用于光控相控阵的微波光子移相器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微波光子移相器(MWPPS)是一种在光域中对微波信号进行相位处理的光子器件。它随着微波光子学以及光载射频通讯(RoF)的兴起而日益在军事和卫星通信领域受到人们的重视。该器件是光控相控阵系统中的关键器件,主要用于对相控阵系统中的各天线阵元提供合适的相位反馈,产生光波束形成网络,完成系统的探测扫描任务。由于MWPPS在本质上属于微波和光子学的交叉领域。因而它可以借助微波和光子领域的双重优势,用更丰富、更灵活的手段对电学移相器无法处理的高频微波信号进行相位调谐。
     本文首先详细阐明了MWPPS在相控阵系统中的概念、功能、优缺点及设计原则,并对MWPPS的发展现状进行了深入了解。正文主要分为理论研究和实验研究两个方面。理论上对两类工作在毫米波段的集成MWPPS进行了设计;实验中则结合实际条件,对工作频率为10GHz的分立型、集成化的两类矢量和MWPPS进行了详细研究。
     在理论工作中作者结合边带调制技术,首次成功设计了一种基于SOI脊形波导的在线式集成MWPPS。该器件在单一波导内集成了F-P腔窄带滤波器、布拉格反射器以及热光型光学相位调制区,通过F-P腔窄带滤波器对双边带光载微波信号滤波、布拉格反射镜对透射边带的反射和PMR对透射边带的相位调节,通过外部调谐,在折射率变化为0~10×10-3的范围内,可实现对输入的任何双边带光载微波信号超过360°的连续相位调节,调节精度约6.92°/℃。该器件在同类中的优势在于其具有超大的工作带宽,适用于从38GHz到1.9THz的所有可用的高频波段。且器件具有相位调谐量不随工作频率变化、输出功率恒定的特性。
     另外,作者首次提出了基于集成光波导模式的正交矢量和技术,解决了传统矢量和MWPPS无法集成化的难题。文中详细的论证了该技术在克服合成信号的功率不稳定性和集成化两方面的可行性。器件以SOI亚微米矩形波导为基础,设计了基于对称定向耦合器(SDC)的光功率分配器、光开关单元:以非对称定向耦合器(ADC)为基础成功设计了0th to 1st MOCM和0th to 2nd MOCM两种模式转换复用器。利用SOI亚微米波导较大的模间色散特性,在约4617μm的波导传输中可实现1st和2nd以及0th和2nd模式间6.25ps和18.75ps的相对延时。通过对光功率分配器的调节以及对光开关的切换操作,在调谐区折射率变化为0~15×10-3范围内,可实现40GHz微波信号精度为1.64°/℃、360°全范围相位调谐。
     在实验方面作者首先论证了基于宽带光源矢量和MWPPS的可行性,然后对工作频率为10GHz的分立矢量和MWPPS进行了研究。构建了四分支结构的矢量和MWPPS,通过对四分支的两两组合,并用衰减器调谐各分支的光功率,每种组合可获得90°的相位调谐,一共可实现360°的全范围调谐。器件输出功率的最大波动约3dB,扫频波动约3.6dB;为了简化四分支系统的复杂结构,作者采用光强度调制器在不同偏压下的反相特性,构建了两分支结构,实验结果表明,简化结构减小了对光功率衰减量的要求。在两种不同的偏置电压下,MWPPS只需较小的光功率变化即可实现共近360°的相位变化。但信号输出功率最大波动可达到20dB。作为对宽带光源的补充,作者还提出了一种基于多载波调制的矢量和MWPPS,作者对波长为1530nm和1560nm载波复用,双载波被调制器同时调制后通过52m长的光纤的色散引入约25ps的相对延时,通过调谐输出光功率,这一构造可实现10GHz光载微波信号90°的相位调谐,输出功率最大波动7dB。
     最后结合分立系统的研究成果,作者首次提出并制作了一种基于宽带光源的SOI脊型波导的非对称Mach-Zehnder结构集成VSM-MWPPS,结合调制器的反相特性可实现微波信号近360°的相位调谐。宽带光源的使用解决了片上VSM-MWPPS光载微波信号合成时微波信号功率和相位的不稳定性问题,而调制器反相特性的利用则简化了器件结构。研究中作者采用小截面SOI脊型波导对工作频率为10GHz的VSM-MWPPS各个功能模块,即分路器、合路器、衰减单元以及延时线进行了设计,并以此为依据在SOI硅片上进行了器件制作。在实验中,重点对器件制作的关键工艺ICP的主要参数进行了对比研究,得到了理想的刻蚀条件。最后对器件进行了基本性能测试。结果表明,器件直波导的传输损耗约7.6dB/cm,端面耦合损耗约为5.5dB/端面。波导的有效折射率约为3.42558,群折射率约3.5893,两波导延时线之间的相对延时差约48ps,在10 GHz工作频率下,相位差约172.8°。在2 GHz带宽内扫频,输出功率波动约2 dB。
Microwave photonic phase shifter (MWPPS) is a photonic device which is used to tune the phase of a microwave signal in optical domain. It have drawn much attention in both military and satellite communications due to the advantage of compact size, light weight, high operating frequency and large simultaneous band. It plays an important role in optically controlled phased-array antenna (OCPAA) for optical beam forming network (OBFN). And it can overcome the electronic-bottleneck and tune the phase of high frequency signal in millimeter-wave band even in~THz domain by taking advantage of microwave and photonics.
     In this dissertation, OCPAA was firstly introduced and then the basic concept, functionality and design rule of the MWPPS were elaborated in detail. The main body of this dissertation can be divided into two parts. In the first part, two different kinds of millimeter-wave band MWPPS, i.e., sideband-modulation based MWPPS and orthogonal vector sum method (VSM) based MWPPS, were theoretically demonstrated. The second part is the experimental study of two VSM-MWPPSs, i.e., discrete MWPPS and integrated MWPPS.
     In chapter 2, a tunable wide band microwave photonic phase shifter based on sideband technology was designed in SOI waveguide for the first time. This MWPPS consists of a Fabry-Perot (F-P) filter, a phase modulation region (PMR), and distributed Bragg reflectors (DBRs). Firstly, the two sidebands-based microwave signals in optical domain were separated by the F-P filter Then the reflector was designed to~100% reflect the transmitted wave came from the F-P filter. Finally, the PMR was set in the middle to modulate the phase of the transmitted wave by thermo-optics effect. For this device, it was demonstrated that the linear microwave phase shift of 0~2πcould be achieved in an ultra-wide band (38 GHz~1.9 THz) by a refractive index (RI) variation of 0~10×10-3.The tuning resolution was about 6.92°/℃.The phase response is frequency-independent and its output power is constant.
     In chapter 3, for the first time to our knowledge, orthogonal VSM was proposed to transfer the traditional bulk VSM MWPPS to integrated one which is very important for large-scale OCPAA. This integrated VSM MWPPS consists of a 1×2 variable optical power splitter (VOPS), an optical switch (OS), two mode order convertor-multiplexers (MOCMs) and fixed time delay lines (FTDLs).
     The 1×2 VOPS and OS were successfully designed in SOI rectangular waveguides based on symmetrical directional coupler (SDC). And the 0th to 1st and 0th to 2nd MOCMs were designed based on asymmetrical directional coupler (ADC). Finally, the fixed time delay of 6.25 ps and 18.75 ps were achieved in a distance of 4617μm due to the large group velocity difference between different modes in SOI multimode waveguides. By operating the VOPS and OS, the microwave phase shift of 0~2πcould be achieved by a refractive index (RI) variation of 0~15×10-3 for 40 GHz signal. The corresponding tuning resolution was about 1.64°/℃.
     In chapter 4, the discrete MWPPSs for 10 GHz were experimentally studied. Firstly, the feasibility of broadband source based VSM-MWPPS was studied. Then, four-branch structure VSM-MWPPS was constructed and measured. By combining two adjacent branch while keeping the other branches in off-state, the phase shift of 0~π/2 can be achieved. The phase shift of 0~2πcan be realized by four combinations. The corresponding maximum power variation in each combination is about 3 dB. The maximum power variation in frequency-sweep is about 3.6 dB.
     The two-branch structure VSM-MWPPS was then constructed to simplify the four-branch structure. The fixed time delay between the two branches is 48ps. The measured phase shift of this device ranged from 0 to 175°. By combining the reversal characteristic of the Mach-Zehnder LiNbO3 intensity modulator, the phase shift of 180°to 355°was achieved. The total phase shift range is near 360°. The maximum power variation is less than 20 dB
     At the end of this chapter, multicarrier-modulation based VSM-MWPPS was constructed which can be used in long haul OCPAA systems. Two carriers of the wavelengths of 1530 nm and 1560 nm were multiplexed and then modulated by a 10 GHz microwave signal. A 52 m-long SMF-28 fiber was used to introduce a time delay of 25 ps between the two carriers due to the dispersion in SMF-28 fiber. Finally, a measured phase shift of 0 to 90°was achieved by tuning the optical power of the carriers. The maximum power variation is about 7 dB.
     In chapter 5, for the first time to our knowledge, an integrated asymmetrical Mach-Zehnder structure VSM-MWPPS for 10 GHz based on broadband optical source was designed in small cross-section SOI rib waveguides and then studied experimentally.0 to near 360°phase shift can be achieved by using the reverseal characteristic of the intensity modulator. Four sub-components, i.e., Y-branch power splitter, waveguide true time delay lines, waveguide variable optical attenuators and Y-branch power combiner were integrated in SOI rib waveguides. In experiment, the masks of the device and the electrode were firstly fabricated. Then the Inductively coupled plasma (ICP) processing, which is a key technology for fabricating SOI rib waveguides, was studied in detail. The optimum conditions of ICP etching were obtained. And the device was also fabricated.
     Finally, some important parameters of the integrated VSM-MWPPS were measured: the propagation loss is about 7.6 dB/cm, the coupling loss is about 5.5 dB/cut, the pure bending loss is about 2 dB/90°, the effective refractive index is about 3.42558, the group index is about 3.5893, the group delay between the two delay lines is about 48 ps, the corresponding fixed phase difference between the two branches is about 172.8°for 10 GHz MW signal, and the maximum power variation at frequency-sweep state is about 2.2 dB.
引文
[1]JOSE CAPMANY, DALMA NOVAK. Microwave photonics combines two worlds [J]. Nature Photonics,2007,1:319-330.
    [2]CHI H LEE. Microwave photonics [M]. Ist ed. Taylor and Francis group, CRC press,2007.
    [3]STAVROS IEZEKIEL. Microwave photonics:devices and applications [M]. Wiley-IEEE,2009.
    [4]HONG BONG KIM, MARC EMMELMANN, BERTHOLD RATHKE, AND ADAM WOLISZ. A Radio over Fiber Network Architecture for Road Vehicle Communication Systems. In proc. of IEEE vehicular Technology Conference. 2005[C].
    [5]ANTHONY NG'OMA. Radio-over-fiber technology for broadband wireless communication systems [D]. Electricaln Engineering of the Eindhoven University of Technology,2005.
    [6]HAMED AL-RAWESHIDY, SHOZO KOMAKI. Radio over fiber technologies for mobile communications networks [M]. Boston, MA:Artech House,2002.
    [7]JAGER, D. Traveling-wave optoelectronic devices for microwave and optical applications. Proc. Prog. Electromagn. Res. Symp. (PIERS),327.1991.
    [8]JAGER, D. Microwave photonics. In Optical information technology. Smith, S.D. and Neale, R.F., Eds., Springer-Verlag, New York,328,1993[C].
    [9]ALWYN J. SEEDS. Microwave photonics [J]. IEEE Transaction on microwave theory and techniques,2002,50:877-887.
    [10]D. JAGER, R. HEINZELMANN, AND A. STOHR. Microwave Photonic Devices and Systems. First Joint Symposium on Opto- & Microelectronic Devices and Circuits. April 10-15,2000[C]. China:Nanjing.
    [11]JIANPING YAO. Microwave photonics [J]. Journal of lightwave technology, 2009,27:314-333.
    [12]XU KUN, LI JIAN-QIANG, YIN JIE, ZHANG YE, HUANG HAO, LIN JIN-TONG. Microwave photonic signal processing techniques and radio-over-fiber transmission demonstration [J]. The journal of China universities of posts and telecommunications.2009,16:6-9.
    [13]KEITH J. WILLIAMS. An overview of analog microwave photonics. In Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America), September 16,2007[C]. America:California.
    [14]张明友.光控相控阵雷达[M].北京:国防工业出版社,2008.
    [15]张光义,赵玉洁.相控阵雷达技术[M].北京:电子工业出版社,2007.
    [16]MERRILL I. SKOLNIK. Radar Handbook [M].2nd ed. Mcgraw-Hill,1990.
    [17]王德纯.宽带相控阵雷达[M].北京:国防工业出版社,2010.
    [18]ELI BROOKNER RAYTHEON COMP. Phased array and radar breakthroughs[J]. Morden Radar,2006,28:1-4.
    [19]陈立,潘谊春,郑凯.相控阵雷达的发展[J].船舶电子工程,2009,29:13-17.
    [20]韦秀光,光控相控阵阵技术发展浅议[J],http://www.defence.org.cn/article-13-31536.html.
    [21]韦善革,韩春林.光控相控阵雷达波束控制系统的设计[J].成都信息工程学院学报,2006,21:190-193.
    [22]张忠华,孙晓昶,光控相控阵雷达[J].电讯技术,2004,2:71-75.
    [23]SUNING TANG, AUSTIN, L.WU, Z.FU ETAL.ultra low-loss polymeric waveguide circuits for optical true time delay in wideband phased array antennas [J]. Optical engineering,2005,39:643-651.
    [24]GARDONE LEO.Ultra wideband microwave beamforming technique[J]. Mocro-wave Journal,1985,28:121-131.
    [25]贾春燕,李东文,叶莉华,崔一平.相控阵雷达与光控相控阵雷达[J].电子器件,2006,29:598-601.
    [26]房红兵.相控阵雷达系统天线前端的光子技术[J].航天电子对抗,2005,22:21-23.
    [27]林桂道.现代相控阵系统的波束控制设计分析[J].舰船科学技术,2007,29:74-78.
    [28]何子述,金林,韩蕴洁,严济鸿.光控相控阵雷达发展动态和实现中的关键 技术[J].电子学报,2005,,33:2191-2195.
    [29]梁华伟.光波导光学相控阵技术的理论和实验研究[D].西安电子科技大学,2007.
    [30]高瑜翔.光控相控阵列系统及其关键技术研究[D].电子科技大学,2005.
    [31]孙亮.基于光学相控阵的光束扫描研究[D].长春理工大学,2006.
    [32]官伟.光控相控阵天线系统[D].哈尔滨工程大学,2005.
    [33]安涛,韩春林,何子述.X波段光控相控阵雷达技术[J].光传输及应用,2005.2:55-57.
    [34]GUY-AYMAR CHAKAM, WOLFGANG FREUDE. Optically Controlled Phased Array Antenna.24th International Conference on Infrared and Millimeter Waves Monterey, CA U.S.A. September 5-10,1999 [C].
    [35]WEMIN ZHOU* AND STEVEN WEISS. A Low Cost Optical Controlled Phased Array Antenna With Optical True Time Delay Generation [J]. Proceedings of SPIE.2003,4998:133-138.
    [36]SUNING TANG,AUSTIN,L.WU,Z.FU ETAL.Ultra low-loss polymeric waveguide circuits for optical true time delay in wideband phased array antennas[J].Optical engineering.2005,39:643-651.
    [37]DENNIS T. K. TONG AND MING C. WU. Multiwavelength Optically Controlled Phased-Array Antennas [J]. IEEE Transaction on microwave theory and techniques,1998,46:108-115.
    [38]SALVADOR SALES MAICAS, FILIP OHMAN, JOSE CAPMANY, AND JESPER M(?)RK. Controlli-ng Microwave Signals by Means of Slow and Fast Light Effects in SOA-EA Structures [J]. IEEE Photonics technology letter,2007,19: 1589-1591.
    [39]JEAN CHAZELAS, DANIEL DOLFI, SYLVIE TONDA-GOLDSTEIN. Optical Beamforming Networks for Radars & Electronic Warfare Applications. The RTO SET Lecture Series on "Optics Microwave Interactions", Jouy en Josas, France.2-3 September 2002; Duisburg, Germany,5-6 September 2002; Budapest, Hungary,9-10 September 2002 [C].
    [40]W.S. BIRKMAYER. M.J. WALE. Proof of concept model of a coherent optical beam forming network [J]. IEE Proceeding-J,1992,139:301-304.
    [41]ALI MOHAMMADI, AHMAD AYATOLLAHI AND ADIB ABRISHAMIFAR. A new CMOS all-pass phase shifter for phased array systems[J]. IEICE Electronics Express,2009,6:504-510.
    [42]JIANPING YAO, Microwave photonics. Optical Fiber Communication Conference, Feb.24 2008[C] America:San Diego, California.
    [43]ALAYN LOAYSSA, FRANCISCO JAVIER LAHOZ. Broad-Band RF Photonic Phase Shifter Based on Stimulated Brillouin Scattering and Single-Sideband Modulation [J]. IEEE Photonic technology letter,2006,18(1):208-210.
    [44]F. M. WU, P. C. PENG, S. K. YEH, C. T. LIN, J. H. CHEN, S. CHI. Electrically Controlled Phase Shifter using Semiconductor Laser in Optical Single Sideband System[J]. IEEE, Proceeding of LEOS Annual Meeting 4-8, Oct.2009 [C].
    [45]SANG-SHIN LEE, ANAND H. UDUPA, HERNAN ERLIG, HUA ZHANG. Demonstration of a Photonically Controlled RF Phase Shifter [J]. IEEE Microwave and guided wace letters.1999,9:357-359.
    [46]JEEHOON HAN, HERNAN ERLIG, DAN CHANG, MIN-CHEOL OH, HUA ZHANG, CHEN ZHANG, WILLIAM STEIER AND HAROLD FETTERMAN. Multiple Output Photonic RF Phase Shifter Using a Novel Polymer Technology [J]. IEEE Photonics Technology Letters,2002,14(4):531-533.
    [47]JEEHOON HAN, BYOUNG-JOON SEO, SEONGKU KIM, HUA ZHANG, FETTERMAN, H.R. Single-chip integrated electro-optic polymer photonic RF phase shifter array[J], IEEE Lightwave Technology,2003,21(12):3257-3261.
    [48]YANG YONGJUN, CHENFUSHEN. A Novel Photonic RF Phase Shifter based on Dualdrive Mach-Zehnder Modulator. Communications. Circuits and Systems, May 27-30,2005[C].
    [49]HAN CHEN, YI DONG, HAO HE, WEISHENG HU, AND LEMIN LI.Photonic radio-frequency phase shifter based on polarization interference [J].Optics Letters,2009,34(15):2375-2377.
    [50]QINGJIANG CHANG, QIANG LI, ZIYANG ZHANG,MIN QIU, TONG YE, AND YIKAI SU. A Tunable Broadband Photonic RF Phase Shifter Based on a Silicon Microring Resonator [J].IEEE Photonics Technology Letters,2009.21(1):60-62.
    [51]MINHAO PU, LIU LIU, WEIQI XUE, YUNHONG DING, LARS H. FRANDSEN, HAIYAN OU, KRESTEN YVIND, AND J(?)RN M. HVAM.Tunable Microwave Phase Shifter Based on Silicon-on-Insulator Microring Resonator [J]. IEEE Photonics Technology Letters,2010,22(12):869-871.
    [52]MINHAO PU, LIU LIU, WEIQI XUE,YUNHONG DING, HAIYAN OU, KRESTEN YVIND, AND J(?)RN M. HVAM. Widely tunable microwave phase shifter based on silicon-on-insulator dual-microring resonator[J]. Optics Express.2010, 18(6):6172-6182.
    [53]YI DONG, HAO HE, AND WEISHENG HU. Photonic microwave phase shifter modulator basedon a nonlinear optical loop mirror incorporating a Mach-Zehnder interferometer [J].Optics Letters.2007,32(7):745-747.
    [54]ZHAOHUI LI, CHANGYUAN YU, YI DONG, LINGHAO CHENG, L. F. K. LUI, CHAO LU, ALAN PAK TAO LAU, HWA-YAW TAM, AND P. K. A. WAI. Linear photonic radio frequency phase shifter using a differential-group-delay element and an optical phase modulator [J].Optics Letters,2010,35(11):1881-1883.
    [55]M. R. FISHER AND S. L. CHUANG. A Microwave Photonic Phase-Shifter Based on Wavelength Conversion in a DFB Laser [J]. IEEE Photonics Technology Letters,2006,18(16):1714-1716.
    [56]P. C. PENG, J. N. LIU, C. T. LIN, H. C. KUO, J. H. CHEN, S. C. WANG, S. CHI, AND J. Y. CHI. Slow Light in Quantum Dot Semiconductor Laser for Photonic RF Phase Shifter. Slow and Fast Light Conference, July 8,2007[C].Utah:Salt Lake.
    [57]PENG-CHUN PENG, FANG-MING WU, WEN-JR JIANG, RUEI-LONG LAN, ETAL. RF phase shifter using a distributed feedback laser in microwave transport systems [J]. Optics Express.2009,17(9):7609-7614.
    [58]WEIQI XUE, SALVADOR SALES2, JOSE CAPMANY, AND JESPER M(?)RK.Wideband 360° microwave photonic phase shifter based on slow light in semiconductor optical amplifiers [J]. Optics Express,2010,18(6):6156-6163.
    [59]WOLFGANG VOGEL, MANFRED BERROTH. Liquid Crystal Phase Shifter for Optically Generated RF-Signals,30th EuMC.2000.2:45-48.
    [60]WOLFGANG VOGEL, MANFRED BERROTH. Polarisation Independent Liquid Crystal 360° Phase Shifter for Optically Generated RF-Signals,31st EuMC, 2001,3:31-34.
    [61]G.A.CHAKAM, W. VOGEL,H. YILMAZ,M. BERROTH, W. FREUDE. Microstrip phased array patch antenna based on a liquid crystal phase shifter for optically generated RF-signals, MWP,2002,265-268.
    [62]A. MITCHELL, L. A. BUI, K. GHORBANI, S. MANSOORI, W. ROWE, E. LOPEZ. Demonstration of a wideband photonic phased array using integrated optical RF phase shifter based on the vector sum approach [J]. IEEE International Symposium on Phased Array Systems and Technology, Otc.14-17,2003[C].
    [63]L.A. BUI, A. MITCHELL, K. GHORBANI, TAN-HUAT CHIO. Wideband RF photonic vector sum phase-shifter, Electronics Letters,2003,39(6):536-537.
    [64]KWANG-HYUN LEE, YOUNG MIN JHON, AND WOO-YOUNG CHOI. Photonic phase shifters based on a vector-sum technique with polarization-maintaining fibers, Optics Letters,2005,30(7):702-704.
    [65]L.A.BUI, A. MITCHELL, K. GHORBANI, TAN-HUAT CHIO. Wide-band RF photonic second order vector sum phase-shifter, IEEE Microwave and Wireless Components Letters,2005,15(5):309-311.
    [66]W. XUE, F. OHMAN, S. BLAABERG, Y. CHEN, S. SALES AND J. M(?)RK. Broadband microwave photonic phase shifter based on polarisation rotation. Electronics Letters,2008,44(11):684-685.
    [67]OLYMPIO LUCCHINI COUTINHO, WILLIAM SANTOS FEGADOLLI,ETAL Dual Microwave PHOTONIC Phase Shifter Based on Polarization Control in Fiber Optic. In Microwave and Optoelectronics Conference, Nov.3-6,2009[C]. Belem.
    [1]J. J. O'REILLY, P. M. LANE, AND M. H. CAPSTICK. Optical Generation and Delivery of Modulated mm-waves for Mobile Communications", in Analogue Optical Fibre Communications, B. Wilson, Z. Ghassemlooy, and I. Darwazeh, ed. The Institute of Electrical Engineers, London,1995[C].
    [2]张义芳,冯建华.高频电子线路.黑龙江:哈尔滨工业大学出版社,2002.
    [3]ANTHONY NG'OMA. Radio-over-fiber technology for broadband wireless communication systems [D]. Electricaln Engineering of the Eindhoven University of Technology,2005.
    [4]MINHAO PU, LIU LIU, WEIQI XUE,YUNHONG DING, HAIYAN OU, KRESTEN YVIND, AND J(?)RN M. HVAM. Widely tunable microwave phase shifter based on silicon-on-insulator dual-microring resonator [J]. Optics Express, 2010,18(6):6172-6182.
    [5]OTTO SCHWELB. Transmission, Group Delay, and Dispersion in Single-Ring Optical Resonators and Add/Drop Filters—A Tutorial Overview [J].2004, 22(5):1380-1394.
    [6]RICHARD A. SOREF, JOACHIM SCHMIDTCHEN, AND KLAUS PETERMANN. Large Single-Mode Rib Waveguides in GeSi-Si and Si-on-SiO2 [J]. J of Qantum Electronics IEEE,1991,27:1971-1974.
    [7]SOUREN P. POGOSSIAN, LILI VESCAN, AND ADRIAN VONSOVICI. The single-mode condition for semiconductor rib waveguides with large cross section [J]. J. Lightwave Technol, 1998,16:1851-1853.
    [8]魏振红,余金中,SOI及GeSi/Si脊形光波导的模式与波导几何结构[J].光子学报,2001,21:556-558.
    [9]BENSON, T. M. BOZEAT, AND R.J.KENDALL, P.C. Rigorous effective index method for semiconductor rib waveguides [J]. Optoelectronics,1992,139:67-70.
    [10]马春生.光波导模式理论[M].吉林:吉林大学出版社,2006.
    [11]OptiBPM and OptiFDTD Technical Background and Tutorials of Optiwave software:OptiBPM 6.0 and OptiFDTD 4.0.
    [12]JOHN D. JOANNOPOULOS, STEVEN G. JOHNSON, JOSHUA N. WINN, AND ROBERT D. MEADE. Photonic crystals:molding the flow of light [M].2nd ed. Princeton University press,2008.
    [13]ING DICKMANN. Fabry-Perot resonators. http://repairfaq.ece.drexel.edu/sam /MEOS/EXP03.pdf
    [14]MARCEL W. PRUESSNER, TODD H. STIEVATER, AND WILLIAM S. RABINOVICH. Integrated waveguide Fabry-Perot microcavities with silicon/air Bragg mirrors [J]. Optics.Letter.32:533-535 (2007).
    [15]MARCEL W. PRUESSNER, TODD H. STIEVATER, MIKE S. FERRARO, AND WILLIAM S.RABIN-OVICH.Thermo-optic tuning and switching in SOI waveguide Fabry-Perot microcavities [J]. Optics Express,2007,15(12):7557-7563.
    [16]唐晋发、顾培夫、刘旭、李海峰.现代光学薄膜技术.浙江:浙江大学出版社,2006.
    [17]GIUSEPPE COCORULLO, FRANCESCO G DELLA CARTE, IVORENDINA, AND PASQUALINA M.SARRO. Thermo-optic effect exploitation in silicon microstructures. Sensors and Actuators A [M].1998,71:19-26.
    [18]LORENZO PAVESI, DAVID J. LOCKWOOD. Silicon Photonics [M].Germany: Springer,2005.
    [19]ZHENGUO CHEN, JIANXUN ZHAO, YUHONG ZHANG, GANG JIA, XIUHUAN LIU, CE CHEN, ETAL. Pockel's effect and optical rectification in (111)-cut near-intrinsic silicon crystals [J]. Applied physics letters.2008,95: 251111-1-251111-3.
    [20]ROBERT MONTGOMERY AND RICHARD DESALVO. A Novel Technique for Double Sideband Suppressed Carrier Modulation of Optical Fields [J]. Photonics Technology Letters,1995,7(4):434-436.
    [21]M. IODICE, G. MAZZI, AND L. SIRLETO. Thermo-optical static and dynamic analysis of a digital optical switch based on amorphous silicon waveguide [M]. Optics express,2006,14:5266-5278.
    [22]PENGFEI QU, WEIYOU CHEN, FUMIN LI, CAIXIA LIU, WEI DONG. Analysis and design of thermo-optical variable optical attenuator using three waveguide directional couplers based on SOI [M]. Optics Express,2008, 16(25):20334-20344.
    [23]博弈创作工作室ANSYS9.0经典产品基础教程与实例详解.中国水利水电出版社,2006.
    [24]SAEED MOAVENI, Finite Element Analysis:Theory and application with ANSYS. Beijing:Publishing House of Electronics Industry,2005.
    [1]张光义,赵玉洁.相控阵雷达技术[M].北京:电子工业出版社,2007.
    [2]JOSE CAPMANY, BEATRIZ ORTEGA, DANIEL PASTOR. A Tutorial on Microwave Photonic Filters [J]. J. of Lightwave Technololy,1998,24(1):1851-1853.
    [3]C. GUTIE RREZ-MARTNEZ, P. MOLLIER, H. PORTE, I. ZALDVAR-HUERTA, L. CARCANO-RIVERA, J. P. GOEDGEBUER. Multi-channel long-distance optical fiber transmission using dispersion induced microwave transmission windows [J]. Microwave and optical technology letter,2003,36(3):202-206.
    [4]L.A. BUI, A. MITCHELL, K. GHNRBANI AND T.-H. Chin. Wideband RF photonic vector sum phase-shifter [J]. Electronics Letters,2003,39(6):536-537.
    [5]K. GHORBANI, A. MITCHELL, R. B. WATERHOUSE, AND M. W. AUSTIN. A Novel Wide-Band Tunable RF Phase Shifter Using a Variable Optical Directional Coupler [J]. IEEETransaction on microwave theory and techniques, 1999,47(5):645-648.
    [6]KWANG-HYUN LEE, YOUNG MIN JHON, AND WOO-YOUNG CHOI, Photonic phase shifters based on a vector-sum technique with polarization-maintaining fibers[J]. Optics Letters,2005,30(7):702-704.
    [7]ALLAN W.SNYDER, JOHN D.LOVE著,周幼威等译.光波导理论.北京:人民邮电出版社,1991.
    [8]R.W.C. VANCE AND J.D. LOVE. Asymmetric adiabatic multiprong for mode-multiplexed systems[J]. Electronics Letters,1993,29:2134-2136.
    [9]BYUNG-TAK LEE AND SANG-YUNG SHIN. Mode-order converter in a multimode waveguide [J]. Optics Letters.2003,28:1660-1662.
    [10]YINGYAN HUANG, GUOYANG XU, AND SENG-TIONG HO. An ultracompact optical mode order converter [J]. IEEE Photonics Technology Letters, 2006,18:2281-2283.
    [11]JUERG LEUTHOLD, JUERG ECKNER, EMIL GAMPER. PIERRE A. BESSE, AND HANS MELCHIOR. Multimode interference couplers for the conversion and combining of zero- and first-order modes [J]. J. Lightwave Technology,1998,16: 1228-1239.
    [12]杨笛,陈笑,梁道宽.条形SOI光波导的群速度色散[J].中央民族大学学报,2009,18(1):47-42.
    [13]马春生.光波导模式理论[M].吉林:吉林大学出版社,2006.
    [14]JIANQIANG LI, KUN XU, HAO HUANG, JIAN WU AND JINTONG LIN.Photonic Pulse Generation and Modulation for Ultra-Wideband-Over-Fiber Applications," in Optical Fiber communication/National Fiber Optic Engineers Conference, Feb.24,2009[C]. California:San Diego.
    [15]春名正光,栖原明敏著,梁瑞林译.集成光路[M].北京:科学出版社,2005.
    [16]MARTIN N. WEISS AND RAMAKANT SRIVASTAVA. Spectral characteristics of asymmetric directional couplers in graded index channel waveguides analyzed by coupled mode and normal-mode techniques[J]. Applied Optics,1995,34:1029-1040.
    [17]QIANFAN XU, DAVID FATTAL, AND RAYMOND G BEAUSOLEIL. Silicon microring resonators with 1.5-μm radius [J]. Optics Express,2008,16(6):4309-4315.
    [18]FUMIYA SAITOH, KUNIMASA SAITOH, AND MASANORI KOSHIBA. A design method of a fiber-based mode multi/demultiplexer for mode-division multiplexing [J]. Optics Express,2010,18:4709-4716.
    [19]YASUO KOKUBUN, MASANORI KOSHIBA. Novel multi-core fibers for mode division multiplexing:proposal and design principle [J]. IEICE Electronics Express,2009,16:522-528.
    [20]Y.KAWAGUCHI AND K. TSUTSUMI. Mode multiplexing and demultiplexing devices using multimode interference couplers [J]. Electronics Letters,2002,38: 1701-1702.
    [21]MAXIM GREENBERG, MEIR ORENSTEIN. Multimode add-drop multiplexing by adiabatic linearly tapered coupling [J]. Optics Express,2005,13:9381-9387.
    [22]M. GREENBERG, M. ORENSTEIN. Simultaneous dual mode add drop multiplexer for optical interconnects buses [J]. Optics communication,2006,266: 527-531.
    [23]VINCENT MAGNIN, MALEK ZEGAOUI, JOSEPH HARARI, MARC FRANΣOIS, AND DIDIER DECOSTER. Design, optimization and fabrication of an optical mode filter for integrated optics[J]. Optics Express,2009,17:7383-7391.
    [24]J. LEUTHOLD, R. HESS, J. ECKNER, P. A. BESSE, AND H. MELCHIOR. Spatial mode filters realized with multimode interference couplers[J]. Optics Letters, 1996,21:836-838.
    [1]G. LENZ AND C. K. MADSEN. General Optical All-Pass Filter Structures for Dispersion Control in WDM Systems[J]. J. Lightwave Technology,1999,17(7): 1248-1254.
    [2]M. BECK, I. A. WALMSLEY, AND J. D. KAFKA. Group Delay Measurements of Optical Components Near 800 nm [J]. IEEE Journal of quantum electronics,1991, 27(8):2074-2081.
    [3]邸帅张国华.应用矢量网络分析仪提高时延测量的准确度[J]http://www. docin.com/p-108626254.html
    [4]孙现福,马玉培,王国彬.基于安捷伦VNA网络分析仪实现长延时器件的测量[J]http://www.21ic.com/app/test/200903/33652_3.htm
    [5]ED L. WOOTEN, KARL M. KISSA, ALFREDO YI-YAN, ETAL. A Review of Lithium Niobate Modulators for Fiber-Optic Communications Systems [J]. IEEE Journal of selected topics in quantum electronics,2000,6(1):69-82.
    [6]S.DUBOVITSKY,W.H.STEIER,S.YEGNANARAYANAN,B.JALALI. Analysis and improvement of Mach-Zehnder modulator linearity performance for chirped and tunable optical carriers. J. Lightwave Technology,2002,20(5):858-863.
    [7]S.M.SZE. Physics of semiconductor device [M].2nd ed. John wiley and sons, 1981.
    [1]ESMAEL. H. M YAHYA. Mach-Zehnder interferometer [D]. University technology Malaysia,2007.
    [2]G. T. REED*, W. R. HEADLEY, F. Y. GARDES, B. D. TIMOTIJEVIC, S. P. CHAN, G. Z. MASHANOVICH. Characteristics of rib waveguide racetrack resonators in SOI[J]. Proc. of SPIE,2006,6183:6183G-1-6183G-15.
    [3]S. P. CHAN, C. E. PNG, S. T. LIM, V. M. N. PASSARO, AND G. T. REED. Single mode and polarisation independent SOI waveguides with small cross section[J]. J. Lightwave Technol,2005,23:1573-1582.
    [4]S. P. CHAN, V. M. N. PASSARO, AND G T. REED. Single mode condition and zero birefringence in small SOI Waveguides[J]. Electron. Letters,2005,41:528-529.
    [5]马春生,光波导模式理论[M],2006,吉林大学出版社。
    [6]ERIC DULKEITH, FENGNIAN XIA, LAURENT SCHARES, WILLIAM M. J. GREEN. Group index and group velocity dispersion in silicon-on-insulator photonic wires. Optics Express,2006,14(9):3853-3863.
    [7]郑一桩.色散介质中波传播的相速度和群速度[J].温州师范学院学报,1996,6:24-27.
    [8]瞿鹏飞.集成矢量和微波光子移相器的理论分析及设计[D].吉林大学,2008.
    [9]汤富福.Y型光功率分配器的设计与模拟[D].国立云林科技大学,2004.
    [10]邵国玉,SOI光波导与光功率分配器的基础研究[D].长春理工大学,2003,
    [11]IOANNIS CHREMMOS, Propagation in a directional coupler of parallel microring coupled-resonator optical waveguides[J]. Optics Communications,2008.
    [12]HISATO UETSUKA, TETSU HASEGAWA, AND MASAHIRO OHKAWA. Variable Optical Attenuators Combined with an Arrayed Waveguide Grating Filter for Next-generation WDM System[J]. Hitachi Cable Review,2001,20:15-18.
    [13]SEAN M. GARNER, AND STEVE CARACCI. Variable Optical Attenuator for Large-Scale Integration[J]. IEEE Photonics Technology. Letters,2001,14:1560-1562.
    [14]KOUKI SATO, TAKUMA AOKI, AND YASUHIRO WATANABE. Development of a Variable Optical Attenuator[J]. Furukawa Review,2001,20:15-20.
    [15]STEPHEN COHEn. Novel VOAs provide more speed and utility. Laser focus world,2000.36:139-146.
    [16]PENGFEI QU, WEIYOU CHEN, FUMIN LI, CAIXIA LIU, WEI DONG Analysis and design of thermo-optical variable optical attenuator using three-waveguide directional couplers based on SOI [J]. Optics Express,2008,16(25): 20334-20344.
    [17]周敬然.加速度传感器ICP关键制作工艺及检测电路的研究[D].吉林大学,2008.
    [18]郑志霞,冯勇建,张春权.ICP刻蚀技术研究[J].厦门大学学报(自然科学版),2004,43:365-368.
    [19]樊中朝,余金中,陈少武.ICP刻蚀技术及其在光电子器件制作中的应用[J].微细加工技术,2003,2:21-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700