小型单相并网风力发电变流器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着“绿色环保”概念的提出,以解决电力紧张、环境污染为目的新能源利用方案得到了迅速的推广,而其中风力发电目前己经成为世界各国对可再生资源利用领域的研究热点,如何将不稳定的风能转化为可用的能与公共市电并网的电能是人们研究的焦点。本文主要以小型单相并网风力发电系统为研究对象,对系统的电机侧及网侧拓扑结构、控制策略进行了详细的分析和研究,在此基础上设计了基于DSP的2kW单相并网风力发电变流器。
     本文设计的系统包括两部分,即前级升压、稳压部分和后级逆变并网部分。首先风力发电机发出的变压变频交流电经三相不可控整流得到较低的直流电压,再经过升压型功率因数校正(Boost-PFC)环节使不控整流后的电流谐波降低且使直流电压升高,最后通过逆变并网控制环节得到可实时跟踪电网电压的稳定交流电。
     本文升压、稳压部分首先详细分析了Boost-PFC的工作原理,进而引出了本文重点研究的平均电流控制策略的概念和具体实现,同时对升压、稳压部分电路参数的选择作了理论推导和计算。逆变并网部分采用电流跟踪型的控制方式,详细分析了锁相SPWM调制的工作原理,通过软件锁相环技术采集电网电压以得到与电网电压同步的正弦波标幺值,与给定幅值相乘得到参考电流,该信号与变流器输出电流的采样值进行比较,通过数字式PI控制结合电网电压扰动补偿控制策略,消除市电扰动对并网电流的影响,以提高系统的动静特性。在所建立系统数学模型的基础上,利用MATLAB/Simulink搭建了系统仿真模型,对控制策略作了仿真分析,结果表明系统有功功率高,可接近单位功率因数并网。此外,为提高系统控制的实时性,采用高性能数字信号处理器TMS320F2812为核心控制单元完成采集、控制算法实现、实时SPWM波形生成等任务。
     根据系统总体设计要求,开发了小型单相并网风力发电的实验样机,并进行了实验研究。结果表明,单相并网变流器的功率因数高,系统运行稳定可靠,达到了预期的设计目标。
With the concept of "Green and Environmental Protection" was proposed, all kinds of new energy exploitation program are in the rapid promotion, the wind power generation has become the hot research topic in the area of renewable resources utilization, and it has become the study focus on how to convert the variable wind energy into power which can be connected to grid. Based on low- power single-phase grid-wind power generation system as the research object, in this paper, the motor side and the grid side topology, control strategy carried out a detailed analysis and study.And design 2kW single-phase grid-connected Wind Power Converter based on DSP.
     This designed system consists of two parts, First part is the control method of the multiple boost convertor, And the second part is the control method of grid-connection invertor. Firstly it uses three phase uncontrolled rectifier to change the unsteady alternating voltage of the wind power generator into a direct voltage, then through a Boost- Power Factor Correction (Boost- PFC) converter, it boosts the direct boost to a high voltage and reduce the current harmonic, the final adoption of inverter and grid-connection control part to make the wind power of the generator following grid in real time.
     This boost, regulated part of the first detailed analysis of the working principle of the PFC in turn leads to focus on the average current control strategy and the concrete realization of the concept in this paper, while boost, regulated part of the circuit parameters made by theoretical derivation and calculations. The current-tracking control model is for grid-connection inverter part, a detailed analysis of the PLL SPWM modulation works, it gets software PLL voltage power grid in order to get synchronized with the grid voltage sine wave-unit values, which is used to compare with the triangle wave collected the reference current, the signal with the converter output current value of the sample compared, By PI control and grid voltage feed forward control, and the grid voltage feed forward control can reduce the grid interfering signal in favor of the system stability. Based on establishing a mathematical model of the system, using MATLAB / Simulink to build a system simulation model, the simulation of control strategy show that the system active power high, close to unity power factor grid-connection. Moreover, for the purpose of increasing the control efficiency, this paper uses high performance digital signal processor TMS- 320F2812 as the main controller to accomplish the control masks such as collection,analysis, implementation of algorithm, producing SPWM waves in real time, and so on.
     According to the requirements of the system design, development of low-power single-phase grid-connected wind power experiment prototype and conducted experimental study. The results show that single-phase grid-connected converter power factor high, stable and reliable system operation to achieve the desired design goals.
引文
[1]周艳莉,风力发电的现状与发展趋势[J].甘肃科技,2008,2(24):8-13.
    [2]王双,王杰.风力发电系统发展状况分析[J].华东电力,2005, 33(8):59-61.
    [3]观伟,卢岩.国内外风力发电概括及发展方向[J].吉林电力,2009,36(1):13-17.
    [4]李德孚.离网型风力发电行业现状及其在节能环保上的应用(上) [J].节能与环保,2007,36(1):13-17.
    [5]李建春.风力发电机组并网方式分析[J].中国科技信息,2010,18(4):103-164.
    [6]柳青,李文举,张艺曼.风电并网运行分析[J].能源与环境,2008(1): 55-57.
    [7] B. K. Bose. Energy environment and advances in power electronics [J]. IEEE Transactions on Industrial Electronics. 2000, 15(4): 688-701.
    [8]冯国雨.风力发电并网逆变控制系统研究[D].硕士论文,吉林大学,2009,2-3.
    [9]柳青,李文举,张艺曼.风电并网运行分析[J].能源与环境.2008, (1):55-57.
    [10]刘明.直驱风力发电系统逆变装置的研究[D].硕士论文,大连理工大学,2005,35-38.
    [11]梁有伟,胡志坚,陈允平.分布式发电及其在电力系统中的应用研究综述[J].2005,39(4):5-7.
    [12]胡顺全.直驱式风力发电并网变流器装置[C].2007全国电技术节能第九届学术年会论文集.2007.
    [13]柏建龙.中小型直驱式永磁风力发电机设计及特性研究[D].硕士论文,沈阳工业大学,2006,24-28.
    [14]伊明,李庚银,张建成.直驱式永磁同步风力发电机组建模及其控制策略[J].电网技术,2007,36(1):13-16.
    [15] Frede Blaabjerg. Zhe Chen. Soeren Baekhoej Kjaer. Power electronics as efficient interface in dispersed power generation systems [J]. IEEE Transactions on Industrial Electronics. 2004, 19(5): 1184-1194.
    [16]路秋生.功率因数校正技术与应用[M].机械工业出版社,2006.
    [17] N. Vazquez, J. Almazan, J. Alvarez, et al, Analysis and experimental study of the buck, boost and buck-boost inverters [J]. IEEE, PESC 99: 801-806.
    [18] N. Kasa, T. Iida, H.Iwamoto, An inverter using buck-boost type chopper circuits for popular small-scale photovoltaic power system [C]. IEEE IECON99: 185-190.
    [19]毛兴武,祝大卫.功率因数校正原理与控制IC及其应用设计[M].中国电力出版社,2008.
    [20]周志敏,周纪海,纪爱华.开关电源功率因数校正电路设计与应用[M].人民邮电出版社,2004.
    [21] H. H. Zeineldin, K. Bhattacharya,E. F. El-Saadany, et al, Impact of intentional islanding [J]. IEEE Transactions on Industrial Electronics. 2005, 153(2): 147-154.
    [22]黄庆新.风力发电并网逆变器的DSP控制系统研究[D].硕士论文,北京交通大学,2006,1-25.
    [23]许爱国,谢少军.数字双闭环瞬时值控制逆变器外特性研究[J].南京航空航天大学学报.2006,38(4):513-518.
    [24]刘风君.现代逆变技术及应用[M].北京:电子工业出版社,2006,25-32.
    [25]王兆安,黄俊.电力电子技术[M].北京:机械工业出版社,2000,22-25.
    [26]陈厚岩.1kW具有零电流关断功能的并网逆变器的研制[D].硕士论文,中国科学院研究生院,2005.
    [27]姚志泉,王赞,肖岚,严仰光.一种新的逆变器并网控制策略的研究[J].中国电机工程学报,2006,26(18):61-64.
    [28]祝龙记,刘晖.三相UPS电源锁相与换相技术的研究[J].安徽理土大学学报,2007,27(4):13-17.
    [29] S. A. Larrinaga, M. A. R. Vidal, E. Oyarbide, et al, Predictive Control Strategy for DC/AC Converters Based on Direct Power Control[J]. IEEE Transactions on IE,2007,54(3):1261-1271.
    [30]赵为.太阳能光伏并网发电系统的研究[D].博士论文,合肥工业大学,2003,24-28.
    [31]陈良亮,肖岚,龚春英.逆变器并联系统直流环流产生原因及其检测与抑制方法[J].中国电机工程学报.2004,24(09),56-60.
    [32]姚志磊.基于DSP控制的串并组合式逆变器及并网控制策略的研究[D].硕士论文,南京航空航天大学,2005,24-28.
    [33] H. M. Kojabadi, Bin Yu, Gadoura, et al, A novel DSP-based current-controlled PWM strategy for single phase grid connected inverters[J]. IEEE Transactions on PE,2006,21(4):985-993.
    [34]皮大能,马学军,南光群,基于DSP的高精度UPS锁相技术[J].电力电子技术,2005,39(5):109-111.
    [35] A. von Jouanne, P. N. Enjeti, D. J. Lucas, DSP control of high-power UPS systems feeding [J]. IEEE Trans Ind. Applicant , 1996,43(1):121-125.
    [36]林征宇,吴建德,何湘宁.基于DSP带同步锁相的逆变器控制[J].电力电子技术,2001, 4 (2):25-28.
    [37]唐霜天,陈真.数字锁相环频率合成器的环路分析与设计[J].雷达与对抗,2007,12(2):53-56.
    [38]王飞.单相光伏并网系统的分析与研究[D].博士论文,合肥工业大学,2005,26-34.
    [39] N.Femia, D.Granozio, G.Petrone, et al, Optimized one-cycle control in photovoltaic grid connected applications [J]. IEEE Transactions on AE, 2006, 42(3):954-972.
    [40] N. Kasa, T. Iida, H. Iwamoto, An inverter using buck-boost type chopper circuits for popular [C], IEEE, IECON99. 185-190.
    [41]张宪平,林资旭,李亚西.LCL滤波的PWM整流器新型控制策略[J].电工技术学报,2007,22(2):74-77.
    [42]吴欣.基于DSP的三相混合式步进电动机正弦波细分驱动技术的研究[D].硕士论文,哈尔滨理工大学,2009,44-45.
    [43]刘和平,严利平等.TMS320LF240x DSP结构控制及应用[M].北京:北京航空航天大学出版社,2002,10-15.
    [44]章云,谢莉萍,熊红艳.DSP控制器及其应用[M].机械工业出版社,2001,13-23.
    [45] Rahul S.Chokhawala.Gate Drive Consideration for IGBT Module[C].IEEE Trans.on Ind.Appl. 1996, 31(3):603-611.
    [46]徐克军,张瀚,陈智渊著.TMS320X281x DSP原理与应用[M],北京:北京航空航天大学出版社,2006,1-17.
    [47]赵飞.基于TMS320F2812的永磁同步电动机直接转矩控制系统的研究[D].硕士论文,哈尔滨理工大学,2009,58-59.
    [48]杨贵娟.基于DSP的开关磁阻电动机控制系统的研究[D].硕士论文,哈尔滨理工大学,2009,34-35.
    [49]吴晓莉,林哲辉.Matlab辅助模糊系统设计[M].西安:西安电子科技大学,2002,8-14.
    [50]闻新,周露,李东江.Matlab模糊逻辑工具箱的分析与应用[M].北京:科学出版社,2001,9-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700