时滞系统的辨识与控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
时滞系统的辨识与控制是工业上经常遇到的问题。由于时滞的存在,使得被控量不能及时反映系统所承受的扰动,产生明显的超调,调节时间变长,控制难度加大。尤其是当被控对象包含不稳定环节时,更加难于控制。针对以上情况,本文提出两种方法,对时滞系统进行控制和辨识。
     文章第一部分针对工业控制过程中的时滞不稳定过程,提出改进内模控制(MIMC)设计方法,为避免开环不稳定极点对系统的鲁棒稳定性和抑制扰动能力的影响,对控制器进行了鲁棒稳定性以及抑制扰动能力的分别设计,首先利用反馈方法整定内环的不稳定系统,然后设计前馈反馈控制来抑制被控过程的扰动;最后使用内模控制方法对时滞被控过程进行串级外环控制,以达到对给定值的跟踪。仿真结果表明所提出的控制方法能很好地解决鲁棒稳定性和抑制扰动的均衡,且对于控制系统中过程变化引起的模型失配,可通过调整内模控制器的滤波器时间常数,来提高控制系统的鲁棒性。
     文章第二部分介绍了支持向量机原理,并利用支持向量机(SVM)对函数逼近的能力,采用高斯RBF核函数,进行时滞系统的正,逆辨识。同时将内模控制与支持向量机逆辨识结合,提出支持向量机内模控制(SVM—IMC)。首先由支持向量机逆辨识得到逆辨识模型,根据内模控制器设计原理,将辨识模型作为内模控制器,并根据模型的变化进行调整。同时调节滤波器保持系统稳定。仿真结果表明,基于支持向量机的正,逆模型辨识方法在处理时滞被控对象时,辨识精度高,辨识速度快,而且泛化能力较强;支持向量机内模控制,所需样本少,稳定性好,实现简单,是一种具有重要研究价值的方法。
The problem of identification and control for processes with time-delay is always encountered in industry. Because of the time-delay, the controlled processes can not reflect the disturbance of systems in time, and which brings obvious overshoot. In addition, the adjusting time becomes longer and the difficulty of control becomes larger. This paper proposed two methods to solve this problem.
     Based on modified internal model control (MIMC) scheme, a control strategy which introduce to the inner-loop control named feedforward-feedback control is proposed in the first part of this paper. The separately design method can be used to design the feedforward-feedback controller for disturbance rejection and the MIMC controller for set-point tracking. Furthermore, a method of choosing the inner-loop controller is applied when normalization of time delay is different. Moreover, by tuning the filter time constant, the robustness is improved when model mismatch between process and plant exits. The results of simulations show good disturbance rejection and robustness of the controller.
     The principle of SVM is introduced in the second part of the article, which has performed excellent ability of non-linear function approximation. Thus, the Gauss RBF kernel-based function is applied to identify the positive-model and inverse-model of the processes with time-delay. Combining the IMC with the identification of inverse-model, the internal model controller of SVM (SVM-IMC) is proposed. Firstly, according to the SVM inverse identification, the inverse-model can be acquired. Then using the principle of internal model control, the identification model can be seen as the internal model controller. Moreover, by tuning the filter time constant, the stability of processes can be maintained. Simulation results proved the good performance of SVM which based on positive-model and inverse-model identification, and SVM-IMC in many aspects, including identification precision; identification speed; less dependence on sample, and stronger generalization ability.
引文
[1] Tan Wen, Horacio J. Marquez, Chen Tongwen. IMC design for unstable processes with time delays[J]. Journal of Process Control, 2003, 13: 203-213
    [2] Yongho Lee, Jeongseok Lee, Sunwon Park. PID controller tuning for integrating and unstable processes with time delays[J]. Chemical Engineering Science, 2000, 55: 3481-3493
    [3] Li J C, Jron J C. A new learning controller based on the P-integratorconcept[J]. Fuzzy Sets and System, 1992, 48 (3) : 297-303
    [4] Hagglund T. A predictive PI controller for process with long deadtime[J]. IEEE Control System Magazine, 1992, 12 (1) : 57-60
    [5] 谢元旦,夏淑艳.PID调节器参数的继电自整定方法[J].控制与决策,1993,8(1):77-79
    [6] 陈建勤,陈来九.一种新的PID调节器参数自整定方法[J].控制与决策,1993,8(1):13-18
    [7] 柴天佑,张贵军.基于给定相角裕度和幅值裕度的PID参数自整定新方法[J].自动化学报,1997,23 (2):167-172
    [8] 汪洋,褚键.一种基于递推参数估计的PID参数自整定方法[J].信息与控制,1996,3:182-185
    [9] Astrom K J et al. Towards intelligent PID control[J]. Automatica, 1992, 28 (1) : 1-9
    [10] 刘开培.基于Pade逼近的纯滞后系统增益自适应内模PID控制[J].武汉大学学报,2001,34 (4):93-95
    [11] De Paor A M, O'Malley M. Controllers of Ziegler-Nichols type for unstable process with time delay[J]. Int. J. Control, 1985, 49: 1273-1284.
    [12] 仇俊杰,王文海.典型大时变时滞系统神经网络模糊PID控制及应用[J].化工自动化及仪表,2006,33 (4):30-32
    [13] Smith O J M. Close control of loops with deadtime[J]. Chemical Engineering Progress Trans, 1957, 53 (5) : 217-219
    [14] Palmor Z J. Stability properties of Smith dead time compensator controller[J]. Int. J. Contr, 1980, 32 (6) : 937-949
    [15] Watanabe K. A process-model control for linear system with delay[J]. IEEE. Trans. AC-26, 1981, 6: 1261-1269
    [16] Hang C C. A performance study of control system with dead Time[J]. IEEE. IECI, 1980, 27: 234-241
    [17] Watanabe K, Ishiyama Y. Modified Smith predictor control for multivariable systems with delays and unmeasurable step disturbances[J]. Int. J. Control, 1983, 37: 959-973
    [18] 张卫东,孙优贤.一类Smith预估器及其鲁棒整定[J].自动化学报,1997,23 (5):660-663
    [19] 何杰,英锐男.用于时滞不确定系统的自适应smith预估器[J].江苏理工大学学报,2001,22 (3):75-78
    [20] Dahlin E B. Designing and Tuning Digital Controllers. Instr & Contr Sys, 1968, 41 (7) : 77-83
    [21] 朱学锋.大林算法研究[J].化工自动化仪表,1989,14 (5):23-27
    [22] 杨琳娟,李秋明.大林算法在炉温控制中的应用[J].仪器仪表学报,2005,26(8):450-454
    [23] 钱艳平,李奇.预测PI时滞网络拥塞控制算法设计及性能分析[J].控制理论与应用,2006,23 (2):161-168
    [24] Brdys M A, Diaz-Maiquez J. Application of fuzzy model predictive control to the dissolved oxygen concentration. In: E. F. Camacho, L. Basanez, J. A, dela Puente. 15th IFAC World Congress[C], Barce lona. Spain: Elsevier Scinece LTD. 2002, 1406-1411
    [25] 张军,计秉玉.一类非线性时滞系统的模糊预测控制[J].系统仿真学报,2004,16 (9):2083-2085
    [26] 宗晓萍,冯贺平.基于神经网络的时滞系统预测控制[J].控制理论与应用,2005,24 (12):6-8
    [27] 李战明,李娟.一种有效克服静差的增量式模糊控制器[J].工业仪表与自动化装置,2000,4:3-6
    [28] 刘长良.一种模糊控制算法在主汽温控制系统中的应用[J].上海大学学报,2001,7 (5):388-390
    [29] 宋雪玲.模糊-PID控制在柠檬酸发酵过程中的应用[J].河北科技大学学报,2001,22 (4):34-38
    [30] 倪忠远.自整定PID-Fuzzy控制器在炉温控制中的应用[J].自动化与仪器仪表,1996,5:30-34
    [31] 王建辉.一类纯滞后系统模糊Smith控制策略的研究[J].控制与决策,1998,13 (2):141-145
    [32] 田杰,龚至豪,任雪梅.纯滞后系统的单神经元Smith预测控制[J].计算机仿真,2001,18 (1):40-42
    [33] 尹新权,李华.改进的模糊内模控制在时滞系统中的应用[J].控制理论与应用,2005,24 (8):17-22
    [34] 宋云霞,朱学峰.带积分作用的模糊内模时滞控制器[J].工业仪表与自动化装置,2002,12 (5):8-12
    [35] 王耀南.模糊神经网络在炉温控制中的应用[J].系统工程与电子技术,1997,12:72-77
    [36] 叶其革,吴捷.一种自组织模糊神经网络控制器[J].控制与决策,1998,13 (6):694-699
    [37] 荣雅君.过热汽温模糊神经网络预测控制器的设计[J].中国电机工程学报,2003,23 (1):177-180
    [38] Garcia C E, Morari M. Internal Model Control[J]. 1. A Unifying Review and Some New Result. I&EC Process Des. Dev. 1982, 21 (2) : 308-323
    [39] Richalet J A, et al, Model Predictive Heuristic Control[J]. Applications to an Industrial Process. Automatica, 1978, 14 (5) : 413-428
    [40] Cutler C R, Ramaker L B. Dynamic Matrix Control-a Computer Control Algorithm[C]. In: JACC Proceedings, 1980: WP5-B
    [41] Morari M, Zafiriou E. Robust Process Control[M], Prentice-Hall, 1988
    [42] 赵曜.直流调速系统的2自由度内模控制方法[J].电气传动,1997,27 (1):41-43
    [43] 张井岗.直流电动机调速系统的内模控制[J].电机与控制学报,1998,2 (2):126-128
    [44] Garcia C E, Morari M. Internal Model Control[J]. 2. Design Procedure for Multivariable Systems. I&EC Process Des. Dev. ,1985, 24 (2) : 472. 484
    [45] Econmou C G, Morari M. Internal Model Control[J]. 5. Extension to Nonlinear Systems. I&EC Process Des. Dev, 1986, 25 (2) : 403. 411
    [46] 谭永红,李松.自适应内模控制及其应用[J].自动化仪表,1991,12 (4):8-10
    [47] 张井岗.模糊自适应内模控制.见:第二届全球华人智能控制与智能自动化大会论文集[C],1997:1811-1814
    [48] 刘乐星,余文休.智能自适应内模控制器[C].见:中国智能自动化会议论文集[C],1996:501-505
    [49] 李士勇.模糊控制神经控制和智能控制论[M].哈尔滨:哈尔滨工业大学出版社,1996
    [50] 舒迪前.预测控制系统及应用[M].北京:机械工业出版社,1996
    [51] 赵曜.内模控制发展综述[J].信息与控制,2000,29 (6):526-531
    [52] 王科俊,王克成.神经网络建模、预报与控制[M].北京:科学出版社,1996
    [53] 李人厚.基于模糊进化规划和分层方法的神经网络设计方法[J].信息与控制,2004,33 (4):385-388
    [54] Stephanopoulos G, Huang H P. The 2-port control system[J]. Chemical Engineering Science, 1986, 41 (6), 1611-1630
    [55] H. P. Hung, C. C. Chen, Control-system synthesis for open-loop unstable process with time-delay[J], IEEE Proc. Part D, 1997, 144 (4) : 334-346
    [56] 陈娟,董翠英.基于神经网络的非线性系统复合内模控制[J].哈尔滨理工大学学报,2004,9 (1):17-20
    [57] Hua Jianxing, Ⅺ Yugeng. Design of the zero-offset FIR internal model controller with quadratic constraint on the predictive estima2tion of the control action [J]. Control Theory &Applications, 1999, 16 (4) : 492-495
    [58] Xi Yugeng. Predictive Control [M]. Beijing: National Defence Industry Press, 1993
    [59] Chen Yue, An Xienan, GAO Dongjie. Further research on unified predictive control using internal model structure [J]. Acta Automatica Sinica, 1999, 25 (4) : 441-448
    [60] Datta A, Ochoa J. Adaptive internal model control design and stability analysis [J]. Automatica, 1996, 32 (2) : 261-266
    [61] Datta A, Ochoa J. Adaptive internal model control: H_2 optimization for stable plants [J]. Automatica, 1998, 34 (1) : 75-82
    [62] Datta A, XING L. Adaptive internal model control: H∞ optimization for stable plants [J]. IEEE Trans on Automatic Control[J], 1999, 44 (11) : 2130-2134
    [63] Xing L, Datta A. Decentralized adaptive internal model control for multi-input multi-output systems [C]. Proc of American Control Conference. San Diego: ACCC, 1999: 39-46
    [64] Silva G J, Datta A. Adaptive internal model control: the discrete-time case [J]. Int J of Adaptive Control Signal Process, 2001, 15 (1) : 15-36
    [65] Hu Q, Saha P, Rangaiah G P. Adaptive internal model control of nonlinear processes [J]. Chemical Engineering Science, 1999, 54 (9) : 1205-1220
    [66] Xie W F, Rad A B. Fuzzy adaptive internal model control [J]. IEEE Trans on Industrial Electronics, 2000, 47 (1) : 193-202
    [67] 鲁照权.大时滞二阶过程内模预测控制系统设计[J].南京理工大学学报,2005,29 (3):352-355
    [68] Zhou K, REN Z. A new controller architecture for high performance, robust, and fault-tolerant control [J]. IEEE Trans on Automatic Control, 2001, 46 (10) : 1613-1619.
    [69] Tayebi A, Zaremba M B. Internal model-based robust iterative learning control for uncertain LTI systems [C]. Proc of IEEE Conf on Decision and Control. Sydney: IEEE Press, 2000, 4: 3439-3444.
    [70] 刘红军.采用Adaline神经网络实现增益自适应内模控制[J].系统仿真学报,2005,17 (8):1955-1958
    [71] 曾道蓉.在线变结构模糊神经网络的自适应内模控制[J].控制理论与应用,2006,25 (11):7-10
    [72] A. M. D. Poar, M. O' Malley. Controllers of Ziegler-Nichols type for unstable processes[J], Int. J. Control, 1989, 49: 1273-1284
    [73] Huang H P, Chen C C. Control-system synthesis for open-loop unstable process with time-delay[J], IEEE Proc. Part D, 1997, 144 (4) : 334-346
    [74] Huang H P, Chen C C. Auto-tuning of PID controllers for second order unstable process having dead time[J], Journal of Chemical Engineering of Japan, 1999, 32 (4) : 486-497
    [75] 曹阳.大时滞不稳定对象的PID控制[J].仪器仪表学报,2005,26 (3):11-16
    [76] Vapnik V N. Estimation of Dependencies Based on Empirical Data[M]. Berlin: Springer Verlag, 1982
    [77] Vapnik V N. The Nature of Statistical Learning Theory, NY: Springer Verlag, 1995张学工译.统计学习理论的本质[M].北京:清华大学出版社,1999
    [78] Cherkassky V, Muller F. Learning from Data[J]. Concepts, Theory and Methods. NY: John Viley & Sons, 1997
    [79] Vapnik V, Levin E, Le Cun Y. Measuring the VC dimension of a learning machine[J]. Neural Computation, 1994, 6: 851-876
    [80] Burges C J C. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery, 1998, 2 (2) : 120-125
    [81] Boser B, Guyon I, Vapnik V. A training algorithm for optimal margin classifiers[C], Fifth Annual Workshop on Computational Learning Theory. Pittsburgh: ACM Press, 1992
    [82] Cortes C, Vapnik V. Support vector networks[J]. Machine Learning, 1995, 20: 273-297
    [83] Schlkopf B, Burges C, Vapnik V. Extracting support data for a given task[C]. In: Fayyad U M, Uthurusamy R (eds.) . Proc. of First Intl. Conf. on Knowledge Discovery & Data Mining, AAAI Press, 1995, 262-267
    [84] Osuna E, Freund R, Girosi E Training support vector machines: an application to face detection[C]. In: Proc. of CVPR'97, Puerto Rico, 1997
    [85] Lu Chunyu, Yan Pingfan, Zhang Changshui, Zhou Jie. Face recognition using support vector machine[C]. In: Proc. of ICNNB'98, Beijing, 1998, 652-655
    [86] Blanz V, Scholkopf B, Bulthoff H. et al. Comparison of view based object recognition algorithms using realistic 3D models[C], In: von der Malsburg C, von Seelen W, Vorbruggen J Cet al (eds). Artificial Neural Networks——ICANN'96, Spingers Lecture Notes in Computer Science, Berlin, 1996, 1112: 251-256
    [87] Brown M, Lewis H G, Gunn S R. Linear spectral mixture models and support vector machines for remote sensing[C], (submitted to) IEEE Trans. Geoscience and Remote Sensing, 1998
    [88] Drucker H, Burges C, Kaufman L et al. Support vector regression machines[C]. In: Mozer M, Jordan M, Petsche T (eds). Neural Information Processing Systems, MIT Press, 1997, 9
    [89] 张浩然.基于支持向量机的非线性系统辨识[J].系统仿真学报,2003,15(1):119-121
    [90] 何峻峰.基于支持向量机的逆系统离散控制方法[J].清华大学学报,2005,45(1):100-102
    [91] 王定成.一种基于支持向量机的内模控制方法[J].控制理论与应用,2004,21 (1):85-88

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700