冷弯薄壁型钢混凝土剪力墙抗震性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冷弯薄壁型钢混凝土剪力墙(CTSRC剪力墙)结构是一种新型工业化住宅结构体系。本文对CTSRC剪力墙结构的受力性能进行了系统的研究,主要工作和成果如下:
     (1)CTSRC剪力墙结构多层住宅抗震性能的试验研究。进行了4片墙体和一栋3层足尺结构的拟静力试验,研究了该结构体系的构造措施、纵筋和钢模网对墙体受力性能的影响,以及整体结构的抗震性能。研究表明,该结构体系受力性能良好,可满足多层住宅的抗震要求。在此基础上提出了多层CTSRC剪力墙结构的设计建议。
     (2)CTSRC剪力墙受力性能的试验研究。进行了12片强弯弱剪剪力墙的拟静力试验,研究了关键构造、剪跨比、轴压比、水平分布筋、型钢截面积、混凝土强度等参数对CTSRC剪力墙抗震性能的影响。试验结果表明,CTSRC剪力墙的破坏经历整截面墙到分缝墙的过程,可避免脆性剪切破坏,有较好的抗震性能。研究表明,随剪跨比增大,CTSRC剪力墙的受剪承载力降低;提高水平分布筋配筋率可提高墙体受剪承载力,减小承载力退化程度;在一定范围内竖向型钢配置量对墙体的受力性能影响较小。
     (3)CTSRC剪力墙受剪承载力理论分析模型研究。根据CTSRC剪力墙受力机制,提出了计算CTSRC剪力墙受剪承载力的拉压杆-滑移理论分析模型,计算结果与试验结果吻合良好。
     (4)CTSRC剪力墙恢复力模型研究。在试验研究基础上,提出了CTSRC剪力墙的水平力-位移三折线骨架曲线模型,建议了各特征点的计算方法,采用Lu-Qu模型给出了CTSRC墙体滞回曲线及相关参数的确定方法,模拟结果与试验结果吻合较好。
     (5)CTSRC剪力墙受弯性能分析。在已有试验研究的基础上,分析了CTSRC剪力墙的受弯性能,建议了抗弯承载力计算方法。(6)提出了高层结构CTSRC剪力墙的设计建议。
The shear walls of cold-formed thin-walled steel reinforced concrete (CTSRC) have lately emerged in modern residential building structures. The present study was focused on the seismic performance of the CTSRC shear walls, and the primary investigations and researching findings were outlined as follows.
     (1) The full scale quasi-static tests were performed on four shear walls and one 3-story model structure, respectively. The effects of the structural configurations, cold-formed thin-walled steel and the steel meshes on the seismic behavior of CTSRC structures were analyzed. It was shown that CTSRC structures can work efficiently to meet with the seismic requirements of multi-storey buildings. Recommendations for the design of multi-storey CTSRC composite structures were suggested.
     (2) Twelve shear walls that were designed to be high flexible resistance and low shear resistance were tested subjected to quasi-static cyclic loadings. Insights were gained into the critical structural configurations and design parameters in regard with the improved seismic performance. Laboratory observations revealed that the CTSRC shear walls started to fail with the vertical visible cracks around the cold-formed thin-walled steel reinforcements and the whole shear wall was eventually split into several wall columns. The observed failure mechanism of CTSRC shear walls should be considered a non-brittle one that helps improve the seismic performance. It was concluded that the shear resistance of CTSRC shear walls decreased with the increase of shear span ratio, and increased with more horizontal rebar. Results also showed that the ductility can be enhanced by more horizontal steel rebar, and cold-formed thin-walled steel had little effect on the performance of the CTSRC shear walls.
     (3) An analytical approach for the prediction of shear resistance of CTSRC shear walls was developed, in which the slip between different wall columns were considered and incorporated into the softened strut-and-tie model. The analytical predictions and test results are in good agreement.
     (4) A tri-linear relationship between lateral shear force and displacement was proposed to describe the hysteretic behaviour of CTSRC shear walls. The hysteretic behavior of the CTSRC walls is simulated with proposed skeleton model and Lu-Qu's hysteretic model, and the analytical results agreed well with the test results.
     (5) Based on the present experimental study, the flexural behavior of CTSRC walls was analyzed which led to a calculation method proposed for the prediction of the flexural resistance of CTSRC walls.
     (6) The design recommendations for the CTSRC shear walls in high rise buildings were proposed.
引文
[1]施楚贤.砌体结构理论与设计(第二版).北京:中国建筑工业出版社, 2003.
    [2]薛伟辰.预制混凝土框架结构体系研究与应用进展.工业建筑,2002, 32(11):47-50.
    [3]舒赣平,孟宪德,王培.轻钢住宅结构体系及其应用.工业建筑,2001, 31(8). 1-4.
    [4]刘承宗,周志勇.我国轻钢建筑及其发展问题探讨.工业建筑. 2000, 30(4):18-23.
    [5]何远宏. Dipy模网混凝土剪力墙力学性能试验分析与设计研究[博士学位论文].上海:同济大学, 2004.
    [6]叶列平,曲哲,陆新征,冯鹏.提高建筑结构抗地震倒塌能力的设计思想与方法.建筑结构学报, 2008, 29(4):42-50.
    [7]清华大学,西南交通大学,重庆大学,等.汶川地震建筑震害分析及设计对策.北京:中国建筑工业出版社, 2009.
    [8]莫庸,金建民,杜永峰等.高烈度地震区建筑结构选型问题的初步探讨—5. 12汶川大地震陇南地区建筑结构震害考察中结构选型问题的思考.工程抗震与加固改造, 2008, 30(4):50-55.
    [9]尹保江,黄世敏,薛彦涛等.汶川5. 12地震框架-剪力墙结构震害调查与反思.工程抗震与加固改造, 2008, 30(4):37-40.
    [10]李宏男,肖诗云,霍林生.汶川地震震害调查与启示.建筑结构学报, 2008, 29(4): 10-19.
    [11]王亚勇.汶川地震建筑震害启示—抗震概念设计.建筑结构学报, 2008, 29(4): 20-25.
    [12]韩丽霞,金德保,莫庸.钢筋混凝土多层框架柱震害初步分析—汶川大地震都江堰灾区钢筋混凝土多层框架柱震害考察的思考.工程抗震与加固改造, 2008, 30(4):41-44.
    [13] Fintel M P E. Performance of buildings with shear walls in earthquakes of the last thirty years. PCI journal, 1995, 40(3): 62-80.
    [14] Wyllie L A, Abrahamson N, Bolt B, et al. The chile earthquake of march 3, 1985 - performance of structures. Earthquake Spectra, 1986, 2(2):293–371.
    [15] Biskinis D E, Roupakias G K, Fardis M N. Degradation of shear strength of reinforced concrete members with inelastic cyclic displacements. ACI Structural Journal, 2004, 101(6):773-783.
    [16] Priestley M J N. Performance Based Seismic Design, XII World Conference on Earthquake Engineering, Auckland, 2000.
    [17] Shaingchina S, Lukkunaprasita P, Wood S L. Influence of diagonal web reinforcement on cyclic behavior of structural walls. Engineering Structures , 2007, 29:498-510.
    [18] Salonikios T N, Kappos A J, Tegos I A, et al. Cyclic load behavior of low-slendernessreinforced concrete walls-failure modes, strength and deformation analysis, and design implications. ACI Structural Journal, 2000, 97(1):132-142.
    [19] Paulay T, Priestley M J N, Synge A J. Ductility in earthquake squat shear walls. ACI Journal. 1982, 79 (4): 257-269.
    [20] Paulay T, Priestly M J N. Seismic design of reinforced concrete and masonary buildings. New York: John Wiley & Sons, 1992.
    [21] Hidalgo P A, Ledezma C A, Jordan R M. Seismic behavior of squat reinforced concrete shear walls. Earthquake Spectra, 2002, 18(2): 287-308.
    [22] Lopes M S. Experimental shear-dominated response of RC walls Part I: Objectives, methodology and results. Engineering Structures, 2001, 23:229-239.
    [23] Salonikios T N, Kappos A J, Tegos I A, et al. Cyclic load behavior of low-slenderness reinforced concrete walls-design basis and test results. ACI Structural Journal, 1999, 96(4):649-660.
    [24] Benjamin J R, Williams H A. The behavior of one-story reinforced concrete shear walls . Journal of Structural Division, ASCE, 1957, 83, (3):1-49.
    [25] Barda F , Hanson J M, Corley W G. Shear strength of low-rise walls with boundary elements. American Concrete Institute, 1977, SP-53: 149-202.
    [26] Cardenas A E, Russell H G, Corley W G. Strength of Low-Rise Structural Walls. American Concrete Institute, 1980, SP-63: 221-242.
    [27] Gulec C K. Ultimate shear strength of squat rectangular reinforced concrete walls[D]. the United States of America, State University of New York at Buffalo, 2005.
    [28] Hsu T C C, Mau S T. Concrete shear in earthquake. London: Elsevier Science Pub. Co. , 1992.
    [29] Wood S L. Shear strength of low-rise reinforced concrete walls. ACI Structural Journal, 1990 , 87(1):99-107.
    [30] Lefas I D, Kotsovos M D, Ambraseys N. Behavior of reinforced concrete structural walls: Strength, deformation characteristics, and failure mechanism. ACI Structural Journal, 1990, 87(1): 23-31.
    [31] Lefas I D, Kotsovos M D. Strength and deformation characteristics of reinforced concrete walls under load reversals. ACI Structural Journal, 1990, 87(6): 716-726.
    [32]蒋欢军,吕西林.新型耗能剪力墙模型低周反复荷载试验研究.世界地震工程, 2000, 16(3): 63-67.
    [33] Iliya R, Bertero V V. Effect of amount and arrangement of wall-panel reinforcement on hysteretic behavior of reinforced concrete walls. Report No. UCB/EERC-80/04. California: University of California Berkeley. Earthquake Engineering Research Center (EERC), 1980.
    [34] Sittipunt C, Wood S L, Lukkunaprasit P, et al. Cyclic behavior of reinforced concretestructural walls with diagonal web reinforcement. ACI structural journal, 2001 98(4), 554-562.
    [35] Sittipunt C, Wood S L. Influence of web reinforcement on the cyclic response of structural walls. ACI Structural Journal, 1995, 92(6):1-12.
    [36]曹万林,张建伟,田宝发,等.带暗支撑低矮剪力墙抗震性能试验及承载力计算.土木工程学报, 2004, 37(3):44-51.
    [37]曹万林,张建伟,田宝发,等.钢筋混凝土带暗支撑中高剪力墙抗震性能研究.建筑结构学报, 2002, 23(6):26-32、55.
    [38]曹万林,张建伟,崔立长,等.钢筋混凝土带暗支撑双功能低矮剪力墙抗震性能研究.建筑结构学报, 2003, 4(1):46-53.
    [39]张建伟,曹万林,田宝发,等.底层大空间带暗支撑剪力墙结构振动台试验研究.建筑结构学报, 2004, 25(6):44-51.
    [40]曹万林,董宏英,胡国振,等.钢筋混凝土带暗支撑双肢剪力墙抗震性能试验研究.建筑结构学报, 2004, 25(3):22-28.
    [41] Cao W L, Zhang J W, Xue S D, et al. Seismic performance of RC shear walls with concealed bracing. Advances in Structural Engineering, 2006, 9(4):577-589.
    [42]曹万林,赵长军,张建伟,等.带暗支撑短肢剪力墙结构振动台试验研究.建筑结构学报, 2008, 29(1):49-56.
    [43] Technical Committee CEN/TC 250. Eurocode 8: Design of structures for earthquake resistance-part 1: General rules, seismic actions and rules for buildings [S]. CEN, Brussels, Belgium, 2003.
    [44]苏州水泥制品研究所.钢筋混凝土抗震结构译文集—钢筋混凝土带缝剪力墙. 1981.
    [45]夏晓东.钢筋混凝土有边框带缝槽低剪力墙抗震性能的试验研究和延性设计[博士学位论文].南京:东南大学, 1989.
    [46]戴航,陈贵.带水平短缝墙及低剪力墙的动力反应和耗能分析.东南大学学报, 1992, 22(5): 58-64.
    [47]李爱群.钢筋混凝土剪力墙结构抗震控制及其控制装置研究[博士学位论文].南京:东南大学, 1992.
    [48]高小旺,薄庭辉,宗志桓.带边框开竖缝钢筋混凝土低矮墙的试验研究.建筑科学, 1995, 11(4): 24-32.
    [49]叶列平,康胜,曾勇.双功能带缝剪力墙的弹性受力性能分析.清华大学学报, 1999, 39 (12) : 79 - 81.
    [50]康胜,曾勇,叶列平.双功能带缝剪力墙的刚度和承载力研究.工程力学, 2001, 18(2):27-34.
    [51]曹万林,张建伟,崔立长,等.钢筋混凝土带暗支撑双功能低矮剪力墙抗震性能试验研究.建筑结构学报, 2003, 24(1):46-53.
    [52]曹万林,田宝发,王洪星,等.钢筋混凝土带暗支撑双功能剪力墙的力学计算模型.地震工程与工程振动, 2001, 21 (2) : 84 - 88.
    [53]王新杰.带竖向软钢—铅耗能带剪力墙抗震性能试验研究[博士学位论文].北京:北京工业大学, 2007.
    [54]李惠,徐强,吴波.钢管混凝土耗能低剪力墙.哈尔滨建筑大学学报, 2000, 33(2): 18-23.
    [55]廖飞宇,陶忠,韩林海.钢-混凝土组合剪力墙抗震性能研究简述.地震工程与工程振动, 2006, 26(5):129-135.
    [56]周云龙.截面形状及配筋对单片剪力墙抗震性能的影响[硕士学位论文].北京:清华大学, 1987.
    [57]张迎春.钢骨混凝土剪力墙的试验研究[硕士学位论文].北京:清华大学, 1993.
    [58]乔彦明,钱稼茹,方鄂华.钢骨混凝土剪力墙的抗剪性能的试验研究.建筑结构,1995, 25(8):3-7.
    [59]乔彦明.钢骨钢筋混凝土剪力墙抗剪性能试验研究[硕士学位论文].北京:清华大学, 1993.
    [60]王志浩,方鄂华,钱稼茹.钢骨混凝土剪力墙的抗弯性能.建筑结构, 1998, 28(2): 13-16.
    [61]黄雄军,罗英,赵世春.劲性砼低剪力墙抗震性能研究.四川建筑科学研究, 1996, 1: 52-55.
    [62]罗英,赵世春.带SRC边框低剪力墙的抗震性能试验研究.西安公路交通大学学报, 1999, 19(2):66-69.
    [63]黄雄军,赵世春.带劲性钢筋混凝土边框低剪力墙的试验研究.西南交通大学学报:自然科学版, 1999, 34 (5):535-539.
    [64]刘航,蓝宗建,庞同和等.劲性钢筋混凝土低剪力墙抗震性能试验研究.工业建筑,1997, 27(5):32-36.
    [65]王曙光,蓝宗建.劲性钢筋混凝土开洞低剪力墙拟静力试验研究.建筑结构学报, 2005, 26(1): 85- 90, 124.
    [66]魏勇,钱稼茹,赵作周等.高轴压比钢骨混凝土矮墙水平加载试验.工业建筑, 2007,37(6):76-79.
    [67]廖飞宇,陶忠.带不同类型边框柱的剪力墙力学性能试验.工业建筑, 2007, 37(12): 1-34.
    [68]廖飞宇.带钢管混凝土边柱的钢筋混凝土剪力墙抗震性能研究[博士学位论文].福州:福州大学, 2007.
    [69]钱稼茹,魏勇,赵作周等.高轴压比钢骨混凝土剪力墙的抗震性能试验研究.建筑结构学报, 2008, 41(2):43-50.
    [70]吕西林,干淳洁,王威.内置钢板钢筋混凝土剪力墙抗震性能研究.建筑结构学报, 2009, 30(5):89-96.
    [71] Katsuhiko E. Compressive and shear strength of concrete filled steel box wall . Steel Structures, 2002, 26(2):29-40.
    [72]曹万林,杨亚彬,张建伟,等.圆钢管混凝土边框内藏桁架剪力墙抗震性能.东南大学学报(自然科学版), 2009, 39(6):1187-1192.
    [73]曹万林,张建伟,董宏英,等.内藏桁架混凝土组合高剪力墙抗震性能.哈尔滨工业大学学报, 2009, 41(4):153-158.
    [74]张建伟,曹万林,王志惠,等.内藏钢桁架组合中高剪力墙的抗震性能.工业建筑, 2009, 39(8):101-105.
    [75]曹万林,范燕飞,张建伟,等.不同轴压比下内藏钢桁架混凝土组合剪力墙抗震研究.地震工程与工程振动, 2007, 27(4):42-46.
    [76]王志惠,曹万林,张建伟等.高轴压比下钢桁架-混凝土组合剪力墙抗震研究.世界地震工程, 2007, 23(2):102-106.
    [77]曹万林,张建伟,陶军平,等.内藏桁架的混凝土组合低剪力墙试验.东南大学学报(自然科学版), 2007, 37(2):195-200.
    [78]陶军平,曹万林,张静娜等.内藏钢桁架混凝土组合低剪力墙抗震性能试验研究.世界地震工程, 2006, 22(2):131-137.
    [79]吕西林,董宇光,丁子文.截面中部配置型钢的混凝土剪力墙抗震性能研究.地震工程与工程振动, 2006, 26(6):101-107.
    [80]董宇光,吕西林,丁子文.型钢混凝土剪力墙抗剪承载力计算公式研究.工程力学, 2007, 24(S1):114-118.
    [81]中华人民共和国建设部. GB/T 50081-2002普通混凝土力学性能试验方法标准.北京:中国建筑工业出版社, 2002.
    [82]过镇海.钢筋混凝土原理.北京:清华大学出版社, 1999.
    [83]叶列平.混凝土结构.北京:清华大学出版社, 2002.
    [84]中华人民共和国建设部. JGJ101-1996建筑抗震试验方法规程.北京:中国建筑工业出版社, 1996.
    [85] Jacobsen L S. Steady forced vibrations as influenced by damping. ASME Transactions, 1930, 52: 169-181.
    [86]中华人民共和国发展和改革委员会. YB9082-2006钢骨混凝土结构设计规程.北京:冶金工业出版社, 2006.
    [87]王宗纲,查支祥,聂建国.构造柱-圈梁体系外多孔砖内混凝土小型空心砌块六层足尺房屋抗震性能试验研究.地震工程和工程振动, 2002, 22(4):90-96.
    [88]高小旺,王菁,肖伟,等.八层砖墙与钢筋混凝土墙组合结构1/2比例模型抗震试验研究.建筑结构学报, 1999, 20(1):31-38.
    [89]许淑芳,冯瑞玉,张兴虎,等.十层钢筋混凝土空心剪力墙结构1/2.8比例模型房屋抗震试验研究.西安建筑科技大学学报, 2006, 38(1):62-68.
    [90]中华人民共和国建设部. JGJ 3-2002高层建筑混凝土结构技术规程.北京:中国建筑工业出版社, 2002.
    [91]中华人民共和国建设部. JGJ114-2003钢筋焊接网混凝土结构技术规程.北京:中国建筑工业出版社, 2003.
    [92]中华人民共和国建设部. GB50011-2001建筑抗震设计规范.北京:中国建筑工业出版社, 2001.
    [93] Massone L M, Wallace J W. Load-deformation response of slender reinforced concrete walls. ACI Structural Journal 2004 , 101(1):103-113.
    [94] Pilakoutas K, Elnashai A S. Interpretation of testing results for reinforced concrete panels. ACI Structural Journal, 1993, 90(6):642-645.
    [95] Pilakoutas K, Elnashai A S. Cyclic behavior of RC cantilever walls, part I-experimental results. ACI Structural Journal, 1995, 92(3):642-645.
    [96] Pilakoutas K, Elnashai A S. Cyclic behavior of reinforced concrete cantilever walls, part II-discussions and theoretical comparisons . ACI Materials Journal, 1995 , 91(2):1-11.
    [97]康胜.钢筋混凝土双功能带缝剪力墙抗震性能研究[硕士学位论文].北京:清华大学, 1999. 6.
    [98] CSA Standard CAN3-A23. 3-04. Design of concrete structures for buildings with explanatory notes. Canadian Standards Association, Rexdale, ON, Canada, 2004.
    [99] Park R, Paulay T. Reinforced concrete structures. John Wiley & Sons, New York, USA. 1975.
    [100] Aktan A, Bertero V. RC structural walls: Seismic design for shear. Journal Structural. Engineering, 1985, 111 (8): 1775–1791.
    [101] Collins M, Mitchell D. A rational approach to shear design: The 1984 Canadian code provisions. ACI Journal, 1986, 83 (80):925–933.
    [102] Siao W. Strut-and-tie model for shear behavior in deep beams and pile caps failing indiagonal splitting. ACI Structural Journal , 1993, 90 (S38):356–363.
    [103] Hsu T T C , Mo Y L. Softening of concrete in low-rise shear walls. ACI Journal, 1985, 82(6):883–889.
    [104] Schlaich J, Scha¨fer K. Design and detailing of structural concrete using strut-and-tie models . Structuaral Engineering, 1991, 69(6):113–125.
    [105]中华人民共和国建设部. GB50010-2002混凝土结构设计规范.北京:中国建筑工业出版社, 2002.
    [106] ACI Committee 318. Building code requirements for structural concrete(ACI318-08) and commentary[S]. American Concrete Institute, Farmington Hills, MI. 2008.
    [107] ASCE. Seismic design criteria for structures, systems, and components in nuclear facilities (ASCE/SEI 43-05). American Society of Civil Engineers, Reston, VA, 2005.
    [108] Gulec C K, Whittaker A S, Stojadinovic B. Shear strength of squat rectangular reinforced concrete walls. ACI Structural Journal, 2008, 105(4):488-497.
    [109] Hwang S J, Fang W H, Lee H J, et al. Analytical model for predicting shear strength of squat walls. Journal of Structural Engineering, ASCE, 2001, 127(1):43-50.
    [110] Mau S T, Hsu T T C. Shear behavior of reinforced concrete framed wall panels with vertical loads. ACI Structural Journal, 1987, 84(3): 228-234.
    [111] Yu H W, Hwang S J. Evaluation of softened truss model for strength prediction of reinforced concrete squat walls . Journal of Structural Engineering, ASCE, 2005, 131(8): 839-846.
    [112] Hwang S J, Yu H Y, Lee H J. Theory of interface shear capacity of reinforced concrete. Journal of Structural Engineering, ASCE, 2000, 126(6):700-707.
    [113] Hwang S J, Lee H. J Analytical model for predicting shear strengths of exterior reinforced concrete beam-column joints for seismic resistance. ACI Structural Journal, 1999, 96(5):846–857.
    [114] Hwang S J, Lee H J. Analytical model for predicting shear strengths of interior reinforced concrete beam-column joints for seismic resistance. ACI Structural Journal, 2000, 97(1): 35–44.
    [115] Hwang S J, Lu W Y, Lee H J. Shear strength prediction for deep beams. ACI Structural Journal, 2000, 97(3): 367–376.
    [116] Zhang L X, Hsu T T C. Behavior and analysis of 100MPa concrete membrane elements. Journal of Structural Engineering, ASCE, 1998, 124(1):24–34.
    [117] Hsu T T C Unified theory of reinforced concrete. Boca Raton , Florida, CRC Press, Inc. , 1993.
    [118] Hsu T T C, Mau S T, Chen B. Theory of shear transfer strength of reinforced concrete. ACI Structural Journal, 1987, 84(2):149–160.
    [119] Walraven J C, Reinhardt H W. Theory and experiments on the mechanical behavior of cracks in plain and reinforced concrete subjected to shear loading. Heron, 1981, 26(1).
    [120]涂耀贤.低矮型RC牆暨構架之側向載重位移曲線預測研究[博士學位論文].台湾:國立台灣科技大學, 2005.
    [121] Hwang S J, Lee H J. Strength prediction for discontinuity regions by softened strut-and-tie model . Journal of Structural Engineering, ASCE, 2002, 128(12): 1519-1526.
    [122]徐有邻.变形钢筋-混凝土粘结锚固性能的试验研究[博士学位论文].北京:清华大学, 1990.
    [123]吕西林,吴晓涵.新型抗震耗能剪力墙结构的振动台试验与分析.地震工程与工程振动, 1996, 16 (1):70-77.
    [124]黄勤翼.轻钢构件钢骨混凝土剪力墙抗震性能研究[硕士学位论文].北京:清华大学, 2009.
    [125] Gulec C K, Whittaker A S, Stojadinovic B. Peak Shear strength of squat reinforced concrete walls with boundary barbells or flanges. ACI Structural Journal, 2009, 106(3): 368-377.
    [126] Wang T T, Bertero V V, Popov E P. Hysteretic behaviour of reinforced concrete framed walls. Report no. EERC-75/23, Earthquake Engineering Research Centre, University of California, Berkeley, 1975.
    [127]李杰,李国强.地震工程学导论[M].北京:地震出版社, 1992.
    [128] Yamada M, Kawamura H, Katagihara K. Reinforced concrete shear walls without openings: test and analysis . Shear in Reinforced Concrete, SP-42, American Concrete Institute, Farmington Hills, Michigan, 1974. 539-558.
    [129]张松,吕西林,章红梅.钢筋混凝土剪力墙构件恢复力模型.沈阳建筑大学学报(自然科学版), 2009, 25(4):644-649.
    [130]郭子雄,童岳生,钱国芳. RC低矮抗震墙的变形性能及恢复力模型研究.西安建筑科技大学学报, 1998, 30(1):25-28.
    [131] FEMA. 2000. Prestandard and commentary for the seismic rehabilitation of buildings. Report FEMA 356, Federal Emergency Management Agency, Washington, D. C.
    [132] Ika Bali. Prediction of behavior of RC squat walls. Jurnal Sains dan Teknologi EMAS, 2008, 18(2):105-111.
    [133]赵文辉,王志浩,叶列平.双功能带缝剪力墙连接键的试验研究.工程力学, 2001, 18(1): 126-136.
    [134]赵文辉.钢筋混凝土双功能剪力墙连接键受力性能的研究[硕士学位论文].北京:清华大学, 1999.
    [135]陆新征,叶列平,缪志伟.建筑抗震弹塑性分析.北京,中国建筑出版社, 2009.
    [136] Park Y J, Reinhorn A M, Kunnath S K. IDARC: Inelastic damage analysis of reinforced concrete frame-shear wall structure. Technical report NCEER-87-0008, State University of New York at Buffalo, 1987.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700