松耦合模型驱动的流域水资源管理决策支持系统研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流域水资源具有发电、供水、航运、灌溉、养殖等多种适用价值和功能,如何合理开发、利用、节约和保护水资源并防治水害是一个事关科学发展的全局性根本性问题,同时也是一个关系国计民生的战略问题。我国水资源相当贫乏,水问题异常突出,且随着人类活动对水资源系统扰动程度的加深以及社会发展进程的高速推进,水资源的供需矛盾将更加严重,另一方面,近些年极端气候事件频发态势进一步增加了流域水资源管理的复杂性与不确定性。如何在流域范围内以最少的水资源、资金和人力的投入获得最大的社会效益、经济效益和环境效益是当前流域水资源管理的首要目标。流域水资源系统是一个受诸多方面因素影响的复杂系统,且流域水资源管理决策过程涉及社会、经济、水文、水动、水工和生态等多个领域,是一个典型半结构化的多层次、多主体、多目标决策问题,以信息管理系统为代表的传统模式已无法适应现代流域水资源管理的需求。基于预报、分析、局部搜索、多目标多属性决策、最优化、模拟、评估、知识、方法、数字化技术等多学科辅助决策运算单元(本文范畴内统称为“模型”,Model)的决策支持系统将辅助流域水资源管理部门更好地开展水资源规划管理工作,其中保证面向决策需求的动态适应性与异质包容性是决定此类决策支持系统性能的关键。本文首次提出了一种以模型为中心,以决策行为优化环与决策技术优化环双层松耦合迭代优化结构为主要特点的决策支持系统建模与设计方法,定义它为松耦合模型驱动决策支持系统(Loose-couplingModel-driven Decision Support System,简称LCMD-DSS),并详细阐述了其决策机理、体系架构以及相关关键技术。近四年来,这一系统方法被成功应用到包括国家973计划项目应用示范在内的水资源管理实际工程应用中,应用效果表明LCMD-DSS具有良好的异质包容性、动态适应性与普适性推广前景。另一方面,随着相关知识产权保护规范与模型应用协议体系的完善,LCMD-DSS将极大地促进科研院所先进的流域水资源管理领域理论算法与实际工程实践相结合的学-研-产新模式的高速发展,为科学地开展流域水资源管理工作,实现“水资源可持续利用”国家战略提供理论基础与技术支撑。本文的主要研究成果和创新点包括:
     (1)针对流域水资源管理决策过程多层次、多主体、多目标且半结构化的特点,设计了基于双层迭代优化结构的持续集成松耦合系统体系,明确了系统框架下各相关角色的作用与分工,探讨了这一系统方法在流域水资源管理领域的决策机理,提出了松耦合模型驱动的流域水资源管理决策支持系统方法;
     (2)针对LCMD-DSS系统集成所面对的海量多源异构数据集成、网络分布式开放模型集成与基于GIS动态生成交互平台搭建等难题,综合运用地球科学、信息科学、计算机科学、空间科学、通信科学、管理科学、经济人文科学等多学科理论和技术成果,结合数字工程方法克服传统信息系统的物理边缘、技术边缘、功能边缘和逻辑思维边缘,建立了流域水资源管理统一数据共享平台,研发了网络分布式模型驱动的水资源管理智能化开放式模型库,设计并实现了基于WPF与GIS的动态生成交互平台,为LCMD-DSS双层迭代优化机制提供了核心技术支撑;
     (3)针对流域水资源管理情景推演需求,综合考虑不规则边界和复杂地形的浅水流动数值计算问题,基于不规则三角形网格单元求解二维浅水方程的高精度Godunov型有限体积模型;研发了一系列用于数据分析与可视化转换的普适性GP服务,以模型的形式集成到系统开放式模型库,实现了流域水资源管理情景推演的数值仿真及可视化模拟;
     (4)以国家治水方针、水利部可持续利用治水新思路为指导,以辅助水行政主管部门自上而下调度协调流域水资源为目的,以研究并实现具有普适性意义的流域水资源管理决策支持系统为切入点,以持续优化LCMD方法的系统理论框架(决策行为优化环)与技术储备库(决策技术优化环)为技术路线,开展了LCMD-DSS在流域水资源管理领域的示范推广工作。
Basin water resources have many applicable values and functions, such as flood control,power generation, water supply, navigation, irrigation and aquaculture. The way forrational development, utilization, conservation and protection of water resources asprevention of water disaster is a matter of global fundamental issues to scientificdevelopment, as well as a livelihood strategy. The water resources are very poor in China,exception highlighting on the water problem. With the development of industry andagriculture, as the improving live standards of urban and rural people, the contradictionbetween demand and supply of the water resources will become more serious. On theother hand, frequent extreme weather events during recent years further increase thecomplexity and uncertainty about the basin-water-resources management. Its primaryobjective is the way to use the water resources with minimal input from, financial andhuman resources to maximize social, economic and environmental benefits.Basin-water-resources system is a complex system under the effect on many aspects.Furthermore, the decision-making process of basin-water-resources management involvedmultiple areas, e.g. social, economic, hydrological, water flowing, hydraulic andecological. Therefore, it is a typical half structure problem with multi-levels,multi-department and multi-objective properties. The traditional information managementsystem cannot adapt the needs of modern basin-water-resources management. Based onthe multidisciplinary decision-making operation unit, such as forecast, analysis, localsearch, and multi-objective multi-property decision-making, optimization, simulation,assessment, knowledge search, method and digital technology, which are defined as Modelin this paper, decision support system will help the basin-water-resources manager to becarried out management better. Its key points are dynamic adaptability and heterogeneity.This article proposed a model-centric, two-tier loosely coupled iterative optimizationstructure with Behavior-optimized-ring and Technology-optimized-ring as the mainfeature. We define this new system as a Loose-coupling Model-driven Decision SupportSystem, referred to LCMD-DSS, and propose its decision-making mechanism, systemarchitecture and key technologies. For nearly four years, this method is widely applied to alarge number of practical applications, represented by the973project. Compared with traditional solutions, we believe that this model-driven method is reasonable, reliable andflexible, thus has bright prospects of application for comprehensive basin-water-resourcesmanagement. On the other hands, with the development of intellectual property protectionand model application agreement, LCMD-DSS will greatly promote the advancement ofthe new learn-Institute-produced mode by combining the theory algorithm and actualengineering practice. It can provide theory and technology support for the sciencebehavior to carry out basin-water-resources management work, as achieve the nationalstrategy which titled Continued Using of Water Resource. This article's main point ofresearch and innovation are as follows:
     (1) Focusing the half-structure, multi-levels, multi-department and multi-objectiveproperties of basin-water-resources management, we design a two-tier iterativeoptimization structure for continued integrated loose-coupling system, set up the divisionof the related roles, illustrate the loose-coupling technical framework through identifyingand incorporating the key components, define our LCMD method and propose anarchitecture for designing;
     (2) Facing the integration challenges of LCMD-DSS, such as integrating of massmulti-source heterogeneous data, distributed open model gallery and based on GIS-baseddynamic generated interactive platform. Using multi-discipline method, i.e. earth science,information science, computer science, space science, communications science,management science, economic, first, a uniform data platform (as Database Service) ispresented to share multi-source data. Next, an open library (as Multidisciplinary ModelService) is presented to integrate cross-platform models. And, a universal linkage (as GISService) between GIS and models is presented by use of Service-oriented approach.Finally, a flexible interface system (as Interface Service) is presented to help practitionerscustomize the application for decision makers. They can provide technology support fortwo-tier loosely coupled iterative optimization structure of LCMD-DSS;
     (3) A well-balanced Godunov-type finite volume algorithm is developed for modelingfree-surface shallow flows over irregular topography with complex geometry. Thealgorithm is based on a new formulation of the classical shallow-water equations inhyperbolic conservation form. Unstructured triangular grids are used to achieve the adaptability of the grid to the geometry of the problem and to facilitate localizedrefinement. The numerical fluxes are calculated using HLLC approximate Riemann solver,and the MUSCL-Hancock predictor-corrector scheme is adopted to achieve thesecond-order accuracy both in space and in time where the solutions are continuous, andto achieve high-resolution results where the solutions are discontinuous. The novelties ofthe algorithm include preserving well-balanced property without any additional correctionterms and the wet/dry front treatments. It provides a platform for numerical simulation andvisual simulation of basin-water-resources management stories;
     (4) Following the guide of new basin-water-resources management thought, the targetof supporting water-administrative-sector to coordinate their work, the need of developingthe general suitable decision support system, and the way to continued optimizationLCMD method by the theory framework, referred to Behavior-optimized-ring, andtechnology library, referred to Technology-optimized-ring, the LCMD-DSS was employedto manage the basin-water-resources for experimental detection.
引文
[1]阮本清,流域水资源管理[M].北京:科学出版社,2001.
    [2]杨桂山,于秀波,李恒鹏,高峻峰,流域综合管理导论[M].北京:科学出版社,2004.
    [3]王永伟,刘芳宇,时淑英,等.,水资源管理决策支持系统的应用及其发展趋势[J].农业与技术,30(004):15-17,2010.
    [4]赵宝璋,水资源管理[M].北京:水利水电出版社,1994.
    [5] Hall, W.A., Buras, N., The dynamic programming approach to water‐resourcesdevelopment [J]. Journal of Geophysical Research,66(2):517-520,1961.
    [6]任钟淳, Ho, P.K.,用增量动态规划法进行联合水资源系统分析[J].水利学报(9):32-41,1994.
    [7]崔振才,郭临华,田文苓.水资源系统模糊优化多维动态规划模型与应用[J].水科学进展,11(2),2002.
    [8]谷红梅,邱林,张民安.渭南市城市供水水资源优化配置研究[J].人民黄河,27(12),2005.
    [9]陈守煜,黄宪成,李登峰,大连市水资源利用与宏观经济协调发展规划多目标群决策模型与方法[J].水利学报,34(3),2003.
    [10]王好芳,董增川,基于量与质的多目标水资源配置模型[J].人民黄河,26(6),2004.
    [11]谢新民,岳春芳,阮本清,基于原水-净化水耦合配置的多目标递解控制模型[J].水利水电科技进展,25(3),2005.
    [12]周玉琴,王丽萍,张保生,等,深圳市东部供水系统优化配置方案研究[J].中国农村水利水电(5):007,2005.
    [13]王艳芳,崔远来,顾世祥,等.系统动力学在水资源优化配置中的应用[J].水电能源科学,24(5),2006.
    [14]张长江,徐征和,贠汝安,应用大系统递阶模型优化配置区域农业水资源[J].水利学报,36(12),2005.
    [15]熊范伦,邓超,退火遗传算法及其应用[J].生物数学学报,15(2),2000.
    [16]方红远,邓玉梅,董增川,多目标水资源系统运行决策优化的遗传算法[J].水利学报,32(9),2001.
    [17]周丽,黄哲浩,杜惠萍,多目标非线性水资源优化配置模型的混合遗传算法[J].水电能源科学,23(5),2005.
    [18]陈南祥,李跃鹏,徐晨光,基于多目标遗传算法的水资源优化配置[J].水利学报,37(3),2006.
    [19]农卫红,多目标模糊优选理论在水资源系统中的应用[J].广西水利水电,(3),2001.
    [20] Power, D.J., Decision support systems: concepts and resources for managers [M].Greenwood Publishing Group,2002.
    [21]刘宁,王建华,赵建世,现代水资源系统解析与决策方法研究[M].北京:科学出版社,2010
    [22] Gorry, G.A., Seott, M.M., A framework for management information systems [J].Sloan Management Review,13(l):55-70,1971.
    [23]胡东波,模型驱动的决策支持系统研究[D].中南大学,2009.
    [24] Power, D.J. and Sharda, R., Model-driven decision support systems: Concepts andresearch directions [J]. Decision Support Systems,43(3):1044-1061,2007.
    [25] Alter, S.L., Decision Support Systems: Current Practice and Continuing Challenge[R]. Reading, MA: Addison-Wesley,1980.
    [26] Bonczek, R.H., Holsapple, C.W., and Whinston, A.B., Foundations of DecisionSupport Systems [N]. New York: Academic Press,1981.
    [27] Holsapple, C.W., et al., Decision support systems: A knowledge-based approach[M]. St. Paul, MN: West Publishing Company,1996.
    [28] Power D.J., A brief history of decision support systems [J]. DSSResources.COM,World Wide Web, http://DSSResources.com/history/dsshistory.html, version4,2007.
    [29] Saaty T.L., Decision making for leaders [J]. Systems, Man and Cybernetics, IEEETransactions on,3:450-452,1985.
    [30] Sharda, R., Barr, S., and McDonnell, J., Decision Support Systems Effectiveness: AReview and an Empirical Test [J]. Management Science,34(2):139-159,1988.
    [31] Armstrong, M.P., Densham, P.J. and Rushton, G., Architecture for a microcomputerbased spatial decision support system [R]. Second International Symposium onSpatial Data Handling, International Geographics Union,120:131,1986.
    [32] Inmon, W. H., Building the data warehouse [M]. John wiley&sons,2005.
    [33] Codd, E. F., Providing OLAP (On-Line Analytical Processing) to User Analysts:An IT Mandate [J]. White Paper, EF Codd&Asociates,1993.
    [34] Rockart, John F., Chief executives define their own data needs [J]. Harvardbusiness review,57(2):81,1979.
    [35] Dhar, V., Stein, R., Intelligent decision support methods: the science of knowledgework [M]. Prentice-Hall, Inc,1996.
    [36]赖邦传,数据驱动的综合智能决策支持系统及其生成器的研究与开发[D].中南大学,2004.
    [37] Engelbart, D.C., Augmenting Human Intellect: A Conceptual Framework [J]. AirForce Office of Scientific Research, AFOSR-3233, October1962.
    [38] Turoff, M., Delphi Conferencing: Computer Based Conferencing with Anonymity[J]. Journal of Technological Forecasting and Social Change,1970,3(2):159-204.
    [39] Gray, P., the SMU decision room project, Transactions of the Ist InternationalConference on Decision Support Systems [C]. Atlanta, Ga.,1981,122-129.
    [40] Huber, G. P., Group decision support systems as aids in the use of structured groupmanagement techniques [C]. Transactions of the2nd International Conference onDecision Support Systems,1982,96-103.
    [41] Turoff, M. and S. R. Hiltz, Computer support for group versus individual decisions[C]. IEEE Trans. Communications, COM-30,1,1982,82-90.
    [42]吴强,智能群体决策支持系统中若干关键理论与方法研究[D].中国科学技术大学,2006.
    [43] Bush, V., As we may think [M]. The Atlantic Monthly,2006.
    [44] Abraham, A., Rule‐Based Expert Systems [M]. Handbook of measuring systemdesign,2005.
    [45] Mcdermott, J., R1: A rule-based configurer of computer systems [J]. Artificialintelligence,19(1):39-88,1982.
    [46] Sprague, R.H., Watson, H.J., Decision Support Systems: Putting Theory intoPractice [M]. Englewood Clifts, NJ, Prentice Hall,1993.
    [47]王欣,数据集成技术若干问题的研究[D].上海交通大学,2010.
    [48] Ziegler, P., Dittrich, K.R., Data integration-problems, approaches, and perspectives[M]. Conceptual Modelling in Information Systems Engineering. Springer BerlinHeidelberg,39-58,2007.
    [49] Ziegler, P., Dittrich, K.R., Three decades of data integration-all problems solved[C].18th IFIP World Computer Congress (WCC2004). Toulouse, France: WCC,12:3-12,2004.
    [50] Lenzerini M., Data integration: A theoretical perspective[C]. Proceedings of thetwenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles ofdatabase systems. ACM,233-246,2002.
    [51] Rahm, E., Bernstein, P.A., A survey of approaches to automatic schema matching[J]. The VLDB Journal,10(4):334-350,2001.
    [52] Chang, C.H., Kayed, M., Girgis, R., et al., A survey of web information extractionsystems [J]. Knowledge and Data Engineering, IEEE Transactions on,18(10):1411-1428,2006.
    [53] Laender, A.H.F., Ribeiro-Neto, B.A., da Silva, A.S., et al., A brief survey of webdata extraction tools [J]. ACM Sigmod Record,31(2):84-93,2002.
    [54] Han, J., Kamber, M., Pei, J., Data mining: concepts and techniques [M]. Morgankaufmann,2006.
    [55] Li, T., Li, Q., Zhu, S., et al., A survey on wavelet applications in data mining [J].ACM SIGKDD Explorations Newsletter,4(2):49-68,2002.
    [56] Rahm, E., Do, H.H., Data cleaning: Problems and current approaches [J]. IEEEData Engineering Bulletin,23(4):3-13,2000.
    [57] Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S., Duplicate record detection: Asurvey [J]. Knowledge and Data Engineering, IEEE Transactions on,19(1):1-16,2007.
    [58] Dong, X.L., Naumann, F., Data fusion: resolving data conflicts for integration [J].Proceedings of the VLDB Endowment,2(2):1654-1655,2009.
    [59] Cheng, R., Kalashnikov, D.V., Prabhakar, S., Querying imprecise data in movingobject environments [J]. Knowledge and Data Engineering, IEEE Transactions on,16(9):1112-1127,2004.
    [60] Trivedi, M.M., Huang, K.S., Mikic, I., Dynamic context capture and distributedvideo arrays for intelligent spaces [J]. Systems, Man and Cybernetics, Part A:Systems and Humans, IEEE Transactions on,35(1):145-163,2005.
    [61] Han, Q., Venkatasubramanian, N., Timeliness-accuracy balanced collection ofdynamic context data [J]. Parallel and Distributed Systems, IEEE Transactions on,18(2):158-171,2007.
    [62] Halevy, A.Y., Answering queries using views: A survey [J]. The VLDB Journal-TheInternational Journal on Very Large Data Bases,10(4):270-294,2001.
    [63] Ives, Z., Khandelwal, N., Kapur, A., et al., ORCHESTRA: Rapid, collaborativesharing of dynamic data [J]. CIDR, January,2005.
    [64]邵荃,突发事件应急平台模型库中模型链构建方法的研究[D].清华大学,2009.
    [65] Lenard, M.L., Representing models as data [J]. Journal of ManagementInformation Systems:36-48,1986.
    [66] Dolk, D.R., Model management and structured modeling: The role of aninformation resource dictionary system [J]. Communications of the ACM,1988,31(6):704-718.
    [67] Blanning, R.W., An entity-relationship approach to model management [J].Decision Support Systems,2(1):65-72,1986.
    [68] Geoffrion, A.M., SML: A model definition language for structured modeling [M].Western Management Science Institute, University of California, Los Angeles,1990.
    [69] Ma, J., An object-oriented framework for model management [J]. Decision SupportSystems,13(2):133-139,1995.
    [70]陈海燕,刘珍,刘建勋.基于XML的工作流模型表示及映射算法研究[J].计算机工程与科学,32(007):147-150,2010.
    [71] Christophe, F., Bernard, A., Coatanéa, é., RFBS: A model for knowledgerepresentation of conceptual design [J]. CIRP Annals-Manufacturing Technology,59(1):155-158,2010.
    [72] Krishnan, R., Chari, K., Model management: survey, future research directions anda bibliography [J]. Interactive Transactions of OR/MS,3(1),2000.
    [73] Muhanna, W.A., SYMMS: a model management system that supports model reuse,sharing, and integration [J]. European Journal of Operational Research,72(2):214-242,1994.
    [74] Liang, T., Development of a Knowledge-Based Model Management SystemSpecial Focus Article [J]. Operations Research,36(6):849-863,1988.
    [75] Basu, A., Blanning, R.W., The analysis of assumptions in model bases usingmetagraphs [J]. Management Science,44(7):982-995,1998.
    [76] Chari, K., Model composition in a distributed environment [J]. Decision SupportSystems,35(3):399-413,2003.
    [77] Van Tol, A.A., Descriptive simulation modeling with resource allocation usingbelief networks [M].2002.
    [78] Van Tol, A.A., AbouRizk S M. Simulation modeling decision support throughbelief networks [J]. Simulation Modelling Practice and Theory,14(5):614-640,2006.
    [79] Li, N., Hong, Z., et al., Dynamic Integration Mechanism for Job-Shop SchedulingModel Base Using Multi-agent [C]. Information Management, InnovationManagement and Industrial Engineering,2009International Conference on. IEEE,4:421-425,2009.
    [80]王劲峰,等,空间分析[M].北京:科学出版社,2006.
    [81] Ali, M.H., Shui, L.T., Walker, W.R. Optimal water management for reservoir basedirrigation projects using Geographic Information System [J]. Journal of irrigationand drainage engineering,129(1):1-10,2003.
    [82] Kamal, R.M., GIS-based irrigation water management for precision farming of rice[J]. International Journal of Agricultural and Biological Engineering,3(3):27-35,2010.
    [83] Gómez‐Delgado, M., Tarantola, S., GLOBAL sensitivity analysis, GIS and multi‐criteria evaluation for a sustainable planning of a hazardous waste disposal sitein Spain [J]. International Journal of Geographical Information Science,20(4):449-466,2006.
    [84]叶亚妮,施宏伟.国外流域水资源管理模式演进及对我国的借鉴意义[J].西安石油大学学报(社会科学版),16(2):11-16,2007.
    [85]吴雷,基于GIS技术的区域水资源量评价研究[J].水利水运科学研究(2):170-177,1998.
    [86]王美霞,任志远,王永明,等,基于GIS的关中-天水经济区水资源承载力评价[J].干旱地区农业研究6:222-227,2010.
    [87]张兰兰,赵文吉,赵强,基于RS与GIS的水资源环境监测评价方法研究[J].首都师范大学学报(自然科学版),25(2),2004.
    [88]魏文秋,于建营,地理信息系统在水文学和水资源管理中的应用[J].水科学进展,8(3):296-300,1997.
    [89]齐晓东,面向服务的异构设备界面生成工具的研究与实现[D].西北大学,2012.
    [90] Turner, K.J., Using Formal Description Techniques: An Introduction to Estelle,Lotos, and SDL [M]. John Wiley&Sons, Inc.,1993.
    [91] Scott, M.L., Yap, S.K., A grammar-based approach to automatic generation ofuser-interface dialogues [C]. Proceedings of the SIGCHI conference on Humanfactors in computing systems. ACM73-78,1988.
    [92] Elkoutbi, M., Keller, R.K., User interface prototyping based on UML scenarios andhigh-level Petri nets [M]. Application and Theory of Petri Nets2000. SpringerBerlin Heidelberg166-186,2000.
    [93]朱军,张高,华庆一,等.,交互式用户界面的形式化描述与验证[J].软件学报,10(11):34-37,1999.
    [94] Engelson, V., Fritzson, D., Fritzson, P., Automatic generation of user interfacesfrom data structure specifications and object-oriented application models [M].ECOOP’96—Object-Oriented Programming. Springer Berlin Heidelberg114-141,1996.
    [95] Stirewalt, R.E.K., Rugaber, S., Automating UI generation by model composition[C].Automated Software Engineering,1998, Proceedings,13th IEEE InternationalConference on. IEEE177-186,1998.
    [96] Borchers, J.O., A pattern approach to interaction design [C]. Proceedings of the3rdconference on Designing interactive systems: processes, practices, methods, andtechniques, ACM,369-378,2000.
    [97] Müller, A., Forbrig, P., Cap, C., Model-based user interface design using markupconcepts [M]. Interactive Systems: Design, Specification, and Verification.Springer Berlin Heidelberg16-27,2001.
    [98] Pfaff, G.E., User interface management systems [M]. Springer-Verlag New York,Inc.,1985.
    [99] Valiant, L.G., A theory of the learnable [J]. Communications of the ACM,27(11):1134-1142,1984.
    [100] Saleh, E., Kamel, A.M.R., Fahmy, A., A model driven engineering design approachfor developing multi-platform user interfaces [J]. WSEAS Transactions onComputers,9(5):536-545,2010.
    [101] Fazlollahi, B., Parikh, M. A.,&Verma, S., Adaptive decision support systems [J].Decision support systems,20(4),297-315,1997.
    [102] McKinney, D. C. and Cai, X.: Linking GIS and water resources managementmodels: an objectoriented method [J], Environmental Modelling&Software,17,413–425,2002.
    [103]陈晓红,徐选华.决策应用软件开发平台SmartDecisio研制[J].管理学报,3(3):253-257,2006.
    [104]童明生. MIS系统开发模型及其方法[J].计算机工程与应用,32(5):70-73,1996.
    [105]李欣苗.决策支持系统[M].北京:清华大学出版社,2012.
    [106] Liu, Y., Zhou, J.Z., Song, L.X., Zou, Q., Guo, J., Wang, Y.R., Efficient GIS-basedmodel-driven method for flood risk management and its application in centralChina [J]. Natural Hazards and Earth System Sciences Discussions,1:1535-1577,2013.
    [107] Abiteboul, S., Buneman, P., Suciu, D., Data on the Web: from relations tosemistructured data and XML [M]. Morgan Kaufmann Pub,2000.
    [108] Sch fer E., Becker, J.D., Boehmer, A., Jarke, M., DB-Prism: Integrated datawarehouses and knowledge networks for bank controlling [C]. Proceedings of theinternational conference on very large data bases,715-718,2000.
    [109] Schwinn, A., Schelp, J., Data integration patterns [J]. Business InformationSystems, Colorado Springs,232-238,2003.
    [110]邓绪斌,面向复杂数据源的数据抽取模型和算法研究[D].复旦大学,2005.
    [111] Anokhin, P., Motro, A., Data integration: Inconsistency detection and resolutionbased on source properties [C]. Proceedings of FMII-01, International Workshopon Foundations of Models for Information Integration,2001.
    [112] Rahm, E., Do, H.H., Data cleaning: Problems and current approaches [J]. IEEEData Engineering Bulletin,23(4):3-13,2000.
    [113] Schallehn, E., Sattler, K.U., Saake, G., Efficient similarity-based operations for dataintegration [J]. Data&Knowledge Engineering,48(3):361-387,2004.
    [114] Hu, J., Khalil, I., Han, S., and Mahmood, A.: Seamless integration of depend abilityand security concepts in SOA, A feedback control system based framework andtaxonomy, J. Netw. Comput. Appl.,34,1150–1159, doi:10.1016/j.jnca.2010.11.013,2011.
    [115] Quesenbery, W., The five dimensions of usability [J]. Content and complexity:Information design in technical communication,75-93,2003.
    [116] Pan, C.H., Dai, S.Q., Chen, S.M., Numerical simulation for2D shallow waterequations by using Godunov-type scheme with unstructured mesh [J]. Journal ofHydrodynamics,18:475-480,2006.
    [117] Zoppou, C., Roberts, S., Numerical solution of the two-dimensional unsteady dambreak [J]. Applied Mathematical Modelling,24:457-475,2000.
    [118] Singh, J., Altinakar, M.S., Ding, Y., Two-dimensional numerical modeling ofdam-break flows over natural terrain using a central explicit scheme [J]. Advancesin Water Resources,34:1366-1375,2011.
    [119] Song, L.X. Zhou, J.Z. Li, Q., Yang, X., Zhang, Y.C., An unstructured finite volumemodel for dam-break floods with wet/dry fronts over complex topography [J].International Journal for Numerical Methods in Fluids,67:960-980,2011.
    [120] F. Benkhaldoun, S. Sari, M. Seaid, A flux-limiter method for dam-break flows overerodible sediment beds [J]. Applied Mathematical Modelling,36(10):4847-4861,2011.
    [121] Xia, J., Lin, B., Falconer, R.A., Wang, G., Modelling dam-break flows over mobilebeds using a2D coupled approach [J]. Advances in Water Resources,33:171–183,2010.
    [122]岳志远,曹志先,车涛,等,冰湖溃决洪水的二维水动力学数值模拟[J].冰川冻土,5:756-763,2007.
    [123]王鑫,曹志先,岳志远,强不规则地形上浅水二维流动的数值计算研究[J].水动力学研究与进展:A辑,24(1):56-62,2009.
    [124] Brown, J.D., Spencer, T., Moeller, I., Modeling storm surge flooding of an urbanarea with particular reference to modeling uncertainties: a case study of CanveyIsland [J]. United Kingdom, Water Resources Research,43, W06402,2007.
    [125] Gallegos, H.A., Schubert, J.E., Sanders, B.F., Two-dimensional, high-resolutionmodeling of urban dam-break flooding: a case study of Baldwin Hills, California[J]. Advances in Water Resources,32:1323-1335,2009.
    [126] Pan, C.H., Dai, S.Q., Chen, S.M., Numerical simulation for2D shallow waterequations by using Godunov-type scheme with unstructured mesh [J]. Journal ofHydrodynamics,18:475-480,2006.
    [127] Pan, C.H., Lin, B.Y., Mao, X.Z., Case Study: Numerical Modeling of the TidalBore on the Qiantang River, China [J]. ASCE Journal of Hydraulic Engineering,133:130-138,2007.
    [128] Qi, D.M., Ma, G.F., Gu, F.F., Mou, L., An unstructured grid hydrodynamic andsediment transport model for Changjiang Estuary [J], Journal of Hydrodynamics,221015-1021,2010.
    [129] Alcrudo, F., Garcia-Navarro, P., A high-resolution Godunov-type scheme in finitevolumes for the2D shallow-water equations [J]. International Journal forNumerical Methods in Fluids,16:489-505,1993.
    [130] Toro, E.F., Shock-capturing methods for free-surface shallow flows [J]. John Wiley&Sons Ltd, Chichester, England,2001.
    [131] Liu, H., Zhou, J.G., Burrows, R., Lattice Boltzmann simulations of the transientshallow water flows [J]. Advances in Water Resources,33:387-396,2010.
    [132]宋利祥,溃坝洪水数学模型及水动力学特性研究[D].华中科技大学,2012.
    [133] Liu, Y., Zhou, J.Z., Song, L.X., Zou, Q., Liao, L., Wang, Numerical modelling offree-surface shallow flows over irregular topography with complex geometry [J].Applied Mathematical Modelling,2013.
    [134] Song, L., Zhou, J., Guo, J., Zou, Q., Liu, Y., A robust well-balanced finite volumemodel for shallow water flows with wetting and drying over irregular terrain [J].Advances in Water Resources,34:915-932,2011.
    [135] Liang, Q., Borthwick, A.G.L., Adaptive quadtree simulation of shallow flows withwet-dry fronts over complex topography [J], Computers&Fluids,38,221-234,2009.
    [136] Begnudelli, L., Sanders, B.F., Unstructured grid finite-volume algorithm forshallow-water flow and scalar transport with wetting and drying [J], ASCE Journalof Hydraulic Engineering,132:371-384,2006.
    [137] Hubbard, M.E., Multidimensional slope limiters for MUSCL-type finite volumeschemes on unstructured grids [J], Journal of Computational Physics,155:54-74,1999.
    [138] Hager, W.H., Schwalt, M., Jimenez, O., Hanif Chaudhry, M., Supercritical flownear an abrupt wall deflection [J]. Journal of Hydraulic Research,32:103-118,1994.
    [139]邸凯昌,空间数据挖掘和知识发现的理论与方法[D].武汉测绘科技大学,1999.
    [140]周海燕,空间数据挖掘的研究[D].中国人民解放军信息工程大学测绘学院,2003.
    [141]周建中,国家重点基础研究发展计划“坝堤溃决风险分析理论与评估方法”课题结题验收总结报告[R].国家科技部,2011.
    [142]郭俊,周建中,王光谦,张勇传.概念性流域水文模型参数多目标优化率定[J].水科学进展,23(4):447-456,2012.
    [143]谢龙大,王宁,卢可源,等.水旱灾害灾情评估方法的研究[J].浙江水利科技,(6):1-4,2001.
    [144]周成虎.洪水灾害评估信息系统研究[M].北京:中国科学技术出版社,1993.
    [145] Xie, T., Zhou, J.Z., Song, L.X., et al. Dynamic evaluation and implementation offlood loss based on GIS grid data [M]. Applied Informatics and Communication,Springer Berlin Heidelberg:558-565,2011.
    [146]李绍飞,余萍,孙书洪.基于神经网络的蓄滞洪区洪灾风险模糊综合评价[J].中国农村水利水电,6:60-64,2008.
    [147]张会,张继权,韩俊山.基于GIS技术的洪涝灾害评估与区划研究:以辽河中下游地区为例[J].自然灾害学报,14(6):141-146,2005.
    [148]杜鹃,何飞,史培军.湘江流域洪水灾害综合风险评价[J].自然灾害学报,15(6):38-44,2006.
    [149]邹强,周建中,周超,等.基于最大熵原理和属性区间识别理论的洪水灾害风险分析[J].水科学进展,23(3):323-334,2012.
    [150]邹强,周建中,等.基于可变模糊集理论的洪水灾害风险分析[J].农业工程学报,28(5):126-132,2012.
    [151]王文圣,金菊良,李跃清.基于集对分析的自然灾害风险度综合评价研究[J].四川大学学报:工程科学版,41(6):6-12,2009.
    [152]周建中,水利部公益性行业科研专项“湘江流域鱼类洄游通道恢复需求与对策研究”课题“湘江干流鱼类洄游通道恢复决策支持系统研究”专题结题验收总结报告[R].国家水利部,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700