模网—钢管滤水混凝土研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢管混凝土结构将钢和混凝土的优点有机结合,由于具有良好的强度和延性、抗震性能良好、施工快速等优点,因而在桥梁、高层建筑得以广泛应用。
     但是钢管混凝土结构存在着以下缺点:在钢管混凝土施工过程中,存在大量的能源、资源浪费和环境污染现象;需要额外防火、防锈,维护费用高;钢管混凝土结构节点连接不便:由于脱粘,使钢管对混凝土的紧箍作用不能够充分发挥。
     因而,钢管混凝土结构有赖进一步完善和发展。
     本文旨在利用材料过程工程学原理,解决上述问题。通过对钢管混凝土结构施工过程及其诸要素的优化组合,改变施工过程的资源流、能源流,提高钢管混凝土的工作性能,满足节省资源、能源、保护环境和符合可持续发展战略要求。
     通过将电渗技术引入到混凝土施工过程,成功解决了混凝土大水灰比施工、小水灰比固化的矛盾;由于不添加任何化学外加剂,因而解决了由化学外加剂引起的浪费能源、资源、污染环境的问题。通过大量添加工业废弃物粉煤灰,实现了资源的再利用。
     本文实验分析了水化时间、电流强度、水灰比、粉煤灰掺量等因素对电渗滤水的影响,推导了电渗滤水量与滤水时间的关系公式,给出了可用于实际工程的电渗滤水混凝土配合比设计方法。实验表明电渗技术可以显著提高滤水混凝土的滤水速度,明显提高混凝土的强度,并有很好的经济性。
     本文实验研究了一种新型的钢管混凝土组合结构—模网钢管混凝土结构。模网钢管混凝土将模网混凝土和钢管混凝土的优势有机结合起来,又具有二者不具备的独特优点。本文对模网钢管混凝土组合柱在轴心压力作用下的力学性能进行了研究分析。实验证明模网钢管混凝土组合结构具有卓越的工作性能、良好的强度和变形能力。
     由于模网的约束作用,模网钢管混凝土组合柱不出现一般钢管混凝土组合柱过早出现保护层混凝土大面积剥落、脱离、崩溃导致承载力急剧下降的现象。组合柱达到极限承载力后,由于保护层混凝土退出工作后核心钢管混凝土承担了大部分的轴向压力,组合柱整体承载力下降平缓,表现出良好的延性。
     普通混凝土在硬化过程中产生收缩,造成钢管和核心混凝土脱粘,使钢管的约束作用降低。本文通过大剂量添加MgO膨胀剂,利用MgO膨胀产生的自应力成功解决了钢管混凝土结构普遍存在的脱粘问题,并能充分发挥钢管对混凝土的紧箍作用,提高钢管混凝土的强度。由于MgO具有延迟膨胀的特性,因而能够保证膨胀变形以及自应力长期保持稳定,确保自应力钢管混凝土承载力长期稳定。
Concrete-filled steel tube combines the beneficial qualities of both steel and concrete, namely, high strength, excellent ductility, large energy absorption capacity and convenience of construction. Therefore the use of concrete-filled steel tube has become widespread.
    But there are still some defects in concrete-filled steel tube, such as waste of resource and energy, environment pollution, needs for extra fireproofing and rust prevention, high maintenance expense, inconvenience of beam-column connections, insufficiency of confinement effect owing to the interface disengaging. Thus a further progress of concrete-filled steel tube is needed.
    The purpose of this paper is to solve above problems by using the principle of process engineering of materials. By using the principle of process engineering to optimize the factors of concrete and change the resource and energy flow of construction to enhance the performance of workability of concrete-filled steel tube and to meet the requirement of saving the resource and energy, protecting the environment and to conform the stratagem of the sustainable development. High water cement ratio during construction and low water cement ratio during solidification are realized by using electroosmosis technology in the process of concrete construction; the problems such as pollution, poor volume stability and higher cost causing by admixture were resolved; realized the reuse of resource by added large amount of fly ash.
    Main influencing factors of electroosmosis such as hydration time, current intensity, water cement ratio and quantity of fly ash are analyzed. Relationship between filtering capacity and time is deduced. Design method for mix proportions, which can be used in real engineering, is proposed. The experimental results indicate that electroosmosis technology can further the filtering velocity markedly, increase the compressive strength of concrete significantly and has fine economical efficiency.
    A new type of composite construction—concrete-filled steel tube with formwork composite construction is studied. Concrete-filled steel tube with formwork composite construction combines the beneficial qualities of both steel and concrete and has unique advantage. Mechanical properties of composite columns subjected to axial compressive loading are investigated.
    The experimental results indicate that the composite construction has excellent work performance, high strength and good deformation capacity. Owing to the confinement of formwork, the composite columns differ from common concrete-filled steel tube columns which exterior concrete spalls off too early thus lead to the sudden decrease of bearing capacity. After the ultimate strength is reached, the composite columns show a ductile
引文
[1] 王立久,李洪义.我国新型住宅结构体系及其墙体材料现状.房材与应用,2001,10:3-7.
    [2] 王华.结构体系应符合建筑工业化的发展方向.江苏建筑,2006,1:37-38.
    [3] 曾汉民.高技术新材料要览.北京:中国科学技术出版社,1993.
    [4] 中国建筑材料科学研究院.绿色建材和建材绿色化.北京:化学工业出版社,2003.
    [5] 师昌绪,李恒德,周廉.材料科学与工程手册.北京:化学工业出版社,2004.
    [6] 王志,王悦,刘福田,程新.可持续发展与环保型材料.硅酸盐通报.2001,(3):46.
    [7] 熊燕.建筑师视野中的可生长建筑材料:(硕士学位论文).武汉:华中科技大学,2005.
    [8] 翁端.环境材料学.北京:清华大学出版社,2001.
    [9] 霍宝锋,刘伯莹.可持续发展与环境材料.天津大学学报.2001,34(1):91.
    [10] 刘江龙,李辉,丁培道.工程材料的环境影响质量评价研究.环境科学进展.1999(2):97-102.
    [11] 韩宪兵.环境材料网站开发及材料环境协调数据库:(硕士学位论文).重庆:重庆大学,2003.
    [12] 陈家镛.过程工业与过程工程学.过程工程学报.2001,1(1):8-9.
    [13] Billats S B, Basaly N A. Green Technology and Design for the Environments. Washington D. C: Taylor & Francis. 1997.
    [14] 牛强,潜伟.技术与管理的集成创新.包头钢铁学院学报.2002,21(4):297-301.
    [15] 牛强,潜伟.过程科学与过程工程.科学学研究.2002,20(2):143-147.
    [16] 郭慕孙.过程工程的科技构成和展望.科学中国人.2002,12:22-24.
    [17] 成升魁,闵庆文,闫丽珍.从静态的断面分析到动态的过程评价.自然资源学报.2005,20(3):407-414.
    [18] 沈镭,刘晓洁.资源流研究的理论与方法探析.资源科学.2006,28(3):9-15.
    [19] 周和敏.钢铁材料生产过程环境协调性评价研究:(博士学位论文).北京:北京工业大学工学,2001.
    [20] 熊燕.建筑师视野中的可生长建筑材料:(硕士学位论文).武汉:华中科技大学,2005.
    [21] 冯乃谦.新实用混凝土大全.北京:科学出版社,2005.
    [22] 蔡绍怀.高强混凝土结构技术规程(CECS 104∶99)介绍——钢管混凝土柱设计和施工.建筑结构,2001,31(4):66-69.
    [23] 王震宇.钢管高强混凝土叠合柱抗震性能与设计方法的研究:(博士学位论文).哈尔滨:哈尔滨工业大学,2001.
    [24] 薛立红,蔡绍怀.套箍高强混凝土的强度和变形.混凝土结构研究报告选集(3).中国建筑科学研究院主编.北京:中国建筑工业出版社.1994.
    [25] 蔡绍怀.现代钢管混凝土结构.北京:人民交通出版社,2003.
    [26] 蔡绍怀.我国钢管高强混凝土结构技术的最新进展.建筑科学,2002,18(4):1-2.
    [27] 钟善桐.钢管混凝土结构.北京:清华大学出版社,2003.
    [28] 杨稚华.万县长江大桥的设计.四川省公路学会桥梁学术研讨会论文集,1996.
    [29] 林立岩,李庆钢.混凝土与钢的组合促进高层建筑结构的发展.东南大学学报.2002,32(5):702-705.
    [30] Zhang, H Z, Shahrooz, Bahram M. Comparison between ACI and AISC for concerte-filled tubular columns. Journal of Structural Engineering. v125, Nov, 1999: 1213-1223.
    [31] 韩林海.钢管混凝土结构—理论与实践.北京:科学出版社,2004.
    [32] Schneider, Stephen P. Axially loaded concrete-filled steel tubes. Journal of Structural Engineering. 1998, 124(10): 1124-1138.
    [33] 蔡绍怀.钢管混凝土结构的计算与应用.北京:中国建筑工业出版社,1989.
    [34] 中国工程建设标准化协会标准.钢管混凝土结构设计与施工规程(CECS 28:90).北京:中国计划出版社,1992.
    [35] 中国工程建设标准化协会标准.高强混凝土结构技术规程(CECS 104:99).北京:中国工程建设标准化协会,1999.
    [36] Hu H T, M. ASCE, Huang C S, Hu M H et al. Nonlinear Analysis of Axially Loaded Concrete-Filled Tube Columns with Confinement Effect. Journal of Structural Engineering, 2003, 129(10): 1322-1329.
    [37] Peter M, John F B, Mohamed L. Composite Response of High-Strength Concrete Confined by Circular Steel Tube. ACI Structural Journal, 2004, 101(4): 466-473.
    [38] Shams M, Saadeghvaziri M A. Nonlinear Response of Concrete-Filled Steel Tubular Columns under Axial Loading, ACI Structural Journal, 1999, 96(6): 1009-1017.
    [39] Hun, L H, Yang, Y F. Analysis of thin-walled RHS columns filled with concrete under long-term sustained loads. Thin-walled Structures, 2003, 41(9): 849-870.
    [40] Nakai, H, Kurita, Ichinose, L H. An Experimental Study on Creep of Concrete Filled Steel Pipes. Froc. of 3rd Inter. Confer. on Steel and Concrete Composite Stl-uctures, Fukuoka, Japan, 1991: 5560.
    [41] 陈周熠,赵国藩,张德娟.钢管混凝土增强高强混凝土柱的轴压比限值分析研究.工业建筑,2002,32(4):55-58.
    [42] 张德娟.以钢管砼为核心的高强砼柱的试验研究:(硕士学位论文).大连:大连理工大学,1995.
    [43] 林拥军.配有圆钢管的钢骨混凝土柱试验研究:(博士学位论文).南京:东南大学,2002.
    [44] 谢晓锋.高强钢管(骨)混凝土核心柱轴压性能的试验研究:(硕士学位论文).广州:华南理工大学,2002.
    [45] Lie T T, Kodur V K R. Fire resistance of steel columns filled with barreinforced concrete. Journal of Structural Engineering, ASCE, 1996, 122(1): 30-36.
    [46] Kodur Y K R, Lie T T. Fire resistance of steel columns filled with fibrereinforced concrete. Journal of Structural Engineering, ASCE, 1996,122(7): 776-782.
    [47] Kodur V K R. Performance based fire resistance design of circular-filled steel columns. Journal of Constructional Steel Research, 1995, 51: 21-36.
    [48] Klingsch W. New Developments in Fire Resistance of Hollow Section Structures. Symposiumon Hollow Structural Sections in Building Construction, ASCEI Chicago Illinois, 1985.
    [49] Kim D K, Choi S M, Chung K S. Structural Characteristics of CFT Columns Subjected to Fire Loading and Axial Force. Proceedings of the 6th ASCCS Conference, Los Angeles, USA, 2000: 271-278.
    [50] HanL H, Zhao X L, Yang Y F et al. Experimental study and calculation of fire resistance of concrete-filled hollow steel columns. Journal of Structural Engineering, ASCE, 2003, 129(3): 346-356.
    [51] 徐蕾,韩林海.方形截面钢管混凝土温度场的非线性有限元分析.哈尔滨建筑大学学报,1999,132(5):81-85.
    [52] Han L H. Fire performance of concrete filled steel tubular beam-columns. Journal of Constructional Steel Research, 2001, 57: 697-711.
    [53] Han L H, Yang Y F, Xu L, An experimental study and calculation on the fire resistance of concrete-filled RHS columns. Journal of Construction Steel Research, 2003, 59: 427-452.
    [54] 韩林海,霍静思.火灾作用后钢管混凝土柱的承载力研究.土木工程学报,2002,35(4):25-35.
    [55] Nakanishi K, Kitada T, Nakai H. Experimental study on ultimate strength and ductility of concrete-filled steel columns under strong earthquake. Journal of Construction Steel Research, 1999, 51: 297-319.
    [56] Azizinamini A, Elremaily A. Experimental behavior of steel beam to CFT column connections. Journal of Constructional Steel Research, 2001, 57: 1099-1199.
    [57] NIE Jianguo, QIN Kai, XIAO Yan. Push-Over Analysis of the Seismic Behavior of a Concrete-Filled Rectangular Tubular Frame Structure. TSINGHUA SCIENCE ANDTECHNOLOGY, 2006, 11(1): 124-130.
    [58] Shams M, Saadeghvaziri M A. State of theart of concrete-filled steel tubular column. ACI Structural Journal, 1997, 94(5): 558-571.
    [59] 王立久,赵国藩.建筑模网夹芯混凝土增强机理研究.建筑材料学报.2000,3(2):101.
    [60] 吴中伟.绿色高性能混凝土与科技创新.建筑材料学报.1998,1(1):1-6.
    [61] 覃维祖.混凝土技术进展现状与可持续发展前景.施工技术.2006,35(4):3-4.
    [62] 马保国,李永鑫.绿色高性能混凝土与矿物掺合料的研究进展.武汉工业大学学报.1999,21(5):29-31.
    [63] 欧阳新平,李嘉,邱学青.混凝土减水剂的发展与绿色化.世界科技研究与发展.2006,2:30-36.
    [64] Kim B G, Jiang S P, Jolicoeur C, et al. The adsorption behavior of PNS superplasticizer and its relation to fluidity of cement paste. Cement and Concrete Research, 2000, 30: 887-893.
    [65] 覃维祖.混凝土的收绾、开裂及其评价与防治.混凝土.2001,7(141):3-7.
    [66] 黄国兴,惠荣炎.混凝土的收缩.北京:中国铁道出版社,1990.
    [67] 吴中伟,廉慧珍.高性能混凝土.北京:中国铁道出版社,1999.
    [68] 莫祥,许仲梓,唐明述.混凝土减水剂最新研究进展.精细化工.2004,21:30-36.
    [69] 王立久,李振荣.建筑材料学.北京:中国水利水电出版社,2000.
    [70] Mindess S, Young J F. Concrete. New Jersey: prentice-Hall, 1981.
    [71] G H Tattersall. The Rationale of a Two-Point Workability Test. Magazine of Concrete Research, V. 25, No. 84, London, Sep., 1973: 169-172.
    [72] 艾红梅.大掺量粉煤灰混凝土配合比设计与性能研究:(博士学位论文).大连:大连理工大学,2005.
    [73] D W Hobbs. The Effect of Pulverized-fuel Ash Upon the Workability of Cement and Concrete. Magazine of Concrete Research, Vol. 32, Dcc. 1980.
    [74] R A Helmuth. Water-Reducing Properties of Fly Ash in Cement Pastes, Mortars, and Concrete; Causes and Test Methods, Fly Ash, silica Fume, Slag, and Natural Pozzolans in Concrete, SP-91, ACI, 1986.
    [75] 陈惠苏,孙伟,Stroeven Pier.水泥基复合材料集料与浆体界面研究综述(二).硅酸盐学报.2004,32(1):70-79.
    [76] 王福元,吴正严.粉煤灰利用手册.北京:中国电力出版社,1997.
    [77] 沈旦申,张荫济.粉煤灰效应的探讨.硅酸盐学报.1981,Vol.9,No.1:57-63.
    [78] 钱觉时.粉煤灰特性与粉煤灰混凝土.北京:科学出版社,2002.
    [79] 李广信.高等土力学.北京:清华大学出版社,2004.
    [80] 徐定华,徐敏.混凝土材料学概论.北京:中国标准出版社,2002.
    [81] 王立久,迟耀辉,喻正浩.滤水混凝土的试验研究.混凝土.2006,(6):1-4.
    [82] 叶肖伟.电场、渗流场和浓度场耦合作用下污染物在粘土中的迁移机理研究:(硕士学位论文).杭州:浙江大学,2005.
    [83] L Jared West, Douglas I Stewart, Andrew M Binley and Ben Shaw. Resistivity Imaging of Electrokinetic Transport in Soil. Journal of Geoenvironmental engineering, ASCE, 1997, 61(4): 565-574.
    [84] J Q Shane, K Y Lo. Electrokinetic dewatering of phosphate clay. Journal of Hazardous Materials, 1997, 55(1): 117-133.
    [85] 欧孝夺.岩土工程固结技术用于水体分离:(硕士学位论文).广西:广西大学,1998.
    [86] 胡英.物理化学.北京:高等教育出版社,1999.
    [87] 屈文俊,陈璐,刘于飞.碳化混凝土结构的再碱化维修技术.建筑结构.2001,31(9):59.
    [88] 蒲心诚,叶连生,姚琏等.混凝土学.北京:中国建筑工业出版社,1981.
    [89] Jin Xian-yu, Jin Nan-guo, Li Zong-jin. Study on The Electrical Properties of Young Concrete. Journal of Zhejiang University. 2002, 3(2): 174-180.
    [90] 许仲梓.水泥混凝土电化学进展—交流阻抗谱理论.硅酸盐学报.1994,22(2):173-180.
    [91] Hunkeler F. The Resistivity of Pore Water Solution-A Decisive Parameter of Rebar Corrosion and Repair Methods. Construction and Materials, 1996, 10(5): 381-389.
    [92] 万小梅,赵铁军.混凝土粉末浸液的电导率与混凝土的渗透性.工业建筑.2005,35(8):82-88.
    [93] Esrig M I. Pore Pressure, Consolidation and Electrokinetics. J. of the SMFD, ASCE, 1968, 94(SM4): 899-921.
    [94] Wan T Y, Mitchell J K. Electro-osmotic Consolidation of Soils. J. of the Geotechnical Engineering Division, 1976, GT5(5): 473-491.
    [95] Roland W Lewis, Chris Humpheson. Numerical Analysis of Electro-Osmotic Flow in Soils. J. of the SMFD, ASCE, 1973, 95 (SM8): 603-616.
    [96] Akram N Alshawabkeh, Thomas C Sheahan, Xingzhi Wu. Coupling of electrochemical and mechanical processes in soils under DC fields. Mechanics of Materials 36(2004)453-465.
    [97] 孔祥言.高等渗流力学.合肥:中国科学技术大学出版社,1999.
    [98] 詹海燕.建筑模网混凝土增强机理与结构试验研究:(硕士学位论文).大连:大连理工大学,2003.
    [99] 郑晓东.建筑模网混凝土渗滤效应及组合拉筋模网混凝土结构:(硕士学位论文).大连:大连理工大学,2004.
    [100] Stockholm. Tuutti KC Corrosion of steel in concrete. Swedish Cement and Concrete Research, 1982(7): 45-51.
    [101] Mehta P K. Influence of fly ash characteristics on the strength of portlandfly ash mixtures. Cement and Concrete Research, 1985: 669.
    [102] 王立久,刘显福.帝枇建筑模网.房材与应用,1999,4:20-22.
    [103] 庄艳峰,王钊,林清.电渗的能级梯度理论.哈尔滨工业大学学报,2005,37(2):283-285.
    [104] E J Garbocai, D P Bentz. Computational material science of cement-basedmaterial. MRS. 1993.
    [105] 李淑进,赵铁军,吴科如.混凝土渗透性与微观结构关系的研究.混凝土与水泥制品,2004,2:6.
    [106] Fo M布然诺夫.混凝土工业学.北京:中国建筑出版社,1985.
    [107] Wang Lijiu, Chi Yaohui. Experimental Research on the Bearing Capacity of Axially Loaded Composite Columns with Concrete Core Encased by Steel Tube. Advances in Steel Structures, Shang Hai, 2005: 593-598.
    [108] 游宝坤,李乃珍.膨胀剂及其收缩混凝土.北京:中国建材工业出版社,2005.
    [109] 叶跃忠,文志红,潘绍伟.钢管混凝土脱粘及灌浆补救效果试验研究.西南交通大学学报,2004,39(3):381-384.
    [110] 屈文俊.裂缝对混凝土桥梁耐久性影响的评估.铁道学报,1997,25(4):90-95.
    [111] 王湛.约束膨胀混凝土的力学性能分析.哈尔滨建筑大学学报,2000,33(3):74-77.
    [112] 吴中伟,张鸿直.膨胀混凝土.北京:中国铁道出版社,1990.
    [113] 徐磊.钢管自应力免振捣混凝土轴压柱设计理论研究:(博士学位论文).大连:大连理工大学.2005.
    [114] Gu G S. Mechanism of Stored Energy for New ChemicallyPrestressed Concrete Filled Steel Tube. The 3th Beijing International Symposium on Cement and Concrete, Beijing, 1998: 856.
    [115] Gu Ganshen. An Investigation of the Working Mechanism of The Prestressed CFST Under Compression. ICCS-3, 1991: 231.
    [116] 李帼昌,刘之洋.自应力钢管轻骨料混凝土结构.沈阳:东北大学出版社,2001.
    [117] 伍元.外掺Mgo混凝土拱坝变形性态研究:(硕士学位论文).南京:河海大学,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700