钢筋混凝土结构可靠性若干问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢筋混凝土结构由于其本身的众多优点,目前仍然是我国土木工程界应用最为广泛的一种建筑结构。但是这并不等于钢筋混凝土结构就是完美的建筑结构,从钢筋混凝土结构开始应用于建筑结构至今的100多年间,许多钢筋混凝土结构由于种种原因会发生提前失效,从而不能完成预定的使用功能。因此近些年来,钢筋混凝土结构的可靠性问题已逐渐成为各国专家们关注的一个热点问题。钢筋混凝土结构的可靠性方面研究主要包括安全性、适用性和耐久性三个方面。目前,在安全性方面国内外专家已经做了大量的研究,而且取得了一些成绩。但是对于适用性和耐久性方面研究开展的还较少,还需要进一步的研究。
     在工程结构分析中通常采用定值的方法,就是将实际工程结构承受的荷载和结构所用的材料性能一律当作定值来处理。但是实际上结构的几何尺寸、承受荷载、材料参数、计算模式等等都受到各种因素的影响。为了更准确的反映钢筋混凝土结构的可靠性问题,本文将以上因素视为随机变量,结合可靠度设计基本理论,通过概率分析,对钢筋混凝土结构正常使用极限状态的可靠性,框架结构节点强柱弱梁可靠性,CFRP加固钢筋混凝土结构的可靠性等进行了一些研究,本文的创造性研究成果主要包括:
     1、本文针对蒙特卡洛方法存在的计算量大,计算时间长的缺点,借助曲线拟合的思想,提出改进蒙特卡洛可靠度分析方法。文中方法通过对蒙特卡洛方法计算得到的数据进行曲线拟合,借助Levenberg-Marquardt优化方法计算结构的失效概率,最后通过对一个平面桁架结构进行可靠度分析来验证了本文方法的可行性。结果表明,本文方法精度较高、计算量小、计算时间短,为大型复杂结构的可靠度分析提供了一种有效手段。
     2、本文考虑计算模式、材料强度、几何尺寸的随机性,对建筑抗震设计规范所提出的抗震概念设计进行了讨论,分析了钢筋混凝土结构的节点强柱弱梁可靠性。得出了不同抗震等级下节点强柱弱梁设计的可靠度,最后确定了2010版建筑抗震设计规范中框架柱端弯矩增大系数的调整对强柱弱梁的失效概率的影响,新规范调整后的柱端弯矩增大系数使强柱弱梁设计可靠性大大增加,达到了规范调整的目的。在此基础上结合实际设计实例,应用实际设计软件广厦CAD分析了现行规范中该系数调整对建筑结构造价的影响,结果表明造价提高很小。
     3、针对现行国家标准尚未给出钢筋混凝土结构构件正常使用极限状态下目标可靠度指标的情况,本文提出基于模糊失效准则的混凝土结构构件正常使用状态下可靠度分析方法,首先构造钢筋混凝土结构模糊隶属函数,然后通过建立等效功能函数方法使混凝土结构模糊可靠度问题转化为传统可靠度计算问题,通过JC法求解,最后计算出正常使用状态下钢筋混凝土结构构件横向裂缝的模糊可靠度指标。
     4、针对长期以来建筑结构的加固研究主要集中在设计和施工的理论方面,而对于加固结构的可靠性方面缺少系统的研究。本文根据可靠度基本理论,建立CFRP加固钢筋混凝土梁的模糊可靠性分析模型。考虑材料、几何尺寸、计算模式的不确定性,确定了极限状态方程中各个随机变量的平均值和标准差,然后根据模糊数学和模糊可靠度的基本理论,分析CFRP加固混凝土结构模糊可靠性。通过和常规可靠度分析方法相比较,说明常规可靠度算法偏于不安全。
The reinforced concrete structure is widespread in the field of civil engineering, because it has so many advantages. But it is not to say that the reinforced concrete structure is perfect structure. It has been one century from beginning of application for reinforced concrete. Many structures failed for various reasons, so that the function can not be completed. In recent years, the reliability of reinforced concrete structre has becomed a hot issue. The reinforced concrete structure reliability consists of three parts:durability, safety and serviceability. Formerly, the safety of the RC structure has been paid more attention. But the study on the serviceability and durability of RC structure have lagged behind the requirements of engieering practice. It needs much attention.
     Most of the models treat structure analysis from a deterministic point of view. In these models, the load and material parameters are deterministic. However, the geometric size, the working load, the material property and model of calculation are effected by several factors. In order to have a more accurate prediction of the reliability of the reinforced concrete structure, the geometric size, the working load, the material property and model of calculation should be treated as random variables.The reliability of serviceability limit states of RC structre and the strong beam weak column relaibility of RC structre and reliability of CFRP strengthened reinforced concrete beams were discussed in this paper by methodology of reliability and analysis of probability. The main creative contents includes as following:
     1. To overcome shortcomings of large amount of computational efforts and long computation time existing in Monte Carlo simulaiton for system reliability analysis, an improved method was proposed in the light of curve fitting. Reliability problem was reformed by depending on a optimal parameter, the failure probability was treated as a function of this paramter by exploiting the regularity of it and fitting the relaibility function by Levenberg-Marquardt method. A ten-bar truss structure numerical example was given to proved the feasibility of the proposed method. Result indicates that the proposed method has high computational accuracy with less computational efforts and computation time, providing an effective way to analyze reliability of large complex structures.
     2. Uncertainty of calculation, geometric size and concrete strength were considered as random variables, seismic concept design issued by the national Code for Seismic Design of Buildings (GB50011—2010) were discussed. The strong beam weak column relaibility of RC structre was analysed by enhanced Monte Carlo simulation in the light of curve fitting. Influence of moment augment factor of column issued by the national Code for Seismic Design of Buildings on strong beam weak column relaibility were discussed. Result indicates that new moment augment factor of column improve the strong beam weak column relaibility of reinforced concrete structure. Influence of moment augment factor column on building cost were discussed by computer design software Guang Sha CAD. Result indicates that the increase of cost is very small.
     3. According to the national standard "Code for Design of Concrete Structure", the reliability index for the structural members of reinforced concrete have not been given, which are controlled by serviceability limit states. A methodological framework was proposed, which made use of fuzzy invalidation rule for reliability analysis of reinforced concrete members. Firstly, A membership function was chosen. Secondly, A equivalent function was established to deal with the fuzzy reliability of concrete structure by traditional JC method. Finally, the fuzzy reliability index of transverse crack of reinforced concrete structure was obtained.
     4. In recent years, study on the reliability analysis of strengthened structure have lagged behind the design and construction of structures. The fuzzy reliability analysis model was derived based on structural reliability theory. Geometric size, material property and uncertainty of calculation were considered as random variables, mean value and normal deviation of each random variable in performance function were determined. The reliability of CFRP strengthened RC beams were discussed by fuzzy mathematics and fuzzy reliability thorey. Result indicates that the fuzzy reliability index of CFRP strengthened RC beams were obtained, which decreases compare with the traditional reliability analysis method. Numerical results show that the fuzzy reliability analysis of CFRP strengthened RC beams provide more safety than traditional analysis does.
引文
[1]金伟良,赵羽习.混凝土结构耐久性研究的回顾与展望[J].浙江大学学报(工学版),2002,36(4):371-380.
    [2]孟广伟,蔡斌.基于模糊失效准则的混凝土横向裂纹可靠度分析方法[J].吉林大学学报(工学版),2011,36(4):352-356.
    [3]GB50010—2002混凝土结构设计规范[S].北京:中国建筑工业出版社,2002.
    [4]赵国藩,贡金鑫,赵尚传.我国土木工程结构可靠性研究的一些进展[J].大连理工大学学报,2000,43(3):253-258.
    [5]赵国藩.工程结构可靠度理论与应用[M].大连:大连理工大学出版社,1996.
    [6]王光远,张跃.模糊随机过程论[M].贵阳:贵州科技出版社,1994.
    [7]MEHTA P K. Durability-Critical issues for the future [J]. Concrete International,1997,19:27-33.
    [8]卢木.混凝土耐久性研究现状和研究方向[J].工业建筑,1997,27(5):2-7.
    [9]邸小坛,周燕编.旧建筑物的检测加固与维护[M].北京:地震出版社,1991.
    [10]朱文予.机械可靠性设计[M].上海:上海交通大学出版社,1997.
    [11]FREUDENTHAL A M. The safety of structures [C]. ASCE,1968, 94(2):559-583.
    [12]ANG A H S, AMIN M. Reliability of structures and structural system [J]. Journal of the Engineering Mechanics Division,1968, 94(2):459-483.
    [13]HASOFER A M, LIND N C. Exact and invariant second-moment code format [J]. Journal of the Engineering Mechanics Division,1974, 100(1):111-121.
    [14]RACKWITZ R, FIESSLER B. Structural reliability under combined random load sequences[J]. Computer and structure,1978,9:489-494.
    [15]李云贵,赵国藩.广义随机空间内的一次可靠度分析方法[J].大连理 工大学学报,1993,33(1):1-5.
    [16]赵国藩.结构可靠度的实用分析方法[J].建筑结构学报,1984,5(3):1-10.
    [17]FIESSLER B, et al. Quadratic limit states in structural reliability[J]. Journal of the Engineering Mechanics Division, ASCE, 1979,105(4):661-676.
    [18]TVEDT L. The distribution of quadratic forms in normal space-An application to structural reliability[J].Journal of Engineering Mechanics,1990,116(6):1183-1197.
    [19]KIUREGHIAN A D, et al. Second-order reliability approximation[J]. Journal of Engineering Mechanics,1984,110(8): 1526-1541.
    [20]CAI G Q, ELISHAKOFF I. Refined second-order reliability analysis[J]. Structural Safety,1994,14:267-276.
    [21]DER KIUREGHANA, LIN H Z, HWANG S. J. Second-order reliability approximations [J]. Journal of Engineering Mechanics,2003,113(8): 1208-1225.
    [22]赵国藩,金伟良,贡金鑫.结构可靠度理论[M].北京:中国建筑工业出版社,2000.
    [23]李云贵,赵国藩,张保和.结构可靠度的渐进分析方法[J].大连理工大学学报,1994,4:442-447.
    [24]BRCITUNG K. Asymptotic approximation for multinormal integrals[J]. Journal of Engineering Mechanics,1984,110(3).
    [25]BRCITUNG K. Asymptotic approximation for probability integrals[J]. Probabilistic Engineering Mechanics,1989,4(4).
    [26]WONG F S. Slope reliability and response surface method[J]. Journal of Geotechnical Engineering,1995,111(1):32-53.
    [27]RAJASHEKHAR M R, ELLINGWOOD B R. A new look at response surface approach for reliability analysis[J]. Structure Safety,1993,12: 205-220.
    [28]HENRI P GAVIN, SIU CHUNG YA. High-order limit state functions in the response surface method for structural reliability analysis[J]. Structural Safety,2008,30:162-179.
    [29]SANG HOON LEE, BYUNG MAN KWAK. Response surface augmented moment method for efficient reliability analysis [J]. Structural Safety,2006, 28(3):261-272.
    [30]IRFAN KAYMAZ, CHRIS A MCMAHON. A response surface method based on weighted regression for structural reliability analysis[J]. Probabilistic Engineering Mechanics,2005,20(1):11-17.
    [31]金伟良,唐纯喜,陈进.基于SVM的结构可靠度分析响应面方法[J].计算力学学报,2007,24(6):713-718.
    [32]徐军,郑颖人.响应面重构的若干方法研究及其在可靠度分析中的应用[J].计算力学学报,2002,19(2):217-221.
    [33]A HOSNI ELHEWY, E MESBAHI AND Y PU. Reliability analysis of structures using neural network method[J]. Probabilistic Engineering Mechanics,2006,21(1):44-53.
    [34]JIN CHENG, Q S LI, RU-CHENG XIAO. A new artificial neural network-based response surface method for structural reliability analysis [J]. Probabilistic Engineering Mechanics,2008,23(1):51-63.
    [35]THOMAS MOST, CHRISTIAN BUCHER. Probabilistic analysis of concrete cracking using neural networks and random fields[J]. Probabilistic Engineering Mechanics,2007,22(2):219-229.
    [36]吕震宙,刘成立,傅霖.多模式自适应重要抽样法及其应用[J].力学学报,2006,38(5):705-711.
    [37]贡金鑫,何世钦,赵国藩.结构可靠度模拟的方向重要抽样法[J].计算力学学报,2003,20(6):655-661.
    [38]JOAO B CARDOSO, JOAO R DE ALMEIDA, JOSE M DIAS AND PEDRO G. COELHO. Structural reliability analysis using Monte Carlo simulation and neural networks[J]. Advances in Engineering Software,2008, 39(6):505-513.
    [39]CLAUDIO M ROCCO S. A rule induction approach to improve Monte Carlo system reliability assessment[J]. Reliability Engineering & System Safety,2003,82(1):85-92.
    [40]LUCA CAMPION I, PAOLO VESTRUCCI. Monte Carlo importance sampling optimization for system reliability applications [J]. Annals of Nuclear Energy,2004,31(9):1005-1025.
    [41]张誉,蒋利学.混凝土碳化和钢筋锈蚀研究动态[J].福州大学学报(自然科学版),1996,24(2):18-27.
    [42]黄可信等编译.钢筋混凝土结构中钢筋锈蚀与保护[M].北京:中国建筑工业出版社,1983.
    [43]V G PAPADALKIS, C G VAYENAS, M N FARDIS. Fundamental Modelling and Experimental Investigation of Concrete Carbonation [J]. ACI Material Journal,1991,4.
    [44]朱安民.混凝土碳化与钢筋混凝土耐久性[J].混凝土,1992,6:18-22.
    [45]NISHI.T, Proc. RILEM[J], Test of concrete,1962,485-489.
    [46]邸小坛,周燕.混凝土碳化规律研究[M].北京:中国建筑科学研究院,1995.
    [47]牛荻涛,陈亦奇,于澎.混凝土结构的碳化模式与碳化寿命分析[J].西安建筑科技大学学报,1995,4:365-369.
    [48]刘亚芹,混凝土碳化引起的钢筋锈蚀实用计算模型[D].上海:同济大学,1997.
    [49]刘亚芹,张誉等.表面覆盖层对混凝土碳化的影响和计算[J].工业建筑,1997,8:45-49.
    [50]PAGE, C L, TREADAWAYK WJ, Aspeets of the Electroehemieal of Steel in Concrete[J]. Nature,1982,297:109-115.
    [51]GONZALEZ, J A, FELIU S, RODRIGUEZ, et. al. Some Questions on the Corrosion of steel in Conerete Part1:When, How and How much Steel Corrodes[J]. Materials and Structres,1996,129:40-46.
    [52]EDWARD J GARBOCZI, DALEP BENTZ. Analytical formulas for interfacial transition zone properties[J]. Advanced Cement Based Materials,1997,6(3):99-108.
    [53]TANG L, NIlSSON L O. A Study of the Relationship between Air Permeability and Chloride Diffusion in Conerete Durability Of Building[J]. Materials And Component,1993,6.
    [54]DELAGRAVE A, BIGAS, J P, OLLIVIER J, Marchand and M. Pigeon. Influence of the interfacial zone on the chloride diffusivity of mortars[J]. Advanced Cement Based Materials,1997,5(3):86-92.
    [55]YANG C C, AND, J K SU. Approximate migration coefficient of interfacial transition zone and the effect of aggregate content on the migration coefficient of mortar [J]. Cement and Concrete Research,2002, 32(7):1559-1565.
    [56]GONZALEZ A. On the Mechanism of Steel Corrosion in Conerete the Role of Oxygen Diffusion[J]. Magazine of Concrete Researeh,1990.
    [57]洪乃丰.混凝土中钢筋腐蚀率的现场非破坏测评方法的研究[J].工业建筑,1992,1:39-43.
    [58]洪乃丰.混凝土碱度与钢筋腐蚀[J].混凝土与水泥制品,1990,5:16-18.
    [59]RASHEEDUZZAFAR, S HUSSAIN, E AI-SAADOWN S S. Effeets of Cement Composition on Chloride Binding and Corrosion of Reinforcing Steel in Coneerte[J]. Cement and Concrete Researeh,1991,121:777-794.
    [60]牛荻涛,王庆霖,王林科.锈蚀开裂前混凝土中钢筋锈蚀量的预测模型[J].工业建筑,1996,24(6):8-10.
    [61]牛获涛,王庆霖,王林科.锈蚀开裂后混凝土中钢筋锈蚀量的预测[J].工业建筑,1996,26(4):11-13.
    [62]刘西拉,苗澎柯.混凝土结构中钢筋腐蚀及其耐久性计算[J].土木工程学报,1990,23(4):69-78.
    [63]金伟良,赵羽习,鄢飞.钢筋混凝土构件的均匀钢筋锈胀力的机理研究[J].水利学报,2001,7:57-62.
    [64]CORNELL C A. Structural safety specification based on second-moment reliability, Sym Int Assoc of Bride and Struct Engr., London,1969.
    [65]HASOFER A M, LIND N C. Exact and invariant second-moment code format[J]. Journal of the Engineering Mechanics Division, ASCE,1974, 100(1):111-121.
    [66]RACKWITZ R, FIESSLER B. Structural reliability under combined random load sequences[J], Computers and structures,1978,9:489-494.
    [67]HAO ZHANG, ROBERT L. Interval Monte Carlo methods for structural reliability[J]. Structural Safety,2010,32:183-190.
    [68]S K AU, Z J CAO, Y WANG. Implementing advanced Monte Carlo simulation under spreadsheet enviroment[J] Structural Safety,2010, 32:281-292.
    [69]张昭,曹子涛.基于Monte—Carlo模拟的水工混凝土结构劣化过程分 析[J].南水北调与水利科技,2010,8(4):148-151.
    [70]杜比.蒙特卡洛方法在系统工程中的应用[M].西安:西安交通大学出版社,2007.
    [71]丁月双,程江涛.基于Monte—Carlo模拟的岩村滑坡稳定可靠度研究及其程序开发[J].工程地质计算机应用,2009,2:1-7.
    [72]李典庆,周创兵.边坡可靠度分析的随机响应面法及程序实现[J].岩土力学与工程学报,2010,29(8):1513-1523.
    [73]苏成,李鹏飞,韩大建.基于Neumann展开响应面技术的重要抽样蒙特卡罗法[J].工程力学,2009,19:1-5.
    [74]SHINOZUKA M, DEODATIS G. Response variability of stochastic finite element systems [J]. Journal of Engineering Mechanics, ASCE, 1988,114(3):499-519.
    [75]侯公羽,韩茹,黄祥忠.基于响应面法的隧道可靠度分析及其指标确定[J].地下空间与工程学报,2009,5(5):965-971.
    [76]陈文元,赵雷,钟强文,陈兵.基于响应面法的连续刚构地震可靠度分析[J].地震工程与工程振动,2009,29(3):45-50.
    [77]朱劲松,肖汝诚.结构可靠度分析的人工智能响应面法及程序[J].哈尔滨工业大学学报,2009,4:169-172.
    [78]DENG J, GU D S, XIBING LI, ET AL. Structural reliability analysis for implicit performance functions using artificial neural network[J]. Structural Safety,2005,27:25-48.
    [79]JIN C, XIAO R C. Serviceability reliability analysis of cable stayed bridges [J]. Structural Engineering and Mechanics,2005,20 (6): 609-630.
    [80]李洪双,吕震宙.结构可靠性分析的支持向量机响应面法[J].计算力学学报,2009,26(2):199-203.
    [81]GOMES H M, AWRUCH A M. Comparison of response surface and neural network with other methods for structural reliability analysis[J]. Structural Safety,2004,26:49-67.
    [82]Zhao Y G,Tetsuro Ono. Moment methods for structural reliability[J]. Structural Safety,2001,23(1):47-75.
    [83]Zhao Y G, Tetsuro Ono. New point estimates for probability moments[J]. Journal of Engineering Mechanics,2000,126(4):433-436.
    [84]李云贵,赵国藩.结构可靠度的四阶矩分析法[J].大连理工大学学报,1992,32(4):455-459.
    [85]GB50068—2001建筑结构可靠度设计统一标准[S].北京:中国建筑工业出版社,2001.
    [86]赵国藩,工程结构可靠性理论与应用[M].大连:大连理工大学出版社,1996.
    [87]武清玺,卓家寿.结构可靠度分析的变f序列响应面法及其应用[J].河海大学学报,2004,29(2):75-78.
    [88]贡金鑫,工程结构可靠性设计原理[M].北京:机械工业出版社,2007.
    [89]DITLEVESN 0, BJERAGER P. Method of structural systems reliability[J]. Structure Safety,1986,3:195-229.
    [90]MELCHERS RE. Structural reliability analysis and prediction. 2nd ed. New York:John Wiley&Sons Inc.1999.
    [91]徐涛,数值计算方法[M].长春:吉林科学技术出版社,1998.
    [92]NAESS, B.J. LEIRA,O. BATSEVYCH. System reliability analysis by enhanced Monte Carlo simulation[J]. Structural Safety,2009, 31:349-355.
    [93]ABRAMOWITZM, STEGUN IA. Handbook of mathematical functions[M]. New York:Dover Publications Inc,:1963.
    [94]孙文瑜,徐成贤,朱德通.最优化方法[M].北京:高等教育出版社,2004.
    [95]粟塔山.最优化计算原理和算法程序设计[M].长沙:国防科技大学出版社,2001.
    [96]肖建清,丁德馨,将复量,徐根.岩石疲劳损伤模型的参数估计方法研究[J].岩土力学,2009,30:1635-1638.
    [97]CHOIS-K, GRANDIRV, CANFIELDRA. Reliability-based structural design. London:Springer-Verlag,2007.
    [98]GB50010—2002混凝土结构设计规范[S].北京:中国建筑工业出版社,2002.
    [99]金伟良,赵羽习.混凝土结构耐久性研究的回顾与发展[J].浙江大学学报(工学版),2002,36(4):352-356.
    [100]贡金鑫.工程结构可靠性设计原理[M].北京:机械工业出版社,2007.
    [101]赵羽习,金伟良.正常使用极限状态下混凝土结构构件可靠度的分析方法[J].浙江大学学报(工学版),2002,36(6):575-581.
    [102]TIANYU XIANG, RENDA ZHAO. Reliability evaluation of chloride diffusion in fatigue damaged concrete [J]. Engineering Structures.2007, 29(7):1539-1547.
    [103]FABIO BIONDINI, DAN M. FRANGOPOL. Lifetime reliability-based optimization of reinforced concrete cross-sections under corrosion [J]. Structural Safety,2009,31(6):483-489.
    [104]Y S PETRYNA, D PFANNER, F STANGENBERG. Reliability of reinforced concrete structures under fatigue[J]. Reliability Engineering & System Safety,2002,77(3):253-261.
    [105]麦华健.模糊可靠性理论[J].机械设计,1987,6:15-20.
    [106]KAUFMANN A. Introduction to the Fuzzy Subsets[M]. New York:Academic Press,1975.
    [107]RAJIV KUMAR SHARMA, DINESH KUMAR, Fuzzy modeling of system behavior for risk and reliability analysis[J]. International Journal of Systems Science,2008,39(6):563-581.
    [108]孙杰,张晓,牟在根.不同隶属函数对地下连续墙模糊可靠度影响的分析[J].岩土力学,2008,29(3):838-840.
    [109]李洪兴,汪群,段钦治.工程模糊数学方法及应用[M].天津:天津科学技术出版社,1991.
    [110]赖一楠,吴明阳,赖明珠.复杂机械结构模糊优化方法及工程应用[M].北京:科学出版社,2008.
    [111]张明.结构可靠度分析方法与程序[M].北京:科学出版社,2009.
    [112]史志华.关于混凝土结构构件正常使用状态可靠度指标的研究[R]北京:中国建筑科学研究院结构所,1988.
    [113]沈在康.混凝土结构设计新规范应用讲评[M].北京:中国建筑工业出版社,1988.
    [114]MUHAMMAD MASOOD RAFI, ALI NADJAI, FARIS ALI, DIDIER TALAMONA. Aspects of behaviour of CFRP reinforced concrete beams in bending[J]. Construction and Building Materials,2008,22:277-285.
    [115]张新越,欧进萍,王勃,何政.不同种类GFRP筋的力学性能试验比较[J].玻璃钢/复合材料,2005,(2):9-10.
    [116]郝庆多,王勃,欧进萍.纤维增强塑料筋在土木工程中的应用[J].混凝土,2006,9:38-44.
    [117]DUNKER KF. Why American bridges are crumbling[J]. Scientific American,1993,3:31-37.
    [118]罗福午.建筑结构缺陷事故的分析及防止[M].北京:清华大学出版社,1996.
    [119]薛伟辰.纤维塑料筋混凝土研究新进展[M].中国科学基金,2004.
    [120]高丹盈,李趁趁,朱海堂.纤维增强塑料筋的性能与发展[J].纤维 复合材料,2002(4):37-40.
    [121]薛伟辰.不同试验方法对GFRP筋粘结强度的影响研究[J].玻璃钢/复合材料,2003,5:10-13.
    [122]钱锐,茅卫兵.国外对混凝土结构中新材料FRP筋的研究及应用[J].江苏建筑,2001,1:28-33.
    [123]刘华杰.纤维塑料筋混凝土受弯构件试验研究与理论分析[D].上海:同济大学硕士学位论文,2003.
    [124]KESSLER R J, POWERS R G. Corrosion of Epoxy Coated rebars-Keys Segmental Bridge-Monroe County Report No.88-8A, Florida Dept of Translation, Materials Office, Corrosion Research Laboratories, Gainesville, Fla.1998.
    [125]王海勇,周春雷,柏云.钢筋混凝土锈蚀损伤原因与防治技术[J].中国建材科技,2010,2:1-3.
    [126]NANNI. FRP Reinforcement for Concrete Structures. Elsevier Science,1993.
    [127]薛伟辰,康清梁.纤维塑料筋混凝土梁受力性能的试验研究[J].工业建筑,1999,29(12):8-10.
    [128]王勃,何政,张新越,欧进萍.纤维聚合物筋在土木工程中的应用[J].建筑技术,2003,34(2):134-137.
    [129]曹双寅,邱洪兴,王恒华.结构可靠性鉴定与加固技术[M].北京:中国水利水电出版社,2001.
    [130]赵彤,谢剑.碳纤维布补强加固混凝土结构新技术[M].天津:天津大学出版社,2001.
    [131]高作平,陈明祥.混凝土结构粘帖加固技术新进展[M].北京:中国水利水电出版社,1999.
    [132]ACI Committee 440. Guide for the design and construction of concrete FRP bars[C]. American Concrete Institute,2006.
    [133]BAKIS C E. FRP Composites:Materials and Manufacturing Fiber-Reinforced-Plastic Reinforcement for Concrete Structures: Properties and Applications,1993,:13-58.
    [134]VICKI L BROWN, CHARLES L BARTHOLOMEW. FRP Reinforced Concrete Members [J]. ACI Materials Journal,1993,90(1):34-39.
    [135]HAMID SAADATMANESH. Fiber Composite for New and Existing Structures[J]. ACI Structural Journal,1994,91(3):346-354.
    [136]CHARLES W. DOLAN. FRP Prestressing in the U. S. A[J]. Concrete International,1999,10:21-24.
    [137]SAMI RIZKALLA, PIEERE LABOSSIERE. Structural Engineering with FRP-in Canada[J]. Concrete International,1999,10:33-36.
    [138]JOHN J Repair Using Fiber Reinforceed Polymer:Application[R]. Virginia FRP Showcase,2006,9.
    [139]王文炜,赵国藩.碳纤维布加固已承受荷载的钢筋混凝土梁抗弯性能试验研究及抗弯承载力计算[J].工程力学,2004,21(4):172-178.
    [140]王文炜,赵国藩.纤维复合材料增强(加固)钢筋混凝土梁正截面抗弯承载力计算[J].建筑结构学报,2004,25(3):92-98

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700