隧道凿岩机器人控制系统及定位误差分析与补偿研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以国内首台隧道凿岩机器人为研究对象,为实现隧道凿岩机器人的自动控制而在隧道凿岩机器人的运动学建模、车体定位、机械臂运动学求逆、机械臂定位误差分析与补偿、控制系统的实现等方面进行了较为深入的研究:
     1.针对两臂隧道凿岩机器人每个工作臂都是有9个自由度的多关节耦合型机械手的独特特点,结合凿岩机器人的实际工作环境特点,采用Denavit-Hartenberg方法进行了凿岩机器人及其工作环境的运动学建模,建立了机械臂末杆相对工作对象——隧道断面的正向运动学方程。并针对其独特机构特点提出了一种线性近似解耦—迭代法运动学求逆方法,将复杂的位姿关系近似线性化,将多变量间的复杂耦合(MIMO)模型近似解耦成多个单输入单输出(SISO)模型,再用迭代法求解运动学反解,通过大量仿真验证与实际应用验证,表明这种方法能满足隧道凿岩机器人控制中的运动学精度要求与实时性要求。
     2.车体定位是钻臂凿岩定位精度的基础。采取在工作环境中安装激光的方式进行车体定位,推导了激光束坐标系与机械臂末杆坐标系间的关系矩阵,最终推导得到了机械臂末杆相对隧道断面间的坐标变换矩阵,解决了精确车体定位问题;根据特殊工况的简化分别得到了简单定位和恢复定位两种简便的车体定位方式。
     3.通过大量的测试试验,发现凿岩机器人机械臂的钻孔定位存在较大的误差,直接影响着隧道施工精度。为了分析各环节的误差贡献,分别对大臂伸缩产生的误差、推进梁伸缩产生的误差、翻转轴翻转定位产生的误差、传感器输出信号引起的误差等环节进行试验研究与分析。试验表明,这些环节都存在较大的位置误差与姿态误差,其中系统误差为主要因素、伴随有随机误差。影响位姿误差的主要因素包括指令误差、检测误差、杆件受力弹性变形、机械传动误差和机械零部件的制造误差等等。
     4.对引起误差的原因进行公式推导,从钻臂机构制造误差和检测误差引起的位姿误差,大臂挠性变形、推进梁的挠性变形、翻转机构定位精度产生的位姿误差等方面进行了计算分析,分析结果表明大臂端部的位置误差主要来源于大臂挠性变形,而推进梁伸缩过程中的误差原因是多方面的,挠性变形只占其中的小部分,液压油的压缩性是翻转机构定位误差产生的主要原因。
     5.引入虚拟关节概念,对凿岩机器人钻臂定位误差进行误差补偿方法研究,根据误差原因和误差特征的不同,分别采取坐标变换矩阵直接补偿、增加坐标变换矩阵、增加虚拟关节等方法进行误差补偿,对传感器误差采取滤波与校正系统误差的方法减少误差。由于引起推进器伸缩过程中位姿误差的数学模型难以建立,而运用广义回归神经网络(GRNN)方法求解推进器伸缩过程中的位姿误差,获得了满意的结果。
     6.采用主从式双层控制结构,构建了凿岩机器人计算机控制系统的硬件结构,解决了WINDOWS3. X环境下PC机与西门子CPU314之间的通信问题。将中文Windows3.2裁剪到最小可运行系统,应用Borland C++4.5开发了凿岩机器人智能控制系统,并实现了2吨多重的钻臂定位过程中的平稳运动和自动凿岩。
This research takes the first Chinese 2-boom tunnel rock-drilling robot as the research object. In order to automatize the rock-drilling rig, this research comes down to kinematics modeling, carriage positioning, kinematic inversing, positioning error analysis, error compensation, and developing a control system of the rock-drilling robot.
     1. According to the unique characteristics of the boom of the two-boom tunnel rock-drilling robot, which is a coupled redundant manipulator with nine degrees of freedom, combined with the actual working environment characteristics, the Denavit-Hartenberg method is used to establish the modeling of rock-drilling robot and its working environment. The positive kinematics equation from the manipulator to the work object (the tunnel cross-section) is obtained. In allusion to the unique characteristics, a linear decoupled and iteration algorithm is put forward to change the complex position and pose relationship into linear approximation relationship, and decouple the complex and coupling multiple-input/ multiple-output(MIMO) model into many single-input/single-output(SISO) models. And then an iteration algorithm is applied to solve the inverse kinematics problem. A large number of simulation and practical application verify that this method can meet the kinematics precision and real-time requirements of the tunnel rock-drilling robot.
     2. Carriage positioning is essential to ensure the boom's positioning accuracy. Refered to the laser beam, which is fixed on the wall of the tunnel, the relational matrix between the laser coordinate system and the end-rod coordinate system is derived, and ultimately the coordinate transformation matrix from the rig to the tunnel cross-section was derived, thus the problem of precise carriage positioning is solved. In accordance with the special conditions, two simple positioning ways are respectively got.
     3. Through a large number of tests, large errors were found in the boring orientation of the manipulator, that has a strong impact on the accuracy of the tunnel construction. In order to analyze the contribution of various error factors, some experimental study and analysis are carried out on errors, which caused by the telescopic arm, the feeding beam, the rotate/flip shaft, and the output signal of sensors. The test results show that these parts could cause larger position and pose error, and among these error factors, the systematic error is the main factor, accompanied by random error. Main error factors include instruction errors, etection error, link flexibility, mechanical drive error and machining error, and so on.
     4. The position and pose errors are try to be formulized. Compution and analysis were carried on into machining and detection error, the arm flexibility, the feeding beam flexibility, the positioning accuracy of the rotate/flip shaft, etc. And the results show that, the error of the arm positioning comes mainly from the arm flexibility, but the error of feeding beam positioning comes from many reasons, the beam flexibility just takes a small part, and the compressibility of hydraulic oil is the main reason for the error of the rotate/flip shaft positioning.
     5. The concept of virtual joints is introduced into study on the error compensation of the manipulator positioning. In accordance with the different of the error causes and error characteristics, different methods are applied respectively to compensate the error, for instance, taking compensation directly into coordinate transformation matrix, adding the coordinate transformation matrix, adding the virtual joint, reducing the sensor error by filtering and correcting system error. Because it is difficult to establish the mathematical model of the error caused by the telescopic feeding beam, a GRNN (General Regression Neural Network) method is applied to compute the error, and satisfactory results have been obtained.
     6. The hardware structure of rock-drilling robot computer control system is designed as master-slave control structure, and the communication problem between the computer and Siemens CPU314 under Windows3.X is settled. With cutting the Chinese Windows3.2 to the minimum operating system, a tunnel rock-drilling robot control system has been developed in Borland C++4.5, and smooth automatically moving of a 2-ton boom is achieved in the process of positioning, and automatically drilling comes true.
引文
[1]Stig Olofsson. Blasting Technology, FACE DRILLING(3rd Edition)[M]. Oerebro:Atlas Copco Rock Drills AB,2004
    [2]陈学淳译.凿岩技术的发展[J].国外采矿技术快报,1986(26):27-29
    [3]陈玉凡,等.钻孔机械设计[M].北京:机械工业出版社,1987
    [4]王维德译.露天凿岩设备的发展趋势[J].国外采矿技术快报,1986(5):18-21
    [5]章熊栋译.凿岩和电子计算机[J].国外采矿技术快报,1986(6):25-26
    [6]温纪华译.凿岩设备的计算机控制在金属矿开采中的应用[J].国外采矿技术快报,1986(30):12-14
    [7]Elsrud R. Atlas Copco drill rig products for mine automation and communication--a totally new technology for advanced mining systems [A]. Twelfth international symposium on mine planning and equipment selection[C]. Kalgoorlie, Australia:Australasian institute of mining and metallurgy publication series,2003.311~316
    [8]J M Reynolds, Atlas Copco Construction and Mining Australia. Modern Drilling Equipment for Underground Applications. www.ats.org.au, 2005.2
    [9]龚绍遂译.挪威第一台计算机控制的凿岩台车[J].国外采矿技术快报.1986(20):28
    [10]聂辉成译.精确凿岩提高爆破效率[J].国外采矿技术快报,1986(8):15-17
    [11]郭汉森译.计算机在隧道掘进测量中的应用[J].国外采矿技术快报,1988,(18):11-12
    [12]郭汉森译.激光断面测量系统与炮孔偏斜测量[J].国外采矿技术快报,1988,(24):16-17
    [13]蔚艳庆.电脑凿岩台车的应用前景[J].四川建筑,2006,26(6):80-81
    [14]鸣午译.凿岩作业开始应用计算机控制系统[J].凿岩机械与风动工具,1983,(3):70-72
    [15]周日新译.液压凿岩机的十年[J].凿岩机械与风动工具,1986(2):28-33
    [16]胡德正.AMV21SGBC-CC型凿岩台车[J].工程机械与维修,2003(5):80-81
    [17]张双亚,刘东亮,朱琴声.凿岩台车全断面快速掘进技术[J].矿山机械,2007,35(6):35-38
    [18]朱永刚,张钦礼,韩森,等.BOOMER-281单臂液压凿岩台车在新桥矿的应用[J].采矿技术,2006,6(3):440-442
    [19]康宝生.浅谈液压凿岩台车在客运专线工程中的使用[J].建筑机械化,2007,(07):26-29
    [20]陈定远.液压凿岩设备的应用与发展.凿岩机械与气动工具[J],1992(2):45-50
    [21]Gao Quqing. Tunneling in China[J]. Tunnels&Tunnelling,1988(9): 62~63
    [22]Lees D J. History of the Rock Drill. AUCT,2001(4)
    [23]王维德译.计算机控制的凿岩[J].国外采矿技术快报,1986(7):20-22
    [24]Dahl K O, Kristen Dahl. Computer Control Comes to Hard Rock Drilling[J]. Tunnels & Tunnelling,1981 (5)
    [25]Atlas. Hydraulic drill rigs and booms[J], Tunnels & Tunnelling /Machinery, Plant & Equipment issue.1982(8):15
    [26]龚绍隧译.挪威第一台计算机控制的凿岩台车[J].国外采矿技术快报,1986,(20):28
    [27]Atlas Copco. Robot Boomer on Testing [J]. Word Minning Equipment,1988 (3):35
    [28]Jim Lock. Computerised laser-aided guidance systems[J]. Tunnels & Tunnelling,1988(12):55~57
    [29]David Marting. At last a computer-controlled jumbo that really works[J]. Tunnels&Tunnelling,1988(5):33~35
    [30]Ari Tunnanen. The automation of hard rock drilling machines [J]. Tunnels & Tunnelling,1993(5):51-52
    [31]ZED Instruments Ltd. Computer based guidance to keep tunnels on course[J]. Tunnels & Tunnelling,1990(8):85
    [32]Bever Control AS. Computer control of tunnel profile[J]. Tunnels & Tunnelling,1990(8):87
    [33]TUNNELLRES' NOTEBOOK. Laser technology enhances tunnel profiler[J]. Tunnels & Tunnelling,1990(5)
    [34]TUNNELLRES' NOTEBOOK. Computer-controlled jumbos doing well[J]. Tunnels & Tunnelling,1990(5)
    [35]N Bills. Rock-drilling and Electronic Computer[J]. Word Minning Equipment,1985(9)
    [36]Brain. Mining Jumbos with Computer [J]. Word Minning Equipment,1987(1)
    [37]John dalin. Laser Convey Instrument[J]. Word Minning Equipment, 1987, (5)
    [38]陈深译.斯德哥尔摩采矿展览会上的掘进及凿岩技术[J].国外采矿技术快报,1987,(30):24-26
    [39]刘丹译.采矿自动化机器人系统的开发[J].国外金属矿山,1994(2):69-71
    [40]曹子纯译.液压凿岩机和台车的发展综述[J].世界采矿快报,1989(35):20-22
    [41]http:www.atlascopco.com
    [42]http:www.tamrock.com
    [43]李大诒.十年来液压凿岩机的发展及其展望[J].凿岩机械与风动工具,1985,(1):34-39
    [44]张熊栋译.凿岩和电子计算机[J].国外采矿技术快报,1986(6):25-26
    [45]Computer control & software in drilling, geoDrilling International [J]. 2004(2)
    [46]Gunnar Nord. Getting into Perfect Shape[M]. FACE DRILLING. Oerebro: Atlas Copco Rock Drills AB,2003
    [47]Bever Co. Bever-The Data Rig Master [J]. Word Minning Equipment,1988, (3):34
    [48]周友行.凿岩机器人孔序规划的研究与实现[D](博士学位论文).长沙:中南大学,2003
    [49]冯章器译.Tamrock和Atlas Copco在美国展出最新钻车[J].凿岩机械气动工具,1987(4):41-43
    [50]H H Cohrs. Computerised Drilling Rig for Tunnelling. WWW.dezhong.com. cn.2001
    [51]Rocket Boomer L3 series-Power and Intelligence[J]. Mining & Construction, http://www.miningandconstruction.com,1999.12.6
    [52]Jorgen Appelgren. Drilling Goes Digital[J].MINING & CONSTRUCTION. 1999(3):20~21
    [53]Atlas Copco. Advanced Boom Control-ABC. FACE DRILLING,1999(12): 102~105
    [54]Rolf Elsrud. Automation for Quality Drilling, Face Drilling (Second Edition) [M]. Oerebro:Atlas Copco Rock Drills AB,2004
    [55]徐晓东,新一代隧道凿岩台车[J],筑路机械与施工机械化,2001(1)
    [56]Rolf Elsrud. Measure While Drilling[J]. Mining & Construction, 2000, (3):20~21
    [57]Rolf Elsrud. Enabling tunnellers to'see'the rock ahead[J]. World Tunnelling,2001, (10)
    [58]Rolf Elsrud. How new technology helps drillers to track the orebody[J]. MINING & CONSTRUCTION,2002(2)
    [59]Atlas Copco Total Rock Drilling Technology. Direct Controlled Hydraulic Tunneling and Mining Rigs——ROCKET BOOMER L2D and M2D [J]. Bo Liljedal Reklambyra AB,1998(11)
    [60]李力争.凿岩机器人双三角钻臂自适应控制策略研究[D](博士论文).长沙:中南大学,2003年
    [61]钟国桢.凿岩钻车单板计算机控制[M](硕士学位论文).长沙:中南工业大学,1985
    [62]何清华.一种新型钻臂变幅机构的设计与分析[J].工程机械,1988(7):12-16
    [63]何清华.隧道凿岩机器人[M].长沙:中南大学出版社,2005
    [64]Xie Xihua, He Qinghua, Zhou Liang. The Laser Orientation Mode for Carriage Positioning of the Rock-Drilling Robot. Proc. of 2001 IWBRT[C]. BEIJING:Beijing Institute of Technology.2001:332~335.
    [65]Zhou youhang, He qinghua. Trial mountain climbing algorithm for solving the inverse kinematics of redundant manipulator[J]. J. CENT. SOUTH UNIV. OF TECNOL(English).2002,9 (4):285~288
    [66]何清华,周友行,谢习华.两臂隧道凿岩机器人孔序动态规划[J],同济大学学报(自然科学版),2001,29(9):1234-1237
    [67]何清华,李力争.双三角钻臂及其液压系统的建模与参数估计[J].长沙:中南工业大学学报(自然科学版),2001,32(5):519-522
    [68]周宏兵.凿岩机器人机械手(钻臂)运动学、动力学模型研究[D](硕士学位论文).长沙:中南工业大学,1997
    [69]吴广玉,姜复兴.机器人工程导论[M].哈尔滨:哈尔滨工业大学出版社,1988
    [70]Paul R P, Shimano B E, Mayer G. Kinematic control Equation for simple manipulators[J]. IEEE Trans SMC.1981,11(6):449~455。
    [71]LiegeoisA. Automatic supervisory control of the configuration and behavior of multibody mechanisms[J]. IEEE Trans. Systems, Man, Cybernetics,1977,7(12):868~871。
    [72]赵京,白师贤.具有弹性关节的两协调冗余机器人的关节轨迹规划[J]。机 器人,1999,21(4):300-306。
    [73]COOGAN JOHN, HEIKKOLA JUSSI, SANERMA SIMO, et al. METHOD FOR CORRECTING POSITIONING ERRORS IN ROCK DRILLING, AND A ROCK DRILLING EQUIPMENT [P]. Finland, E21B15/00, W00034617,2000-06-15
    [74]TAMROCK. Method for aligning a feeding beam in a rock drilling equipment and a rock drilling equipment and a measuring device[P]. Finland, E21B7/00, US5348105,1994-09-20
    [75]周运祥,张建国,LL—-ET型刻花机器人误差分析[J],中国玻璃,1997(1):5
    [76]金仁成,赵继,杨红梅,等,RV—M1型机器人的运动误差分析[J].汽车工艺与材料,1999(11):31
    [77]阎华,刘桂雄,郑时雄.机器人位姿误差建模方法综述[J].机床与液压,2000(1):3-5
    [78]谢国才,安永辰.机器人动态误差分析[J].组合机床与自动化加工技术,1989(7):21-27
    [79]安永辰,王兴海.机器人的弹性动力分析[J].哈尔滨工业大学学报(增刊),1985:16-29
    [80]陈明哲,张启先.工业机器人误差分析[J].北京航空学院学报,1984(2):11-22
    [81]Wu. C. H, A Kinematic CAD tool for the design and Control of a robot manipulator[J], IJRR1984, S(1):58~67
    [82]Wu. C. H, The Kinematic error model for the design of robot manipulator. American Cong of Control,1983:493~502
    [83]Wu C H, Lee C C. Estimation of the accuracy of a robot manipulator. IEEE Trans Aut Control,1985,AC-30 (3):304~306
    [84]焦国太,阿.德.依科拉夫,瓦.谢.库利绍夫.机械手连杆的挠曲变形对抓手位置和形态的影响.机器人,2000,22(2):122-127
    [85]吴振彪,Fenton F G.提高机器人精度的弹变补偿计算机应用软件.机器人,1987(4):6-10
    [86]高占贤,黄田,赵学满,等.高速并联机械手运动学标定方法.机械设计,2005,22(1):18-20
    [87]张云生.机械手广义误差模型调节器.昆明工学院学报,1995,20(1):69-75
    [88]杨唐文,徐卫良,王兴松.基于实时测量的两杆柔性操作臂的模糊补偿控制.东南大学学报,1999,29(6):60-65
    [89]刘铸永,洪嘉振.柔性多体系统动力学研究现状与展望.计算力学学报, 2008,25(4):411-416
    [90]陈学生,陈在礼,孔名秀,等.正运动学精确求解.哈尔滨工业大学学报,2002,34(1):120-123
    [91]徐小力,郑维娜.色差计的误差校正方法研究.计量技术,2006(4):6-9
    [92]虞文华.神经网络在机床运动误差补偿中的应用[J].机电工程,1996(3):18-19
    [93]魏东.非线性系统神经网络参数预测及控制[M].北京:机械工业出版社,2007.11
    [94]Widrow B, Hoff M. Adaptive Switching Circuits[R]. In IRE Western Electric Show and Convention Record.1960:96~104.
    [95]Narendra K S, Parthasarathy K. Identification and Control of Dynamical Systems Using Neural Networks [J]. IEEE Transactions on Neural Networks, 1990,1(1):4-27.
    [96]Specht D F. A general regression neural network [J]. IEEE Transactions on Neural Networks,1991,2(6):568~576.
    [97]冯志鹏,宋希庚,薛冬新,等.基于广义回归神经网络的时间序列预测研究[J].振动、测试与诊断,2003,23(2):105-109
    [98]Ben-Nakhi, Abdullatif E, Mahmoud, et al. Cooling load prediction for buildings using general regression neural networks[J]. Energy Conversion and Management,2004,45 (13):2127~2141
    [99]吴瑞祥.机器人技术及应用[M].北京:北京航空航天大学出版社,1994.8
    [100]诸静.机器人与控制技术[M].杭州:浙江大学出版社,1991
    [101]孙迪,王炎.机器人控制技术[M].北京:机械工业出版社,
    [102]蔡自兴.机器人原理及其应用[M].长沙:中南工业大学出版社1988
    [103]Paul R P. Robot Manipulators:Mathmatics, Programming, and Control[M]. MIT Press,1981.
    [104]路同浚,吴平川,韩晓健.基于关节变量分离的机器人逆运动学迭代—解析算法的研究[C],中国第五届机器人学术会议论文集.哈尔滨:哈尔滨工业大学出版社,1997
    [105]刘永超,黄玉美,等.基于遗传算法的机器人运动学逆解[J].机器人,1998,20(6):421-426
    [106]何清华,周宏兵,吴凡.凿岩机器人钻臂的运动学研究[J].中南工业大学学报,1998,29(5):483-486
    [107]周友行,何清华,邓伯禄.一种改进的爬山法优化求解冗余机械手运动学逆 解[J].机器人,2003,25(1):35-38
    [108]刁彦飞,刘贺平,罗阿妮,等.SIWR-Ⅱ型水下机械手的误差分析与综合[J].哈尔滨工程大学学报,2003,24(2):175-178
    [109]申琼,何勇.仿生机械手结构设计与分析[J].东华大学学报(自然科学版),2002,28(1):37-40
    [110]高占贤,黄田,赵学满,等.高速并联机械手运动学标定方法[J].机械设计,2005,22(1):18-20
    [111]张伯鹏,张昆,徐家球.机器人工程基础[M].北京;机械工业出版社,1989
    [112]王金诺,于兰峰.起重运输机金属结构[M].北京:中国铁道出版社,2002
    [113]徐格宁,束志明,徐克晋.起重运输机金属结构设计[M].北京:机械工业出版社,1997
    [114]俞茂鋐,汪惠雄.材料力学[M].北京:高等教育出版社,1986
    [115]刘庆潭主编,材料力学[M].北京:机械工业出版社,2003
    [116]曾桂英,郭勇,何清华.凿岩机器人机械手定位系统的精度分析[J].机电工程,2002,19(2):29-31
    [117]雷天觉.液压工程手册[M].北京:机械工业出版社,1996
    [118]Bigras, Pascal, Saad, et al. Jules. Convergence analysis of an inverse flexible manipulator model algorithm[J]. JVC/Journal of Vibration and Control,2003,9 (10):1141-1158
    [119]Yoshikawa T, Ohta A, Kanaoka K. State estimation and parameter identification of flexible manipulators based on visual sensor and virtual joint model [C]. Proceedings-IEEE International Conference on Robotics and Automation, v 3,2001:2840~2845
    [120]Yoshikawa T, Hosoda K. Modeling of flexible manipulator using virtual rigid links and passive joints[J]. Int J. of Robotics Research,1996, 15 (3):290~299
    [121]Ohkawa, Fujio, Kobayashi, et al.A control method based on virtual joint model of a flexible arm[J]. Transactions of the Japan Society of Mechanical Engineers, Part C,2002,68(1):109~116
    [122]Dai Jian S, Shah Paresh. Orientation capability of planar manipulators using virtual joint angle analysis[J]. Mechanism and Machine Theory,2003,38(3):241~252
    [123]任敬轶,孙汉旭.一种新颖的笛卡尔空间轨迹规划方法[J].机器人,2002,24(3):217-221
    [124]崇凯,柯显信.欠自由度机器人的运动学逆解存在性神经网络判别[J].应用科学学报,2001,19(1):44-47
    [125]刘杰,张玉茹,刘博.人手到灵巧手的运动映射实现[J].机器人,2003,25(5):444-447
    [126]王永骥,徐桂英.连续搅拌反应釜(CSTR)的神经网络动态建模[J].控制与决策,2000,15(3):375-377
    [127]贺湘宇.挖掘机液压系统故障诊断方法研究[D](博士学位论文).长沙:中南大学,2008.6
    [128]周亮,谢习华,周宏兵,等.凿岩机器人线性近似解耦—迭代法运动学求逆[J].凿岩机械气动工具,2001(4):29-33
    [129]王恒升.凿岩机器人双三角臂定位及CAN总线控制系统研究[D](博士学位论文).长沙:中南大学,2006
    [130]吴凡.凿岩机器人孔序规划研究[D](硕士学位论文).长沙:中南工业大学,1997。
    [131]贺湘宇.凿岩机器人干涉判别及无碰路径策略研究[D](硕士学位论文)长沙:中南大学,2001
    [132]朱敏,罗鉴,王松,等.BORLAND C++4.5使用指南[M].成都:电子科技大学出版社,1996
    [133]颜雪松,赵志明,赵胜辉,等,学习和使用Borland C++[M].南京:南京大学出版社,1994
    [134]姜建芳,苏少钰,陈庆伟,等.西门子S7_300系列PLC与PC机通信实现的研究.制造业自动化,2003,25(1):52-54
    [135]刘哲纬,嵇鹏,金文兵.基于VB完成PLC和PC间的串行通信.工业控制计算机,2007,20(3):80-82
    [136]李天煜,李志宁,王力,等.LabWindows_CVI与SIMATICS7_300PLC的MPI通信实现.新技术新工艺,2005(2):12-14
    [137]陈强,强宝民,蒋威.基于PRODAVE的PLC数据采集系统的设计.仪表技术,2008(5):35-36
    [138]SIEMENS. Toolbox for Data Link PGs/PCs to SIMATTIC S7[Z]. SIEMENS, 1999
    [139]SIEMENS. SIMATIC S7 Configuring Hardware and Communication Connections STEP 7 V5.0 Manual[Z]. SIEMENS,1999
    [140]孙慧卿,郭志友.传感器的误差补偿技术.传感器技术学报,2004(1):90-92

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700