新型光子晶体光纤、光波导耦合器件的传输特性及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文提出几种具有新型功能的双芯光子晶体光纤结构,通过数值分析方法详细研究了双芯结构的光学特性,并将其应用于模式转换、定向耦合、偏振分束以及折射率传感等器件的设计和研制方面。主要研究内容如下:
     由于结构特殊性,常规的1x3光分束器一般难于实现均匀出光,且工作带宽窄。我们提出了一种1x3三芯光子晶体光纤定向耦合器,有效的实现能量在三个纤芯里均分。将三芯光子晶体光纤两侧纤芯包层空气孔直径增加,使得能量在两侧纤芯与中间纤芯之间发生部分耦合,进而实现能量在三个纤芯中均分。这种结构制作简单且允许有较大的制作容差。
     当前提出的几种光纤模式转换器或工作带宽窄或模式转换效率低等缺点。我们采用半矢量光束传播法设计了一种高效的宽带模式转换器,实现了其中一个纤芯的基模(LP01)和另一个纤芯的高阶模(LP02)之间的转换,数值分析表明该结构能在很宽的波长范围内实现模式的高效转换。同时,利用该双芯光子晶体光纤结构上的特点,提出一种偏振器的设计思路,即让纤芯中不需要的偏振模式耦合到另一个纤芯并输出,于是原来纤芯中就只存在所需的偏振模式,进而达到偏振控制的目的。
     实现偏振分束的常规方法有两种:一种是让两偏振方向均实现完全耦合,且对应耦合长度满足一定的比值关系;另一种方法是让其中一个偏振方向光不耦合,而另一个偏振方向的光完全耦合。通常,由这两种方法实现的偏振分束器具有或消光比低或工作带宽窄或输出端模场严重变形等缺点。基于模式耦合原理,我们设计了一种矩形结构双芯光子晶体偏振分束结构,使双芯光纤中其中一个偏振方向上能量发生完全耦合而另一个偏振方向上能量发生部分耦合,并让能量发生完全耦合的偏振方向的耦合长度与另一个偏振方向(能量仅发生部分耦合)的耦合长度呈两倍关系。这种基于能量部分耦合原理的设计思想允许比较容易地调节光纤结构参数来达到偏振分束的目的,同时,输出端纤芯模场形状规则,因而与单模光纤连接损耗低。通过光束传播法详细分析了两个偏振模式传输特性,并运用多极法对相关结论进行验证,两种方法结果一致。
     对折射率较低(低于光纤的背景材料折射率)物质的折射率测量,其灵敏度一般都比较低。然而将双芯光纤的耦合原理运用于对样品溶液的折射率测量,进而通过折射率的改变来分析该样品的生物、化学方面特性的研究比较新颖。本文提出将多个空气孔进行选择性填充形成一个微结构芯,使之与另外一个实芯相位匹配,进而发生能量耦合。当选取适当的光纤参数后,从某一纤芯输入一束光,则可以看到该纤芯的输出端能量频谱上会出现一个谷值,并且这个谷值随着待测样品折射率变化而出现红移或蓝移。因此,通过这种波长移动量来测量折射率的变化。详细分析了光纤结构参数对波长的移动量以及谱线的半宽度等参数的影响;同时分析了环境温度以及光纤制作过程产生的误差对该传感器性能的影响。
     通过对光子晶体光纤中空气孔填充液体、液晶、半导体或金属等材料来改变光纤的光学性能,进而实现一些可调谐的光学功能器件。基于金属丝产生的等离子模式,我们提出了填充金属丝的双芯光了晶体结构,并成功用于模式偏振分束方面。数值分析发现其耦合长度相比于未填充金属丝双芯光纤结构具有明显不同,具体表现为,其耦合长度呈现极大值且两偏振方向的耦合长度比值比较大。我们通过对双芯光子晶体光纤某一个或两个空气孔选择性填充金属进而改变光的传输、偏振等特性。数值模拟证明,这种选择性填充器件能够实现具有宽带、高消光比、输出端模场不变形等优点。
     SOI(Silicon on Insulator)硅基波导因为高折射率差可以将光场限制在亚波长量级,表面等离子体光波导则是因为表面等离子体共振效应,从而打破光学衍射极限并将光场限制在亚波长量级波导中。借助两者的优势,我们提出了一种基于硅基混合型表面等离子光波导和水平狭缝波导的偏振分束器。通过选取合适的波导参数使得某个偏振方向上两波导的有效折射率相近,而另外一个偏振方向上两波导的折射率相差较大,这样即能实现一束光两个偏振方向的分离。这种结构具有器件长度短(几个微米),能够提高光路的集成度,且具有高消光比等特点。
This dissertation demonstrates several novel-function dual-core photonic crystal fibers and their applications in designs of mode converters, directional couplers, polarization beam splitters, and refractive index sensors are analyzed by various numerical methods. The main contents are as follows:
     It's generally difficult to achieve equal power in three outputs for a conventional1x3directional coupler due to its limitation of structure. As a result, a design for a novel1x3directional coupler which is based on an asymmetric three-core photonic crystal fiber (PCF) is proposed, where the energy is equally divided in three cores. It's finally found that a part of energy coupling between the outside cores and the center core can be realized by introducing the enlargement of air holes of the side cores in three-core PCF. The impacts of the inner cladding air holes around the core and the periods on energy are analyzed in detail. In addition, the proposed coupler shows large tolerance to the fiber parameters.
     The reported mode converter can't work well due to their narrow bandwidth or low conversion efficiency. To solve it, a design for a novel broadband mode converter is proposed by applying semi-vectorial beam propagation method. By adjusting the air-hole diameters of the inner rings in the cores and the index of the down-doped silica rods, broadband index-matched coupling between LPoi and LP02can be achieved. Numerical investigations demonstrate that the novel mode converter can work with broad operating wavelengths. In addition, a novel optical polarizer based on flexible design of photonic crystal fibers is proposed. It can be achieved by coupling the unwanted polarization from one core to the other core, thus allowing the required polariztion existing in the original core.
     Generally, there are two methods to achieve polarization splitting. One is to make full coupling between the two polarizations, and then, meet certain ration between the corresponding coupling lengths. On the other hand, another kind of polarization splitters was designed with asymmetric dual-cores, in which one polarization is entrapped in the incident core while the other polarization can be freely coupled between the two cores. We also proposed a novel polarization splitter. Based on mode coupled theory, the fiber is designed such that index-matched coupling between the two cores can be achieved for one polarization state while only a part of energy could be coupled for the other polarization state. As a result, the coupling length in one polarization is twice longer than that in the other polarization. This allows for adjusting the optical fiber structure parameters to achieve polarization splitting easily. The modes of the proposed fibers are solved by a semivectorial beam propagation method. In addition, the numerical results are in good agreement with those of the multipole method.
     The sensitivity is relatively low for detecting analyte with low refractive index (Generally, the refractive index of the analyte is lower than that of the fiber background). However, it has the potential in chemical and biological applications by taking advantage of the exponential dependence of intercore coupling on analyte index. We demonstrate design strategies for high-sensitivity refractive index sensors, which are based on the principle of wavelength-selective resonant coupling in dual-core photonic crystal fibers. Phase matching at a single wavelength can be achieved between an analyte-filled microstructured core and a small core with a down-doped rod or one small air hole in the center, thus enabling selectively directional resonant-coupling between the two cores. As a result, the transmission spectra of the output light presents a notch at the index-matched wavelength, yielding a resonant wavelength depending on the refractive index of the analyte. The impact on the shift of the resonant wavelength and the full width at half maximum of the resonance are analyzed in detail. In addition, the PCF coupler is influenced by the environmental temperature and the tolerance of the structure parameters.
     Optical properties of silica-air PCFs can be extended by filling the cladding air holes with materials such as analyte, liquid crystal, semiconductor, or metal etc, and the corresponding tunable devices can be achieved. The polarization characteristics of a dual-core photonic crystal fiber (DC-PCF) with a metal wire filled into the cladding air hole between the two cores have been investigated. The coupling length of the proposed dual-core PCF is always shorter than that of the dual-core PCF without filling metal wire in the center. Furthermore, the coupling length reaches a maximum. In addition, we theoretically investigate dual-core photonic crystal fibers with metal wires between the two cores. Numerical simulations demonstrate that a polarization splitter with broad band, high extinction ratio, and good output mode field can be achieved by selectively filling metal wires.
     The light can be confined in the subwavelength SOI waveguide due to its high refractive index difference, while the optical waveguides based on surface plasmon resonance can break the optical diffraction limit and the light can also be confined in subwavelength waveguide. To take advantage of them, we propose a polarization beam splitter which is composed of a horizontally slotted waveguide and a hybrid plasmonic waveguide. The splitter is designed such that index-matched coupling between two waveguides can be achieved for one polarization state while huge effective index difference can be allowed for the other polarization state. As a result, an ultrashort device with low extinction ratio can be used to photonic integration.
引文
1. S. Ramo, J. R. Whinnery, and T. Van Duzer, Fields and waves in communication electronics. 1994.
    2. G. Agrawal, Fiber-optic communication systems.1997, Wiley (New York).
    3. E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics. Physical review letters,1987.58(20):2059-2062.
    4. S. John, Strong localization of photons in certain disordered dielectric superlattices. Physical review letters,1987.58(23):2486-2489.
    5. J. Knight, T. Birks, P. S. J. Russell, et al., All-silica single-mode optical fiber with photonic crystal cladding. Optics Letters,1996.21(19):1547-1549.
    6. J. Knight, T. Birks, P. S. J. Russell, et al., All-silica single-mode optical fiber with photonic crystal cladding:errata Optics Letters,1997.22(7):484-485.
    7. T. Birks, J. Knight, and P. S. J. Russell, Endlessly single-mode photonic crystal fiber. Optics Letters,1997.22(13):961-963.
    8. J. Knight, J. Broeng, T. Birks, et al., Photonic band gap guidance in optical fibers. Science, 1998.282(5393):1476-1478.
    9. R. Cregan, B. Mangan, J. Knight, et al., Single-mode photonic band gap guidance of light in air. Science,1999.285(5433):1537-1539.
    10. J. Knight and P. S. J. Russell, New ways to guide light. Science,2002.296(5566):276-277.
    11. Y. Amnon, Optical electronics in modern communications.1997, Oxford university Press.
    12.李玉权,崔敏,and光学,光波导理论与技术.2002:人民邮电出版社.
    13. B. T. Kuhlmey, R. C. McPhedran, and C. Martijn de Sterke, Modal cutoff in microstructured optical fibers. Optics Letters,2002.27(19):1684-1686.
    14. J. Knight, T. Birks, P. S. J. Russell, et al., Properties of photonic crystal fiber and the effective index model. JOSAA,1998.15(3):748-752.
    15. J. Broeng, D. Mogilevstev, S. E. Barkou, et al., Photonic crystal fibers:A new class of optical waveguides. Optical Fiber Technology,1999.5(3):305-330.
    16. W. Reeves, J. Knight, P. Russell, et al., Demonstration of ultra-flattened dispersion in photonic crystal fibers. Optics Express,2002.10(14):609-613.
    17. T. Birks, D. Mogilevtsev, J. Knight, ct al., Dispersion compensation using single-material fibers. Photonics Technology Letters, IEEE,1999.11(6):674-676.
    18. A. Huttunen and P. Torma, Optimization of dual-core and microstructure fiber geometries for dispersion compensation and large mode area. Optics Express,2005.13(2):627-635.
    19. J. K. Ranka, R. S. Windeler, and A. J. Stentz, Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Optics Letters,2000.25(1): 25-27.
    20. S. Coen, A. H. L. Chau, R. Lconhardt, et al., Supcrcontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers. JOSA B,2002.19(4): 753-764.
    21. K. P. Hansen, J. J. Larsen, J. R. Jensen, et al. Super continuum generation at 800 nm in highly nonlinear photonic crystal fibers with normal dispersion, in Lasers and Electro-Optics Society, 2001. LEOS 2001. The 14th Annual Meeting of the IEEE.2001:IEEE.
    22. P. Champert, S. Popov, and J. Taylor, Generation of multiwatt, broadband continua in holey fibers. Optics Letters,2002.27(2):122-124.
    23. A. Husakou and J. Herrmann, Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers. Physical review letters,2001.87(20):203901.
    24. J. Herrmann, U. Griebner, N. Zhavoronkov, et al., Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers. Physical review letters,2002. 88(17):173901.
    25. K. P. Hansen, J. R. Jensen, C. Jacobsen, et al. Highly nonlinear photonic crystal fiber with zero-dispersion at 1.55 μm. in Optical Fiber Communication Conference and Exhibit,2002. OFC 2002.2002:IEEE.
    26. K. S. Berg, L. Oxenlowe, A. Siahlo, et al.80 Gb/s transmission over 80 km and demultiplexing using a highly non-linear photonic crystal fibre. in Optical Communication, 2002. ECOC 2002.28th European Conference on.2002:IEEE.
    27. J. Knight, T. Birks, R. Cregan, et al., Large mode area photonic crystal fibre. Electronics Letters,1998.34(13):1347-1348.
    28. M. Steel and R. Osgood Jr, Elliptical-hole photonic crystal fibers. Optics Letters,2001.26(4): 229-231.
    29. M. Steel and R. Osgood Jr, Polarization and dispersive properties of elliptical-hole photonic crystal fibers. Lightwave Technology, Journal of,2001.19(4):495-503.
    30. D. Mogilevtsev, J. Broeng, S. Barkou, et al., Design of polarization-preserving photonic crystal fibres with elliptical pores. Journal of Optics A:Pure and Applied Optics,2001.3(6): S141.
    31. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, et al., Highly birefringent photonic crystal fibers. Optics Letters,2000.25(18):1325-1327.
    32. T. P. Hansen, J. Broeng, S. E. B. Libori, et al., Highly birefringenl index-guiding photonic crystal fibers. Photonics Technology Letters, IEEE,2001.13(6):588-590.
    33. K. Suzuki, H. Kubota, S. Kawanishi, el al., Optical properties of a low-loss polarization-maintaining photonic crystal fiber. Optics Express,2001.9(13):676-680.
    34. K. H. Tsai, K. S. Kim, and T. Morse, General solutions for stress-induced polarization in optical fibers. Lightwave Technology, Journal of,1991.9(1):7-17.
    35. T. Birks, P. Roberts, P. S. J. Russell, et al., Full 2-D photonic bandgaps in silica/air structures. Electronics Letters,1995.31(22):1941-1943.
    36. C. M. Smith, N. Venkataraman, M. T. Gallagher, et al., Low-loss hollow-core silica/air photonic bandgap fibre. Nature,2003.424(6949):657-659.
    37. S. Ccrqueira Jr, F. Luan, C. Cordeiro, et al., Hybrid photonic crystal fiber. Optics Express, 2006.14(2):926-931.
    38. X. Sun, Wavelength-selective coupling of dual-core photonic crystal fiber with a hybrid light-guiding mechanism. Optics letters,2007.32(17):2484-2486.
    39. P. Kaiser and H. Astle, Low-loss single-material fibers made from pure fused silica. Bell System Technical Journal,1974.53(6):1021-39.
    40. G. Agrawal, Nonlinear fiber optics.1995, Academic Press (San Diego).
    41. J. B. Eom, K. W. Park, Y. Chung, et al. Optical properties measurement of several photonic crystal fibers, in Symposium on Integrated Optoelectronic Devices.2002:International Society for Optics and Photonics.
    42. A. D. Fitt, K. Furusawa, T. M. Monro, et al., Modeling the fabrication of hollow fibers: Capillary drawing. Lightwave Technology, Journal of,2001.19(12):1924-1931.
    43. B. Mangan, J. Knight, T. Birks, et al., Experimental study of dual-core photonic crystal fibre. Electronics Letters,2000.36(16):1358-1359.
    44. F. Fogli, L. Saccomandi, P. Bassi, et al., Full vectorial BPM modeling of index-guiding photonic crystal fibers and couplers. Optics Express,2002.10(1):54-59.
    45. K. Saitoh, Y. Sato, and M. Koshiba, Coupling characteristics of dual-core photonic crystal fiber couplers. Optics Express,2003.11(24):3188-3195.
    46. M. Y. Chen and R. J. Yu, Coupling characteristics of dual-core rectangular lattice photonic crystal fibres. Journal of Optics A:Pure and Applied Optics,2004.6(8):805.
    47. M. Y. Chen, B. Sun, and Y. K. Zhang, Broadband Single-Polarization Operation in Square-Lattice Photonic Crystal Fibers. Journal of Lightwave Technology,2010.28(10): 1443-1446.
    48. K. Saitoh, Y. Sato, and M. Koshiba, Polarization splitter in three-core photonic crystal fibers. Optics Express,2004.12(17):3940-3946.
    49. L. Rosa, F. Poli, M. Foroni, et al., Polarization splitter based on a square-lattice photonic-crystal fiber. Optics Letters,2006.31(4):441-443.
    50. W. Lu, S. Lou, X. Wang, et al., Ultrabroadband polarization splitter based on three-core photonic crystal fibers. Applied Optics,2013.52(3):449-455.
    51. A. Dutt, S. K. Varshney, and S. Mahapatra, Design of Tunable Couplers Using Magnetic Fluid Filled Three-Core Optical Fibers. Photonics Technology Letters, IEEE,2012.24(3):164-166.
    52. S. Liu, S.-G. Li, G.-B. Yin, et al., A novel polarization splitter in ZnTe tellurite glass three-core photonic crystal fiber. Optics Communications,2012.285(6):1097-1102.
    53. J. Laegsgaard, O. Bang, and A. Bjarklev, Photonic crystal fiber design for broadband directional coupling. Optics Letters,2004.29(21):2473-2475.
    54. Z. Wang, G. Kai, Y. Liu, et al., Coupling and decoupling of dual-core photonic bandgap fibers. Optics Letters,2005.30(19):2542-2544.
    55. Z. Wang, T. Taru, T. Birks, et al., Coupling in dual-core photonic bandgap fibers:theory and experiment. Optics Express,2007.15(8):4795-4803.
    56. Z. Zhang, Y. Shi, B. Bian, et al., Resonance-Related Coupling of Symmetric Dual-Core Hybrid Photonic Crystal Fibers. Photonics Technology Letters, IEEE,2009.21(8):525-527.
    57. W. Padden, M. Van Eijkelenborg, A. Argyros, et al., Coupling in a twin-core microstructured polymer optical fiber. Applied Physics Letters,2004.84(10):1689-1691.
    58. I. Chremmos, G. Kakarantzas, and N. Uzunoglu, Modeling of a highly nonlinear chalcogenide dual-core photonic crystal fiber coupler. Optics Communications,2005.251(4):339-345.
    59. W. MacPherson, M. Gander, R. McBride, et al., Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre. Optics Communications,2001.193(1):97-104.
    60. D. Chen, G. Hu, and L. Chen, Dual-core photonic crystal fiber for hydrostatic pressure sensing. Photonics Technology Letters, IEEE,2011.23(24):1851-1853.
    61. K. Saitoh, N. J. Florous, S. K. Varshney, et al., Tunable photonic crystal fiber couplers with a thermo-responsive liquid crystal resonator. Journal of Lightwave Technology,2008.26(6): 663-669.
    62. D. J. J. Hu, P. Shum, C. Lu, et al., Design and analysis of thermally tunable liquid crystal filled hybrid photonic crystal fiber coupler. Optics Communications,2009.282(12):2343-2347.
    63. D. J. J. Hu, J. L. Lim, Y. Cui, et al., Fabrication and Characterization of a Highly Temperature Sensitive Device Based on Nematic Liquid Crystal-Filled Photonic Crystal Fiber. Photonics Journal, IEEE,2012.4(5):1248-1255.
    64. D. Hu, P. Shum, J. Lim, et al., A compact and temperature sensitive directional coupler based on photonic crystal fiber filled with liquid crystal 6CHBT.2011.
    65. Y. Cui, P. Shum, D. HU, et al., Temperature Sensor by Using Selectively-Filled Photonic Crystal Fiber Sagnac Interferometer.
    66. D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, Ultrasensitive photonic crystal fiber refractive index sensor. Optics Letters,2009.34(3):322-324.
    67. B. T. Kuhlmey, S. Coen, and S. Mahmoodian, Coated photonic bandgap fibres for low-index sensing applications:cutoff analysis. Optics Express,2009.17(18):16306-16321.
    68. G. E. Town, W. Yuan, R. McCosker, et al., Microstructured optical fiber refractive index sensor. Optics Letters,2010.35(6):856-858.
    69. J. Du, Y. Liu, Z. Wang, et al., Thermally tunable dual-core photonic bandgap fiber based on the infusion of a temperature-responsive liquid. Optics Express,2008.16(6):4263-4269.
    70. H. Lee, M. Schmidt, H. Tyagi, et al., Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber. Applied Physics Letters,2008.93:111102.
    71. M. A. Schmidt, L. N. P. Sempere, H. K. Tyagi, et al., Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires. Physical Review B,2008. 77(3):033417.
    72. X. Zhang, R. Wang, F. Cox, ct al., Selective coating of holes in microstructured optical fiber and its application to in-fiber absorptive polarizers. Optics Express,2007.15(24): 16270-16278.
    73. H. Lee, M. Schmidt, R. Russell, et al., Pressure-assisted melt-filling and optical characterization of Au nano-wires in microslructured fibers. Optics Express,2011.19(13): 12180-12189.
    74. H. Tyagi, M. Schmidt, L. Prill Sempere, et al., Optical properties of photonic crystal fiber with integral micron-sized Ge wire. Optics Express,2008.16(22):17227-17236.
    75. A. Nagasaki, K. Saitoh, and M. Koshiba, Polarization characteristics of photonic crystal fibers selectively filled with metal wires into cladding air holes. Optics Express,2011.19(4): 3799-3808.
    76. S. Zhang, X. Yu, Y. Zhang, el al., Theoretical Study of Dual-Core Photonic Crystal Fibers With Metal Wire. Photonics Journal, IEEE,2012.4(4):1178-1187.
    77.余守宪,导波光学物理基础,2002:北方交通大学出版社.
    78. W. Huang and C. Xu, Simulation of three-dimensional optical waveguides by a full-vector beam propagation method. Quantum Electronics, IEEE Journal of,1993.29(10):2639-2649.
    79. G. R. Hadley, Transparent boundary condition for the beam propagation method. Quantum Electronics, IEEE Journal of,1992.28(1):363-370.
    80. J.-P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves. Journal of computational physics,1994.114(2):185-200.
    81. B. Eggleton, P. Westbrook, R. Windeler, et al., Grating resonances in air-silica microstructured optical fibers. Optics Letters,1999.24(21):1460-1462.
    82. B. Eggleton, C. Kerbage, P. Westbrook, et al., Microstructured optical fiber devices. Optics Express,2001.9(13):698-713.
    83. K. Saitoh and M. Koshiba, Full-vectorial imaginary-distance beam propagation method based on a finite element scheme:Application to photonic crystal fibers. Quantum Electronics, IEEE Journal of,2002.38(7):927-933.
    84. 金建铭,王建国,and物理,电磁场有限元方法.1998:西安电子科技大学出版社.
    85. T. White, R. McPhedran, L. Botten, et al., Calculations of air-guided modes in photonic crystal fibers using the multipole method. Optics Express,2001.9(13):721-732.
    86. T. White, R. McPhedran, C. M. de Sterke, et al., Confinement losses in microstructured optical fibers. Optics Letters,2001.26(21):1660-1662.
    87. T. Monro, K. Kiang, J. Lee, et al. High nonlinearity extruded single-mode holey optical fibers, in Optical Fiber Communication Conference and Exhibit,2002. OFC 2002.2002:IEEE.
    88. B. T. Kuhlmey, T. P. White, G. Renversez, et al., Multipole method for microstructured optical fibers. II. Implementation and results. JOSAB,2002.19(10):2331-2340.
    89. P. J. Davis and I. Polonsky, Handbook of Mathematical Functions. Handbook of Mathematical Functions,1965.
    90. L. Zhang and C. Yang, A novel polarization splitter based on the photonic crystal fiber with nonidentical dual cores. Photonics Technology Letters, IEEE,2004.16(7):1670-1672.
    91. L. Zhang, C. Yang, C. Yu, et al., PCF-based polarization splitters with simplified structures. Journal of Lightwave Technology,2005.23(11):3558.
    92. J. Li, Y. Mao, C. Lu, et al., Polarization Splitting of Photonic Crystal Fiber With Hybrid Guidance Mechanisms. Photonics Technology Letters, IEEE,2011.23(18):1358-1360.
    93. N. Florous, K. Saitoh, and M. Koshiba, A novel approach for designing photonic crystal fiber splitters with polarization-independent propagation characteristics. Optics Express,2005. 13(19):7365-7373.
    94. M. Y. Chen and J. Zhou, Polarization-independent splitter based on all-solid silica-based photonic-crystal fibers. Journal of Lightwave Technology,2006.24(12):5082-5086.
    95.马玲芳,刘敏,李丹,et al.,零模间色散双空芯光子晶体光纤.中国激光,2012.39(8):129-134.
    96.陈明阳,张永康,祝远锋,et a1.,基于非对称双芯光子晶体光纤的宽带定向耦合器研究[J].中国激光,2009.36(3):635-639.
    97. M.-Y. Chen, Y.-K. Zhang, J. Zhou, et al., Coupling characteristics of three-core photonic crystal fiber couplers. Journal of Optics A:Pure and Applied Optics,2008.11(1):015102.
    98. A. Takagi, K. Jinguji, and M. Kawachi, Design and Fabrication of Silica-Based Waveguide-Type(3x 3) Directional Couplers with Two Identical Outer Waveguides. Japanese journal of applied physics,1992.31(part 1):1618-1627.
    99. Y. He and F. Shi, Finite-difference imaginary-distance beam propagation method for modeling of the fundamental mode of photonic crystal fibers. Optics Communications,2003.225(1): 151-156.
    100. S. Leon-Saval, T. Birks, N. Joly, et al., Splice-free interfacing of photonic crystal fibers. Optics Letters,2005.30(13):1629-1631.
    101. S. Ramachandran, Dispersion-tailored few-mode fibers:a versatile platform for in-fiber photonic devices. Journal of Lightwave Technology,2005.23(11):3426.
    102. K. Lai, S. Leon-Saval, A. Witkowska, et al., Wavelength-independent all-fiber mode converters. Optics Letters,2007.32(4):328-330.
    103. M. Y. Chen and J. Zhou, Mode converter based on mode coupling in an asymmetric dual-core photonic crystal fibre. Journal of Optics A:Pure and Applied Optics,2008.10(11):115304.
    104. L. Zhang and C. Yang, Polarization splitter based on photonic crystal fibers. Optics Express, 2003.11(9):1015-1020.
    105. T. M. Monro, D. Richardson, and P. Bennett, Developing holey fibres for evanescent field devices. Electronics Letters,1999.35(14):1188-1189.
    106. J. B. Jensen, L. H. Pedersen, P. E. Hoiby, et al., Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions. Optics Letters,2004.29(17): 1974-1976.
    107. L. Rindorf, P. E. Hφiby, J. B. Jensen, et al., Towards biochips using microstructured optical fiber sensors. Analytical and bioanalytical chemistry,2006.385(8):1370-1375.
    108. M. E. Bosch, A. J. R. S"(?)nchez, F. S. Rojas, et al., Recent development in optical fiber biosensors. Sensors,2007.7(6):797"C859.
    109. X. D. Fan, I. M. White, S. I. Shopoua, et al., Sensitive optical biosensors for unlabcled targets: A review. Analytica Chimica Acta,2008.620(1-2):8-26.
    110. L. Rindorf, J. B. Jensen, M. Dufva, et al., Photonic crystal fiber long-period gratings for biochemical sensing. Optics Express,2006.14(18):8224-8231.
    111. J. R. Ott, M. Heuck, C. Agger, et al., Label-free and selective nonlinear fiber-optical biosensing. Optics Express,2008.16(25):20834-20847.
    112. A. Hassani and M. Skorobogatiy, Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced mierofluidies. Opt. Express,2006.14(24): 11616"C11621.
    113. P. Huy, M. Chau, G. Laffont, ct al., Tilted Fiber Bragg Grating photowritten in microstruclured optical fiber for improved refractive index measurement. Optics Express,2006.14(22):10359.
    114. M. C. P. Huy, G. Laffont, V. Dcwyntcr, et al., Three-hole microstructured optical fiber for efficient liber Bragg grating refraclomcter. Optics Lellers,2007.32(16):2390-2392.
    115. L. Rindorf and O. Bang, Highly sensitive refractometer with a photonic-crystal-fiber long-period grating. Optics Letters,2008.33(6):563-565.
    116. J. Lgsgaard, Directional coupling in twin-core photonic bandgap fibers. Optics Letters,2005. 30(24):3281-3283.
    117. K. P. Rcichenbach and C. Xu. Independent core propagation in two-core photonic crystal fibers resulting from structural nonuniformities. in Quantum Electronics and Laser Science Conference.2006:Optical Society of America.
    118. K. Saitoh, N. J. Florous, and M. Koshiba, Design of narrow band-pass filters based on the resonant-tunneling phenomenon in multi-core photonic crystal fibers. Optics Express,2005. 13(25):10327-10335.
    119. J. Ju, Z. Wang, W. Jin, et al., Temperature sensitivity of a two-mode photonic crystal fiber interferometric sensor. Photonics Technology Letters, IEEE,2006.18(20):2168-2170.
    120. M. H. Frosz, A. Stefani, and O. Bang, Highly sensitive and simple method for refractive index sensing of liquids in microstructured optical fibers using four-wave mixing. Optics Express, 2011.19(11):10471-10484.
    121. A. Zheltikov, Ray-optic analysis of the (bio) sensing ability of ring-cladding hollow waveguides. Applied Optics,2008.47(3):474-479.
    122. B. You, J. Y. Lu, J. H. Liou, et al., Subwavelength film sensing based on terahertz anti-resonant reflecting hollow waveguides. Optics Express,2010.18(18):19353-19360.
    123. A. Hassani and M. Skorobogatiy, Photonic crystal fiber-based plasmonic sensors for the detection of biolayer thickness. JOSAB,2009.26(8):1550-1557.
    124. C. Markos, W. Yuan, K. Vlachos, et al., Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers. Optics Express,2011.19(8):7790-7798.
    125. T. T. Alkeskjold, J. Laegsgaard, A. Bjarklev, et al., All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers. Opt. Express,2004.12(24):5857-5871.
    126. F. Du, Y. Q. Lu, and S. T. Wu, Electrically tunable liquid-crystal photonic crystal fiber. Applied Physics Letters,2004.85(12):2181-2183.
    127. L. Scolari, T. Alkeskjold, J. Riishede, et al., Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers. Optics Express,2005. 13(19):7483-7496.
    128. T. Wolinski, K. Szaniawska, S. Ertman, et al., Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres. Measurement Science and Technology, 2006.17(5):985.
    129. D. Noordegraaf, L. Scolari, J. L gsgaard, et al., Avoided-crossing-based liquid-crystal photonic-bandgap notch filter. Optics Letters,2008.33(9):986-988.
    130. L. Scolari, S. Gauza, H. Xianyu, et al., Frequency tunability of solid-core photonic crystal fibers filled with nanoparticle-doped liquid crystals. Optics Express,2009.17(5):3754-3764.
    131. L. Scolari, A. O. Bjarklev, L. Eskildsen, et al., Liquid crystals in photonic crystal fibers: fabrication, characterization and devices.2009, Ph. D. dissertation, Dept. Photonics Eng., Technical Univ. Denmark, Lyngby, Denmark.
    132. L. Wei, T. T. Alkeskjold, and A. Bjarklev, Tunable and rotatable polarization controller using photonic crystal fiber filled with liquid crystal. Applied Physics Letters,2010.96(24): 241104-241104-3.
    133. A. K. Pitilakis, D. C. Zografopoulos, and E. E. Kriezis, In-line polarization controller based on liquid-crystal photonic crystal fibers. Lightwave Technology, Journal of,2011.29(17): 2560-2569.
    134. D. J. Won, M. O. Ramirez, H. Kang, et al., All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers. Applied Physics Letters,2007.91(16): 161112-161112-3.
    135. M. A. Schmidt, H. Tyagi, L. Prill Sempere, et al. Polarization properties of PCF with Ge-nanowire. in Lasers and Electro-Optics,2008 and 2008 Conference on Quantum Electronics and Laser Science. CLEO/QELS 2008. Conference on.2008:IET.
    136. M. A. Schmidt, N. Granzow, N. Da, et al., All-solid bandgap guiding in tellurite-filled silica photonic crystal fibers. Optics Letters,2009.34(13):1946-1948.
    137. M. Schmidt, H. Tyagi, H. Lee, et al. Novel nanophotonic waveguides based on metal, semiconductor or soft glass modified photonic crystal fibres, in Transparent Optical Networks, 2009. ICTON'09.11th International Conference on.2009:IEEE.
    138. H. Tyagi, H. Lee, P. Uebel, et al., Plasmon resonances on gold nanowircs directly drawn in a step-index fiber. Optics Letters,2010.35(15):2573-2575.
    139.李景镇,光学手册:下卷.2010,西安:陕西科学技术出版社.
    140. W. Chen, M. D. Thoreson, S. Ishii, et al., Ultra-thin ultra-smooth and low-loss silver films on a germanium wetting layer. Optics Express,2010.18(5):5124-5134
    141. G. Agrawal, Nonlinear Fiber Optics.2006:Academic Press.
    142.曹庄琪,导波光学.2007:科学出版社.
    143. Y. Wang, C. Liao, and D. Wang, Femtosecond laser-assisted selective infiltration of microstructured optical fibers. Optics Express,2010.18(17):18056-18060.
    144. M. Alam, J. Meier, J. Aitchison, et al., Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends. Optics Express,2010.18(12):12971-12979.
    145. D. Dai and S. He, A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Optics Express,2009.17(19):16646-16653.
    146. R. F. Oulton, V. J. Sorger, T. Zentgraf, et al., Plasmon lasers at deep subwavelcngth scale. Nature,2009.461(7264):629-632.
    147. M. Alam, J. S. Aitchsion, and M. Mojahedi, Compact hybrid TM-pass polarizer for silicon-on-insulator platform. Applied Optics,2011.50(15):2294-2298.
    148. M. Alam, J. S. Aitchison, and M. Mojahedi, Compact and silicon-on-insulator-compatible hybrid plasmonic TE-pass polarizer. Optics Letters,2012.37(1):55-57.
    149. D. Dai, Z. Wang, and J. E. Bowers, Ultrashort broadband polarization beam splitter based on an asymmetrical directional coupler. Optics Letters,2011.36(13):2590-2592.
    150. J. Chee, S. Zhu, and G. Lo, CMOS compatible polarization splitter using hybrid plasmonic waveguide. Optics Express,2012.20(23):25345-25355.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700