高速光纤通信系统中动态色度色散补偿的理论和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于高速光纤通信系统的色度色散(CD)容限非常低,在进行了长距离的固定CD补偿后,由于光网络中路径的动态选择、外界环境变化、光源的频率漂移及元件的老化等因素导致的动态变化的残余色散仍然会提高通信系统的误码率,动态色度色散(CD)补偿技术已经成为40Gb/s或更高速光纤通信系统中的一项关键技术。
     本文总结了当前存在的各种可调谐CD补偿技术和CD反馈信息提取技术,分析了高速光纤通信对动态CD补偿技术的要求。研究了高斯脉冲在色散介质中的传输。从理论上分析了光源谱宽和非线性效应对光脉冲在色散介质中传输的影响和CD对通信系统比特率和带宽的影响。完成了40Gb/s RZ码的动态CD补偿系统,包括利用DCF光纤和电光开关阵列实现的可调谐CD补偿模块、利用指定频带电功率检测法,基于微波功率放大器、窄带带通滤波器和功率检波器等实现反馈信息提取模块、基于数字信号处理器DSP实现的控制模块和采用自适应步长搜索方式实现的补偿算法。进行了基于SOA的SPM效应和XPM效应的40Gbit/s系统下可调谐CD补偿的理论分析,提出了基于SOA的XPM效应的连续动态CD补偿方案,进行了10Gbit/s系统中基于SOA的XPM效应的连续动态CD补偿实验,实现了小范围高精度的连续可调谐CD补偿。
     工作中的主要创新点:
     1.提出一种成本低廉,结构简单的检测给定频点处电功率值的CD反馈信息提取方法。从理论上推导出伪随机光脉冲序列的不同频点处电功率谱密度与系统累积色散值之间的关系式,分析了调制格式、被测频带带宽等因素对电功率法CD检测的影响。在40Gbit/s的RZ系统中实现的CD检测范围和检测精度分别为130ps/nm和3.25ps/nm/0.5dB。
     2.完成了基于DCF级联电光开关阵列和电功率检测技术的动态CD补偿系统,进行了40Gbit/s系统中的动态CD补偿实验,实现了82ps/nm的补偿范围和5ps/nm的补偿精度。补偿系统的最长响应时间为0.52s。
     3.提出基于SOA的连续动态CD补偿方案,从理论上分析了SOA注入电流、时钟光功率、时钟光与信号光之间的延时对CD补偿的影响,证明了该方案在40Gbit/s系统中可以补偿总范围大小为40ps/nm的正负色散。
     4.进行了10Gbit/s系统中基于SOA的XPM效应的连续可调谐CD补偿实验,实现了光源具有初始啁啾条件下的-40 ~ 60ps/nm范围内CD恶化波形的连续可调谐CD补偿。
The tolerable chromatic dispersion (CD) for a very high-bit-rate transmission system (40Gbit/s or above) is very low. And even after the long distance static CD compensation, the BER of the communication system will increase due to the time-varying residual CD caused by factors like network reconfigurations, temperature fluctuation, laser’s wavelength drift and periodic repair/maintenance of fiber etc. Therefore the technology of dynamical CD compensation comes to be critical to the performance of very high-bit-rate transmission systems.
     In this dissertation, several reported tunable CD compensation and monitoring technologies are generalized and the needs for dynamical CD compensation of high-bit-rate transmission system are concluded. Theoretically, the transmission of Gaussian pulses in a CD media is analyzed including the influence caused by the initial chirp, laser line-width, and nonlinear effects. The influence of CD on the bit rate and bandwidth is also studied. A dynamical CD compensation sub-systems in 40Gbit/s RZ systems is established, which includes a tunable CD compensation module using DCFs cascaded with optical switch array, a CD monitoring module that based on narrow-band electrical power detecting and achieved by using devices such as microwave amplifiers, microwave filter and power detector, a controlling module with digital signal processor (DSP), and a controlling algorithm developed with adaptive searching. Tunable CD compensation method in 40Gbit/s systems based on the SPM and XPM effect of SOA is proposed and analyzed theoretically. A SOA based tunable CD compensation system is established in a 10Gbit/s system, which realized consecutive and small range tunable CD compensation.
     Major innovations of this dissertation:
     1. A cost-effective and simple CD monitoring method based on narrow-band electrical power detecting is proposed. A theoretical model is proposed and discussed focusing on the relationship between electrical power and CD at different frequency bands. The effects of factors such as modulation format, bandwidth and center frequency of microwave filter to the performance of this method are investigated. The detectable CD of 130ps/nm and resolution of 5.2ps/nm/dB are obtained experimentally within a frequency band centered at 12GHz in a 40Gbit/s system.
     2. A dynamical CD compensation system is established based on DCFs cascaded with optical switch arrays and the electrical power detecting CD monitoring technique. The compensation range and resolution reaches 82ps/nm and 5ps/nm respectively. The maximal response time of the system is 0.52s.
     3. A consecutive tunable CD compensation method is proposed based on the XPM effect of SOA. The effects of tunable variable such as SOA inject current, optical power of clock pulse sequences and time delay between clock and signal sequences to CD compensation are analyzed theoretically and validated experimentally. The compensation range of 40ps/nm is indicated theoretically in 40Gbit/s systems.
     4. The 10Gbit/s consecutive tunable CD compensation based on SOA and DCF is tested,. A compensation range of -40 ~ 60ps/nm is achieved by using a serious chirped laser.
引文
[1] 孙学康,张金菊,光纤通信技术,北京:人民邮电出版社,2004
    [2] Djafar K , Mynbaev , Lowell L. Scheiner, Fiber-Optic Communications Technology,China Machine Press,2002,8
    [3] J. H. Franz,V. K. Jain,optical communications components and systems,Publishing house of electronics industry,2002,4
    [4] 陈才和,光纤通信,北京:电子工业出版社,2004
    [5] Akira Hasegawa,Theory of information transfer in optical fibers: A tutorial review,Optical Fiber Technology,2004,10: 150–170
    [6] L.G.卡佐夫斯基,S.贝勒迪多,A.威尔勒,光纤通信系统,北京:人民邮电出版社,1999
    [7] 陶智勇,高速光通信系统的色散限制与补偿,光通信技术,2003,3:5-7
    [8] 肖鹏程,高速光传输系统色散补偿的研究,光通信研究,2000,6:1-4
    [9] 钮海明,李先源,超高速光传输系统使用的色散补偿技术,2001,5:22-37
    [10] Ashish M. Vengsarkar,Murray Hill,Dispersion compensating fibers,OFC 97 ThA2:233-234
    [11] Masayuki Nishimura,Masashi Onishi,dispersion-compensating fibers and their applications,OFC 96,ThA1:200
    [12] Masashi Onishi,Hiroo Kanamori,Takatoshi Kato,et al,optimization of dispersion-compensating fibers considering self-phase modulation suppression,OFC 96,ThA1:200-201
    [13] 陈永诗,邹林森,色散补偿光纤及其应用前景,光通信研究,1994:83-90
    [14] Lars Grüner-Nielsen,Bent Edvold,status and future promises for dispersion compensating fibers,ECOC 2002
    [15] M. J. Li,recent progress in fiber dispersion compensators,ECOC 2001,ThM1.1: 486-489
    [16] R. I. Laming,W. H. Loh,M. J. Cole,et al,Fiber gratings for dispersion compensation,OFC 97,ThA3:234-235
    [17] Sergio Barcelos,Michael N. Zervas,Richard I. Laming,Characteristics of Chirped Fiber Gratings for Dispersion Compensation,Optical Fiber Technology,1996,2:213–215
    [18] Morito K,Sahara R,Sato K,et al,Penalty free 10Gbit/ s NRZ transmission over 100 km of standard fiber at 1.55μm with a blue chirp modulator integrated DFB laser,IEEE Photon. Technol. Lett,1996,8(3):431 – 433
    [19] Jansen S. L.,Spalter S.,Khoe G.-D.,et al,16×40 Gb/s over 800 km of SSMF using Mid-Link Spectral Inversion,IEEE Photonics Technology Letters,2004,16(7): 1763-1765
    [20] Alan E. Willner,Monitoring Issues of Chromatic and Polarization-Mode Dispersion in Optical Networks,IEEE 2002,TuJ1
    [21] Willner, A.E.,Tunability and monitoring of chromatic dispersion and PMD in optical networks,LEOS 2002,The 15th Annual Meeting of the IEEE 2002,1(10-14): 201 – 202
    [22] Alan Willner,Tunable compensators master chromatic-dispersion impairments,WDM Solutions,2001,(7)
    [23] Junhee Kim,Junkye Bae,Young-Geun Han,et al,Effectively Tunable Dispersion Compensation Based on Chirped Fiber Bragg Gratings Without Central Wavelength Shift,IEEE Photonics Technology Letters,2004,16(3):849-851
    [24] M. J. Erro,M.A.G. Laso,I. F. de Landa,et al,Electrically tunable dispersion compensation system,IEEE,LEOS 1998,1(1-4):309-310
    [25] T. N. Nielsen,B. J. Eggleton,J. A. Rogers,et al,Dynamic Post Dispersion Optimization at 40 Gb/s Using a Tunable Fiber Bragg Grating,IEEE Photonics Technology Letters,2000,(2):173-175
    [26] B. J. Eggleton,A. Ahuja,P. S. Westbrook,et al,Integrated Tunable Fiber Gratings for Dispersion Management in High-Bit Rate Systems ,Journal of Lightwave Technology,2000,18(10):1418- 1432
    [27] Z. Pan,Q. Yu,Y. W. Song,et al,40Gb/s RZ 120-km transmission using a nonlinearly-chirped fiber Bragg grating (NL-FBG) for tunable dispersion compensation,OFC 2002,ThQQ50:682-683
    [28] J. A. J. Fells,S. E. Kanellopoulos,P. J. Bennett,et al,Twin Fiber Grating Tunable Dispersion Compensator,IEEE Photonics Technology Letters,2001,13(9):984- 986
    [29] Sunil. K. Khijwania,Chee S. Goh,Sze Y. Set,et al,A novel tunable dispersion slope compensator based on nonlinearly thermally chirped .ber Bragg grating,Optics Communications 2003,227:107-113
    [30] Z. Pan,Y. W. Song,C. Yu, et al,Tunable Chromatic Dispersion Compensation in 40-Gb/s Systems Using Nonlinearly Chirped Fiber Bragg Gratings,Journal of Lightwave Technology,2002,20(12):2239-2246
    [31] Ooi. H.,Nakamura, K.,Akiyama, Y.,et al,3.5-Tbit/s (43-Gbit/s /spl times/ 88 ch) transmission over 600-km NZDSF with VIPA variable dispersion compensators,OFC 2002,17-22:555 – 556
    [32] Ooi, H.,Nakamura, K.,Akiyama, Y.,et al,40-Gb/s WDM transmission with virtually imaged phased array (VIPA) variable dispersion compensators,Journal of Lightwave Technology,2002,20(12):2196 – 2203
    [33] 胡海英,陈鹤鸣,用于色散补偿的线性啁啾光纤光栅的最佳切趾包络函数的研究,南京邮电学院学报,2001,21(1):23-31
    [34] 罗海燕,刘永智,虚像相位阵列的研究进展及应用,激光与光电子学进展,2006,43(2):33-36
    [35] Yamauchi, Y.,Sonoda, H.,Furukawa, H.,Variable dispersion compensator using a VIPA with an extended bandwidth,Optical Communication,2005. ECOC 2005,31st European Conference on Volume 4,25-29 Sept. 2005 Page(s):821 – 822
    [36] M. Shirasaki,Large angular dispersion by a virtually imaged phased array and its application to a wavelength demultiplexer,OPTICS LETTERS / Vol. 21,No. 5 / March 1,1996:366-368
    [37] Shirasaki, M.,Compensation of chromatic dispersion and dispersion slope using a virtually imaged phased array, Optical Fiber Communication Conference and Exhibit,2001. OFC 2001,Publication Date: 2001,Volume: 2, On page(s):TuS1-1- TuS1-3 vol.2
    [38] Shirasaki, M.,Chromatic-dispersion compensator using virtually imaged phased array,Photonics Technology Letters,IEEE,Volume 9,Issue 12,Dec. 1997 Page(s):1598 – 1600
    [39] 原荣,光纤通信,北京:电子工业出版社,2002
    [40] M. Shirasaki,H. Isono,S. Cao,Dispersion compensation using the virtually imaged phased array,in Proc. PCC/OECC’99,1999:1367–1370
    [41] Hiroki Ooi,Kentaro Nakamura,Yuichi Akiyama,40-Gb/s WDM Transmission With Virtually,Imaged Phased Array (VIPA) Variable Dispersion Compensators,JOURNAL OF LIGHTWAVE TECHNOLOGY,2002,20,(12):2196-2203
    [42] Ooi, H.,Nakamura, K.,Akiyama,3.5-Tbit/s (43-Gbit/s /spl times/ 88 ch) transmission over 600-km NZDSF with VIPA variable dispersion compensators,Optical Fiber Communication Conference and Exhibit,2002. OFC 2002,17-22 Mar 2002:555 – 556
    [43] G.-H. Lee,S. Xiao,A.M. Weiner,Optical Dispersion Compensator With >4000-ps/nm Tuning Range Using a Virtually Imaged Phased Array (VIPA) and Spatial Light Modulator (SLM),Photonics Technology Letters,IEEE,2006,Volume 18,Issue 17:1819 – 1821
    [44] 李琳,赵岭,高侃,等,用于多信道色散补偿的 Gires-Tournois 干涉仪的特性分析,光学学报,2002,22(12):1442-1446
    [45] M. Jablonski,Y. Tanaka,H.Yaguchi,et al,Entirely thin-film allpass coupled-cavity filters in a parallel configuration for adjustable dispersion-slope compensation,IEEE Photon. Technol. Lett.,2001,13,(11):1188–1190
    [46] Leda M. Lunardi,David J. Moss,S. Chandrasekhar,etc,Tunable Dispersion Compensation at 40-Gb/s Usinga Multicavity Etalon All-Pass Filter With NRZ, RZ,and CS-RZ Modulation,JOURNAL OF LIGHTWAVE TECHNOLOGY,VOL. 20,NO. 12,DECEMBER 2002:2136-2145
    [47] B.J. Vakoc,W.V. Sorin,B.Y. Kim,A tunable dispersion compensator comprised of cascaded single-cavity etalons,Photonics Technology Letters,IEEE,Volume 17,Issue 5,May 2005 Page(s):1043 – 1045
    [48] D. J. Moss,M. Lamont,S. McLaugthlin,et al,Tunable dispersion and dispersion slope compensators for 10 Gb/s using all-pass multicavity etalons,IEEE Photon. Technol. Lett,2003,15:730–732
    [49] D. J. Moss,S. McLaughlin,G. Randall,et al,Multichannel tunable dispersion compensation using all-pass multicavity etalons,in Tech. Dig. OFC’2002,paper TuT2
    [50] D. Moss,L. Lunardi,M. Lamont,et al,Tunable dispersion compensation at 10 Gb/s and 40 Gb/s using multicavity all-pass etalons,presented at the Optical Fiber Communication Conf. and Exhibition (OFC 2003),2003,Atlanta,GA,Mar:23–28
    [51] Madsen,C.K. Lenz,G. Murray Hill,A multi-channel dispersion slope compensating optical all pass filter,Optical Fiber Communication Conference,2000,2(2):94-96
    [52] D. Yang,C. Lin,W. Chen,G. Barbarossa,Fiber dispersion and dispersion slope compensation in a 40-channel 10-Gb/s 3200-km transmission experiment using cascaded single-cavity Gires-Tournois etalons,IEEE Photon. Technol. Lett.,2004, 16(1):299-301
    [53] C.K.Madsen,J.A.Walker,J.E.Ford,etc,A Tunable Dispersion Compensating MEMS All-Pass Filter, IEEE PHOTONICS TECHNOLOGY LETTERS,2000,12,(6):651-653
    [54] X. Shu,K. Sugden,K. Byron,Bragg grating-based all-fiber distributed Gires-Tournois etalons,Opt. Lett.,2003,28:881–883
    [55] Xuewen Shu,Ian Bennion,Tailored Gires–Tournois etalons as tunable dispersion slope compensators,2004,29(9):1013-1015
    [56] X. Shu,K. Chisholm,K. Sugden,Design and realization of dispersion slope compensators using distributed Gires–Tournois etalons,in Proc. Eur. Conf. Optical Communication (ECOC 2003),Rimini,Italy,Sept. 2003, Paper We4.P57, pp. 670–671
    [57] Shu X W,Mitchell J,Gillooly A,et a1,Ttmable dispersion slope compensator using novel tailored Gires—Tournois etalons,OFC2004:WK 5
    [58] X. Shu,K. Sugden,P. Rhead,et al,Tunable dispersion compensator based on distributed Gires–Tournois etalons,IEEE Photon. Technol. Lett.,2003,15:1111–1113
    [59] S. Doucet,R. Slavik,S. LaRochelle,Tunable dispersion and dispersion slope compensator using novel Gires-Tournois Bragg grating coupled-cavities,Photonics Technology Letters,IEEE Volume 16,Issue 11,Nov. 2004 Page(s):2529 – 2531
    [60] Marco Secondini,Optical Equalization,System Modeling and Performance Evaluation,JOURNAL OF LIGHTWAVE TECHNOLOGY,2006,24(11): 4013-4021
    [61] A. Himeno,K. Kato,T. Miya,Silica-based planar lightwave circuits,J. Select. Quantum Electron,1998,4:913–924
    [62] Koichi Takiguchi,Katsunari Okamoto,Kazuyuki Moriwaki,Dispersion Compensation Using a Planar Lightwave Circuit Optical Equalizer , IEEE PHOTONICS TECHNOLOGY LETERS,1994,6(4):561-564
    [63] Koichi Takiguchi,Katsunari Okamoto,Planar Lightwave Circuit Optical Dispersion Equalizer,IEEE PHOTONICS TECHNOLOGY LETTERS,1994,6(1):86-88
    [64] Koichi Takiguchi,Katsunari Okamoto,Kazuyuki Moriwaki,Planar Lightwave Circuit Dispersion Equalizer,JOURNAL OF LIGHTWAVE TECHNOLOGY,1996, 14(9):2003-2011
    [65] M. Secondini,E. Forestieri,G. Prati,Adaptive minimum MSE controlledPLC optical for chromatic dispersion compensation,J. Lightw.Technol.,2003,21(10): 2322–2331
    [66] M.Secondini,E. Forestieri,G. Prati,Performance of mse configured plc optical equalizer for chromatic dispersion compensation,IEEE Photon. Technol. Lett.,2003,15:248-250
    [67] M. Secondini,E. Forestieri,G. Prati,PLC optical equalizer for chromatic and polarization-mode dispersion compensation based on MSE control,IEEE Photon. Technol. Lett.,2004,16(4):1173–1175
    [68] M. Bohn,G. Mohs,C. Scheerer,etc,An Adaptive Optical Equalizer Concept for Single Channel Distortion Compensation,in Proc. ECOC’01,2001,1:6-7
    [69] M. Bohn,W. Rosenkranz,P. M. Krummrich,et al,Experimental verification of combined adaptive PMD and GVD compensation in a 40 Gb/s transmission using integrated optical FIR-filters and spectrum monitoring,presented at the Optical Fiber Conf. (OFC),Los Angeles,CA,2004,Paper TuG3.
    [70] Madsen, C.K.,Lenz, G.,Bruce, A.J,An all-pass filter dispersion compensator using planar waveguide ring resonators,OFC/IOOC '99,Volume 4,21-26 Feb. 1999 Page(s):99 - 101 vol.4
    [71] C. Madsen,G. Lenz,Optical Allpass Filters for Phase Response Design with Applications for Dispersion Compensation,IEEE Photonics Technol. Lett.,1998,10(7):994-996
    [72] Madsen, C.K.,Chandrasekhar, S.,Laskowski, E.J,Compact integrated tunable chromatic dispersion compensator with a 4000 ps/nm tuning range,OFC 2001,2001, 4:PD9-1 - PD9-3
    [73] Madsen, C.K.,Laskowski, E.J.,Bailey, J,The application of integrated ring resonators to dynamic dispersion compensation,IEEE/LEOS 2002 Summer Topi, 15-17 July 2002 Page(s):TuJ2-29 - TuJ2-30
    [74] C.K. Madsen , Integrated Waveguide Allpass Filter Tunable Dispersion Compensators,Optical Fiber Conference2002,TuT1
    [75] C. K. Madsen,G Lenz,A. J. Bruce,et al,Integrated All-Pass Filters for Tunable Dispersion and Dispersion Slope Compensation,IEEE Photon.Technol.Lett,1999,11(12):1623—1624
    [76] Madsen, C.K.,Chandrasekhar, S.,Laskowski, E.J.,An integrated tunable chromatic dispersion compensator for 40 Gb/s NRZ and CSRZ,OFC 2002,17-22 Mar 2002 Page(s):FD9-1 - FD9-3
    [77] Suzuki K,Nakamastu I,Shimoda T et al, WDM tunable dispersion compensator with PLC ring resonators,OFC 2004:Wk3
    [78] Suzuki K,Nakamastu I,Shimoda T et al, High performance tunable dispersion compensator module with PLC ring resonators,ECOC 2003,2003
    [79] Lowery, A.J. , Gurney, P.C.R. , 270-km 10 Gbit/s WDM dispersion compensation using a chirped AWGM,OFC/IOOC '99,Technical Digest,1999,4(21-26):74-76
    [80] Parker, M.C.,Walker, S.D.,Dynamic dispersion compensation using a Fourier-Fresnel phase apertured active arrayed-waveguide grating,Nanostructures and Quantum Dots/WDM Components/VCSELs and Microcavaties/RF Photonics for CATV and HFC Systems,1999 Digest of the LEOS Summer Topical Meetings,26-30 July 1999 Page(s):II41 - II42
    [81] Kerbstadt, F.,Petermann, K.,Analysis of adaptive dispersion compensators with double-AWG structures,Journal of Lightwave Technology,2005,23(3):1468 – 1477
    [82] Moshe Tur,Eran Herman,Nonlinear properties of dispersion management modules employing high-order mode fibers,Optical Fiber Conference 2001,Tu S5
    [83] S. Choi,W. Shin,K. Oh,High-Order-Mode Dispersion Compensation Technique Based on Mode Converter using H ollow Optical Fiber,Optical Fiber Conference 2002,WA6
    [84] U Peschel,T Peschel,F Lederer,A compact device for highly effient dispersion compensation in fiber transmission,1995,Applied Physics Letters,Vol.67(15):2111-2113
    [85] Buchali, F. , Electronic dispersion compensation for enhanced optical transmission,Optical Fiber Communication Conference,2006 and the 2006 National Fiber Optic Engineers Conference,5-10 March 2006 Page(s):3 pp.
    [86] K.Yonenage,S. Kuwano,Dispersion tolerant optical transmission system using duobinary transmitter and binary receiver,J. Lightwave Technol.,1997,15 :1530-1537
    [87] W.Kaiser,T.Wuth,M.Wichers,etc,Reduced complexity optical duobinary 10Gb/s transmitter setup resulting in an increased transmission distance,Photon. Technol. Lett.,2001,13(8):884-886
    [88] S. Chandrasekhar,C. R. Doerr,et al,Flexible transport at 10 Gb/s from 0 to 675km (11500ps/nm) using a chirp-managed laser, no DCF, and a dynamically adjustable dispersion-compensating receiver,Proc.OFC 2005,Post deadline paper PDP30
    [89] Buchali, F.,Bulow, H.,Baumert,Reduction of the chromatic dispersion penalty at 10 Gbit/s by integrated electronic equalisers,Optical Fiber Communication Conference,2000,3:268 – 270
    [90] A. F?rbert,S. Langenbach,N. Stojanovic,Performance of a 10.7 Gb/s Receiver with Digital Equaliser using Maximum Likelihood Sequence Estimation,Proc. ECOC 2004,PD-Th4.1.5
    [91] M. N. Petersen,Z. Pan,S. Lee, S,et al,Online Chromatic Dispersion Monitoring and Compensation Using a Single Inband Subcarrier Tone,IEEE Photonics Technology Letters,2002,14(4):570-572
    [92] Yuichi Takushima,Hideo Yoshimi,Kazuro Kikuchi et al,Experimental Demonstration of In-Service Dispersion Monitoring in 960-km WDM Transmission System Using Optical Frequency-Modulation Method,IEEE Photonics Technology Letters,2003,15(6):870-872
    [93] Yuichi Takushima,Kazuro Kikuchi,In-Service Monitor for Group-Velocity Dispersion of Optical Fiber Transmission Systems,Electronics Letters,2001,37(12):743-745
    [94] Devaux, F.,Sorel, Y.,Kerdiles, J.F.,Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitter , J. Lightwave Technology,1993,11(12):1937 – 1940
    [95] Z. Pan,Q. Yu,Y. Xie,et al,Chromatic Dispersion Monitoring and Automated Compensation for NRZ and RZ Data Using Clock Regeneration and Fading Without adding Signaling,OFC 2001,WH
    [96] B. Christensen,J. Mark,G. Jacobsen,et al,Simple dispersion measurment technique with high resolution,Electronics Letters,1993,29(1):132-134
    [97] Park, K.J,Youn, C.J,Lee, J.H,et al,Chromatic dispersion monitoring technique in WDM network,OFC 2002,17-22 March 2002:735 – 737
    [98] C.Youn,Effects of SPM and PMD on Chromatic Dispersion Monitoring Techniques Using Pilot Tones,OFC 2003,WP2:403-404
    [99] Timothy E. Dimmick,Giammarco Rossi,Daniel J. Blumenthal,Optical Dispersion Monitoring Technique Using Double Sideband Subcarriers,IEEE Photonics Technology Letters,2000,12(7):900-902
    [100] C. K. Madsen,Chromatic and Polarization Mode Dispersion Measurement Technique Using Phase-Sensitive Sideband Detetion,OFC 2001,MO6
    [101] Q.Yu,Z. Pan,L. S. Yan et al,Chromatic Dispersion Monitoring Technique Using Sideband Optical Filtering and Clock Phase-Shift Detection,Journal of Lightwave Technology,2002,20(12):2267-2271
    [102] T. Inui,T. Komukai,M. Nakazawa,et al,Adaptive dispersion slope equalizer using a nonlinearly chirped fibre Bragg grating pair with a novel dispersion detection technique,IEEE Photonics Techinol.Lett.,2002,14(4):549-551
    [103] S. M. R. Motaghian Nezam,J. E. McGeehan,A. E. Willner,Chromatic Dispersion Monitoring Using Partial Optical Filter and Phase-Shift Detection of Bit Rate and Doubled Half Bit Rate Frequency Components,OFC 2004,ThU2.
    [104] Z. Pan,Y. Xie,S. A. Havstad,et al,Real-time group-velocity dispersion monitoring and automated compensation without modications of the transmitter, Optics Communications 230 (2004) 145–149
    [105] Roth, J. m.,Moeller, L.,Xu, C., Knox,et al,High Sensitivity Performance Monitoring and Impairment Compensation Via Two-photon Absorption in a Photon-Counting Silicon Avalanche Photodiode , ECOC 2002 , paper 7.1.6, Copenhagen, Denmark.
    [106] Q.Yu,L. S. Yan,Z. Pan et al,Chromatic Dispersion Monitor for WDM System Using Vestigial-Sideband Optical Filtering,OFC 2002,WE3:197-199
    [107] S. Wielandy,M. Fishteyn,T. Her,et al,Dispersion Monitoring and Automatic Compensation Based on a Differential Nonlinear Detection Scheme,OFC 2003,TuD5
    [108] P. S. Westbrook,B. J. Eggleton,T. Her,et al,Application of Self-phase Modulation and Optical Filtering to Measurement of Residual Chromatic Dispersion,OFC 2002,WU6:335-336
    [109] Paul S. Westbrook,Benjamin J. Eggleton,Gregory Raybon,et al,Measurement of Residual Chromatic Dispersion of a 40 Gb/s RZ Signal via Spectral Broadening,IEEE,Photonics Technology Letters,March 2002,14(3):346-348
    [110] Zheng, Z.,Weiner, A.M.,Marsh, J.H.,et al,Ultrafast optical thresholding based on two-photon absorption GaAs waveguide photodetectors , Photonics Technology Letters,1997,IEEE,9(4):493 – 495
    [111] G. P. Agrawal 著,胡国绛,黄超译,非线性光纤光学,天津:天津大学出版社,1992
    [112] G. P. Agrawal 著,贾东方,余震虹译,非线性光纤光学原理及应用,北京:电子工业出版社, 2002
    [113] D. Marcuse,Pulse distortion in single-mode fibers,applied optics,1980,19(10):1653 – 1660
    [114] D. Marcuse,Pulse distortion in single-mode fibers. 3: Chirped pulses,applied optics,1981,20(20):3573 – 3579
    [115] Yan Li,Wencai Jing,Jinlong Yu,et al,The analysis of effecting factors on CD monitoring technique based on the narrow-band electrical power detection,optoelectronics letters,2006,2(5):364-368
    [116] Djafar K. Mynbaev,Lowell L. Scheiner,Fiber-Optic Communications Technology,Prentice Hall, Inc
    [117] 王剑,偏振模色散动态补偿技术研究,天津大学博士论文,2003
    [118] B. P. Lathi,Modern Digital,Analog Communication Systems,Holt,Rinehart and Winston,1983
    [119] Z. Pan,Q. Yu,Y. Xie,et al,Chromatic Dispersion Monitoring and Automated Compensation for NRZ and RZ Data Using Clock Regeneration and Fading Without adding Signaling,OFC 2001,WH5
    [120] Z. Pan,Y. Xie,S. A. Havstad,et al,Real-time group-velocity dispersion monitoring and automated compensation without modifications of the transmitter, Optics Communications 230 (2004) 145–149
    [121] Leonid Kazovsky , Sergio Benedetto , Alan Willner , Optical Fiber Communication Systems,Artech House,1996
    [122] 樊昌信,张甫翊,徐炳祥,等,通信原理,北京:国防工业出版社,2001
    [123] 林可祥,汪一飞,伪随机码的原理与应用,北京:人民邮电出版社,1978
    [124] 黄章勇,光纤通信用光电子器件和组件,北京:北京邮电大学出版社,2001
    [125] 苏奎峰,吕强,耿庆锋等,TMS320F2812 原理与开发,北京:电子工业出版社,2005
    [126] 黄占华,微机原理与接口技术,北京:机械工业出版社,2002
    [127] 彭启琮,管庆,DSP 集成开发环境 CCS 及 DSP/BIOS 的原理与应用,北京:电子工业出版社,2004
    [128] Kuri, T.,Kitayama, K.-I.,Long-term stabilized millimeter-wave generation using a high-power mode-locked laser diode module,Microwave Theory and Techniques,1999,47(5):570 – 574
    [129] Shu, C.,Yip-Chi Lee,Tunable dual-wavelength picosecond optical pulses generated from a self-injection seeded gain-switched laser diode , Quantum Electronics,1996,32(11):1976 – 1980
    [130] Tetsuro Komukai,Takashi Yamamoto,Satoki Kawanishi,Optical Pulse Generator Using Phase Modulator and Linearly Chirped Fiber Bragg Gratings,IEEE Photon. Technol. Lett,2005,7(8):1746-1748
    [131] 马晓红,高速光时分复用通信系统关键技术研究,天津大学博士学位论文,2001
    [132] B.Mikkelsen,Optical amplifiers and their system applications,Ph.D Thesis,Technical university of Denmark,1995,LD-114
    [133] Gerd Keiser Optical Fiber Communications third edition,McGraw-Hill:2000,426~430
    [134] 李力军,林洪榕,迟晓玲,脉冲在增益饱和半导体光放大器中的畸变,光通信研究,2002,1:53-57
    [135] Djafar K. Mybnaev,Lowell L. Scheiner,Fiber-Optic Communications Technology,Prentice Hall,2001:523~541
    [136] M. Usami,R.Inohara,K. Nishimura,et al,Experimental Analysis of Cross Gain Modulation and Cross Phase Modulation in SOA with Assist Light Injection
    [137] Jesper Mork , Antonio Mecozzi , The Modulation Response of a Semiconductor Laser Amplifier,IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS,1999,5(3)
    [138] Govind P. Agrawal,Fiber-Optic Communication Systems (3 Ed.),John Wiley & Sons, Inc,2002
    [139] G. P. Agrawal,N. A. Olsson,Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,IEEE Journal of Quantum Electronics,1989,25:2297-2306
    [140] Munefumi Tsurusaw,Kohsuke Nishimura,Masashi Usami,Novel Scheme For Reducing the Pattern Effect in 40 Gbps SOA Based All-Optical Switch Utilizing Transparent CW Assist Light, International Conference on Indium Phosphide and Related Materials,2001,174-177
    [141] 王耀天,全光 3R 再生系统理论分析和实验研究,天津大学博士论文,2006
    [142] G.P. Agrawal,N.A. Olsson,Amplification and compression of weak picosecond optical pulses by using semiconductor laser amplifier,Optics Letters,1989,14:500-502

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700