:南京水利科学研究院大坝安全与管理研究所, 2006.
    [53]吴育华,杜纲.管理科学基础[M].天津:天津大学出版社, 2001.
    [54]罗军刚,解建仓,阮本清.基于熵权的水资源短缺风险模糊综合评价模型及应用[J].水利学报, 2008, 39(9): 1092-1097.
    [55]杨宝臣,陈跃.基于组合赋权TOPSIS模型的项目评标方法研究[J].电子科技大学学报, 2011, 13(1): 50-62.
    [56]程乾生.属性集和属性综合评价系统[J].系统工程理论与时间, 1997, 17(9): 2-9.
    [57]程乾生.属性识别理论模型及应用[J].北京大学学报, 1997, 33(1): 12-19.
    [58]李群,宁利.属性区间识别理论模型研究及应用[J].数学的实践与认识, 2002, 32(1): 50-54.
    [59]刘亮,何建新,高强.基于熵权的TOPSIS模型在城市供水方案优选中的应用[J].水资源与水工程学报, 2010, 21(3): 62-65.
    [60]方崇,张春乐,陆明本.基于熵权的TOPSIS模型在右江灌区节水改造效益综合评价中的应用[J].节水灌溉, 2011(2): 52-54.
    [61] Testa Guido, ZuccalàDavid, Alcrudo Francisco, et al. Flash flood flow experiment in a simplified urban district [J]. Journal of Hydraulic Research, 2007(45): 37- 44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700