一种高性能电力有源滤波器设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电力电子技术的迅速发展,大量新型电力电子设备在电力传输、制造加工、轨道交通等行业获得了广泛应用,同时也给电网带来了严重的谐波污染,引起了一系列用电质量问题,严重地危害了电网的安全可靠运行。此外,谐波的存在限制了功率因数的进一步提高,造成了电网容量的巨大浪费。基于电力电子技术、数字信号处理技术和先进控制理论的电力有源滤波器可对谐波进行动态精确补偿,被视为解决谐波污染的最有效和最具潜力的装置。
     本文首先分析了目前工业用户两种主要谐波源,整流负载和交流电弧炉负载,说明了谐波产生机理。对三相整流谐波源在稳态负载情况下进行了分析和研究,给出了输入电流谐波THD跟电路参数关系的解析式。其次对电弧炉负载产生谐波的机理、特点以及阻抗特性进行了分析。
     目前的电力有源滤波器一般采用双闭环反馈控制,其中的PI参数的设计一直是影响系统运行的可靠性、精确性的关键技术。本文首先对经典的利用传递函数波特图来获取PI参数的设计方法进行了分析和仿真,在电流环和电压环解耦控制情况下,分别设计各自的PI参数。然后着重研究基于强化学习算法的智能搜索PI参数的方法,并与前一种PI算法进行了对比。仿真结果表明,电力有源滤波器模型利用该智能搜索算法,可以自动实现参数优化,减小系统的电压超调和电流冲击,从而提高了系统的可靠性,减少了开关器件容量的浪费。
     有源滤波器是一种以变流器为基础的硬件平台和双闭环反馈控制系统的集成,无论是软件算法的选择还是硬件参数设计都对系统性能具有重要影响。所以本文不仅给出了主要硬件参数的计算方法和工程选型标准,对于以TMS320LF2812DSP为核心的控制系统硬件设计也做了比较详细的说明,研究分析了本项目研究中所采用的软件算法流程和实现各个功能的软件算法。
     在上述研究工作的基础上设计开发了380V容量40kVA的三单相并联有源滤波器样机,并在样机实验中检验其谐波补偿性能。
With the development of power electronics technology, high power electronics have been widely used in the field of power transmission and distribution, material manufacture, subway traffic and so on. A lot of harmonic pollution has been brought to power systems and results in a series of power quality and reliability problems. At the same time, the harmonics reduced the power factor deeply, which means low efficiency and enormous waste of capacity of power system. Based on the development of power electronics technology, digital system process and advanced control theories, active power filter can compensate harmonic in real time. It is considered that active power filter is the best technique and has a great potential for harmonic suppression.
     At the beginning of this thesis, rectifying circuit and arc furnace have been introduced as two kinds of major industry harmonics source; Based on the theoretical analysis and simulation, the relationship between the THD of input current and the parameter of rectifying circuit is given. Then the Mechanism characteristic and Harmonic characteristics of arc furnace are shown.
     Double-closed loop control is generally adopted in active power filters, PI parameters of which effect reliability and precision of harmonics compensation of active power filter. Firstly a classic method of getting parameters of PI based on transfer function and bode diagram is discussed in simulation. In the simulation PI parameters of current loop and voltage loop are calculated independently in the case of decoupled state. Focusing on the getting parameters of PI based on reinforcement learning algorithmic, arithmetic and simulation is studied. The simulation result showed that PI parameters of active power filter are optimized automatically with less current impact and voltage impact. System reliability is improved and device capacity of waste is reduced, when this method is adopted.
     Active power filter combines the hardware based on convertor with the arithmetic of double-closed loop feedback. In the thesis, not only the arithmetic of major hardware of convertor is presented, but also the design of hardware is designed based on TMS320F2812. Besides the algorithms and control process of the project is showed in detail.
     Based on the research, 40kVA experimental specimen of active power filter is installed and the function of harmonic compensation is validated.
引文
[1]陈勃红,张欣.电弧炉谐波电流的发生与抑制.江苏电器.2002(3):25~27.
    [2]祁晓牧.大功率整流装置产生的谐波对电力系统的影响.重庆工学院学报(自然科学版).2003,17(6):27~28.
    [3]陈树君.弧焊逆变电源的软开关变换及谐波抑制的研究.哈尔滨工业大学博士论文.1999.
    [4] J. H. Lee, et al. Harmonic Reduction of CO2 Welding Machine Using Single-Switch Three Phases Boost Converter with Sixth Order Harmonic Injected PWM.IEEE ISIE’2001 Proceedings.2001,3: 1526~1529.
    [5]朱志明等.逆变式弧焊电源的功率因数及其提高途径.电焊机.1996(4): 5~8.
    [6]胡俊达,张著彬.电力系统中谐波的产生、危害及抑制.电气时代.2003 (12):78~79
    [7] IEEE Recommended. Practices and Requirements for Harmonic Control in Electrical Power Systems. IEEE Std 519-1992.
    [8] Electromagnetic Compatibility (EMC) - Part3: Limits for Harmonic Current Emissions (Equipment Input Current≤16A Per Phase). IEC1000-3-4 Document, 1998.
    [9] Electromagnetic Compatibility (EMC) - Part3: Limits For Harmonic Current Emissions (Equipment Input Current≤16A Per Phase), IEC1000-3-2 Document, 1995.
    [10]张一中,宁元中等.电力谐波.成都科技大学出版社, 1992: 73~89.
    [11]王兆安,杨君,刘进军.谐波抑制和无功功率补偿.机械工业出版社.1998
    [12]高大威.电力系统谐波、无功和负序、电流综合补偿的研究.华北电力大学博士论文.2001.
    [13]吴竞昌.供电系统谐波.中国电力出版社.1998.
    [14]陈翊,龚银燕.降低谐波危害提高电能质量.湖北电力. 2008,32:54~55.
    [15]程京红.民用建筑谐波污染及其抑制方法.电气应用.2008,27(7):50~53.
    [16]孙瑜.先检者明先行者利.电力设备.2004,5(11):116~117.
    [17]解绍锋,李群湛.谐波标准评述.中国高等学校电力系统及其自动化专业第二十二届学术年会.2006.
    [18]胡友强.电力系统谐波测试分析机理与治理技术研究.重庆大学硕士论文.2004.
    [19]肖湘宁,徐永海.电力系统谐波及其综合治理.中国电力.1998,31(4): 95~98.
    [20]钱照明,叶忠明,董伯藩.谐波抑制技术.电力系统自动化.1997,21(10): 93~96.
    [21]石新春,霍利民.电力电子技术与谐波抑制.华北电力大学学报.2002,29(1): 6~9.
    [22] Sasaki H, Machida T. A new method to eliminate ac harmonic currents by magnetic compensation consideration on basic design. IEEE Transactions on app And syst. 1971,90(5):2009-2019.
    [23] Gyugyi L,Strycula E C. Active ac power filters. Proceedings of IEEE IAS Annual meeting. 1976:529-535.
    [24] Hirofumi Akagi, Yoshihira Kanazawa, Akira Nabae. Instantaneous reactive power compensatorscomprising switching devices without energy storage components. IEEE Transactions on Industry Applications. 1984,20(3):625-630.
    [25] Ruixiang Hao, Zhiguang Cheng, Xiaojie You. A novel harmonic currents detection method based on rotating d-q reference frame for active power filter. Power Electronics Specialists Conference. 2004,4:3034– 3038.
    [26] Fu Zhongwen, Li Haishan, Huang Wenling, Hao Ruixiang. A new current detecting method based on d-q transformation for active power filter. Proceedings Power System Technology. 2002,4: 2265 -2268.
    [27]肖红霞,黄绍平,彭晓.基于瞬时无功功率理论的改进型单相电流检测方法.湖南工程学院学报(自然科学版).2006,16(3):9-13.
    [28]曾喆昭,文卉,王耀南.一种高精度的电力系统谐波智能分析方法.中国电机工程学报. 2006, 26(10):23-27.
    [29]陈国呈.PWM变频调速及软开关电力变换技术.机械工业出版社.2001.
    [30] LuigiM alesani,PaoloM attavelli, Paolo Tomasion. High Performance Hysteresis Modulation Technique for Active Filters. IEEE Trans. Power Electronics. 1997,12(5):876~884.
    [31]李刚.数字信号微处理器的原理及其开发应用.天津大学出版社.2000.
    [32]陈永刚.基于DSP的逆变电源的有源滤波技术.北京工业大学.2005.
    [33]王磊,刘小宁,王伟利.大功率整流电路直流侧非特征谐波的分析.继电器. 2007, 35(3):37-40.
    [34]王兆安.电力电子技术.机械工业出版社.2003.
    [35]刘小河,杨秀媛.电弧炉电气系统谐波分析的频域方法研究.中国电机工程学报. 2006,26(2):30-35.
    [36]张道成.电弧炉电极模型参考控制的研究与仿真试验系统的研制.西安理工大学.2003.
    [37]方忠民,赵延明.基于SVC的电弧炉谐波抑制研究.中国仪器仪表. 2008(1):62~65
    [38]盛光忠,郭贵莲,崔志强.模糊控制器在并联有源滤波器(PAPF)中的应用.三峡大学学报(自然科学版).2004,26(2):173-175.
    [39]刘桂英,粟时平.模糊逻辑在有源电力滤波器智能控制中的应用.电气开关. 2003(1):10-13.
    [40]李刚,罗安,付青,唐欣.一种新型混合型有源滤波器的模糊PI控制.电力电子技术. 2005,39(4):91-93.
    [41]刘晓红,梁中华,任敏.基于神经网络控制的有源滤波器的研究.沈阳工业大学学报. 2005,27(2):192-194.
    [42]杜继宏,王诗宓.控制工程基础.清华大学出版社.2008.
    [43]黄炳强,曹广益,王占全.强化学习原理、算法及应用.河北工业大学学报.2006, 35(6):34-38.
    [44]西安电力电子技术研究所.最新功率器件专集.2000:86~88.
    [45] Steffen Bernet.Resent Developments of High Power Converters for Industry and Traction Applications. IEEE Transactions on Power Electronics. 2000, 15(11): 1102~1117.
    [46]罗世国.有源电力滤波器的研究.重庆大学.1993.
    [47]三菱电机.第五代IGBT模块和IPM模块应用手册.2007: 38~40.
    [48]苏奎峰,吕强,耿庆锋,陈圣俭.TMS320F2812原理与开发/DSP应用丛书.电子工业出版社.2005.
    [49]美国德州仪器公司.TMS320 DSP算法标准.清华大学出版社.2007.
    [50]柯勇,陶以彬,王世华.间谐波检测的FFT算法改进和DSP实现.北京科技大学学报. 2008, 30(10):1194-1199.
    [51]向东阳,王公宝,马伟明.基于FFT和神经网络的非整数次谐波检测方法.中国电机工程学报.2005,25(9):35-39.
    [52] L. Jetto, S. Longhi. Parameterized Solution of the Periodic Dead-Beat Control Problem. IEEE Transactions on Automatic Control.2000,45(3): 494~499.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700