塑料光纤传输特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
塑料光纤由于制造简单、价格便宜、接续快捷等优点,已成为短距离宽带通信网的理想选择之一。随着塑料光纤应用领域的不断扩大,如何提高塑料光纤的带宽以及精确估算光纤的带宽对实际应用具有非常重要的意义。探究影响塑料光纤带宽的因素将有助于更好地选择制备塑料光纤的材料,改进生产工艺及合理采取措施以提高光纤带宽。塑料光纤的测量带宽远高于用石英光纤色散模型计算的理论带宽。对不同折射率分布的塑料光纤,其实测带宽高于理论带宽的原因迄今尚存在争议。此外,迄今还没有一个综合考虑所有影响塑料光纤带宽因素的色散模型。本文在大量实验基础上,系统地研究了不同折射率分布塑料光纤中影响带宽的众多因素,并建立了一个计算塑料光纤传输带宽的新的色散模型。
     光纤的折射率分布决定光纤的传输性能,掌握光纤折射率分布是把握光纤特性的一个重要课题。本文根据聚焦法和近场折射法测量塑料光纤折射率分布的测量原理,设计并研制了两种测量装置。同时分析了用这两种方法测量塑料光纤的折射率分布的可行性及优缺点,并对实验结果做了误差分析。
     利用光纤的远场辐射图,系统地研究了阶跃折射率分布型塑料光纤(SLPOF)和渐变折射率分布型塑料光纤(GI-POF)中的模式耦合。分析得到SI-POF和GI-POF的模式耦合长度。对SI-POF,入射光束的数值孔径(NA)越大,模式耦合越容易进行。入射光束NA=0.1时,光在光纤中传输5m之前没有发生模式耦合,在5~10m开始发生模式耦合;而入射光束NA=0.4时,光传输2.5m后就开始发生模式耦合。光在SI-POF中传输30m时耦合完成。对GI-POF,耦合在光传输1m后就开始发生,到光在光纤中传输10m左右完成。
     比较SI-POF和GI-POF的模式耦合系数随模号增加的变化趋势,分析引起模式耦合的不同来源对不同折射率分布塑料光纤性能的影响。SI-POF的模式耦合系数随模号的增加先下降,到模号接近截止模的时候,模式耦合系数迅速上升;而GI-POF的模式耦合系数随模号的增加变化不大。实验结果还发现,SI-POF的模式耦合系数比GI-POF的模式耦合系数大3~4个数量级。根据塑料光纤的模式耦合理论,所有引起模式耦合的机理都可以归结为光纤折射率的随机扰动,只有当随机扰动的空间频率ω与光纤中某两个相邻模式之间的传播系数差相等时,才会引起模式耦合。基于这个理论,对折射率满足幂律分布的塑料光纤,幂指数α越大,引起模式耦合的随机扰动周期Λ的范围就越宽,模式耦合就越容易发生。因此,SI-POF比GI-POF更容易发生模式耦合。综合考虑光纤中模式耦合发生的几率和模式耦合发生的强弱发现,模式耦合对SI-POF性能的影响比对GI-POF的影响大得多。因此,分析SI-POF的色散模型时,必须考虑模式耦合的影响。而对GI-POF而言,由于模式耦合的作用相对较弱,可在一定程度上忽略模式耦合对带宽的作用。
     用剪断法测量了SI-POF和GI-POF的微分模损耗曲线。结果表明,不同折射率分布的塑料光纤的微分模损耗随模号增加的变化趋势不同:对SI-POF而言,随着入射角度的增加,
    
    浙江大学博卜学位论文
    摘要
    激励起的模式的模号越大,其微分模损耗也越大;最高次模与最低次模的损耗差为80
    dB/km。对Gl一POF而言,m从了小于0.5的范围内.微分模损耗随模号变化不大;当模号尹刀为订
    大于0.5,光模的微分模损耗迅速增加,其最高次模与最低次模的损耗差可达350 dB/km。
    分析发现,如果光纤中激励的高次模损耗很大,它们传播一定距离后会变成辐射模消失。这
    样,在光纤输出端大大减小最高和最低次模间的相对延迟,光纤的带宽提高。因此,Gl一POF
    的微分模损耗特性是提高Gl一POF带宽的主要因素。而SI一POF中,微分模损耗对带宽的影
    响较小。
     用频域相移法测量了SI一POF和GI一POF的微分模延迟。通过比较不同长度POF微分模
    延迟曲线的变化趋势,分析了模式祸合和微分模损耗对光纤模延迟的作用。结果表明:模式
    祸合和微分模损耗都减小塑料光纤的模延迟。对Sl一POF而言,模式祸合是降低光纤模间时
    延的主要因素;而对G卜 POF而言,微分模损耗在很大程度上降低了光纤中的模间时延。
     采用频域法测量了不同数值孔径入射光束对SI一POF带宽的影响。实验结果发现,当光
    纤一长度小于祸合一民度时,入射光束的数值孔径越小,测量带宽值越高;当光纤长度超过祸合
    长度时,入射光束的数值孔径对测量带宽影响不大。与满入射下的理论带宽相比,由于模式
    祸合的存在,SI一POF带宽值均高于理论带宽。
     全面分析了模式祸合对光纤带宽的影响,发现模式祸合对带宽有两个相反的作用:1)
    模式祸合的存在使得光在传播过程中激励新的模式,相当于增加了入射光束的数值孔径。这
    部分作用使带宽值下降;2)模式祸合的存在使得各模群间能量平均,传输速度平均,到光
    纤输出端时模群最大延迟减小。这部分作用增加SI一POF的带宽。不同注入条件下,模式祸
    合对带宽的影响是上述两个作用竞争的结果。当入射光束数值孔径小于被测光纤数值孔径
    时,模式祸合的第一个作用比第二个作用大,因此,实验带宽值比理论带宽值小;反之,当
    入对光束数值孔径接近或者超过被测光纤数值孔径时?
Plastic optical fibers (POFs) are being considered for high-performance fiber links at very short distances because of their low-cost, robustness and ease of preparation and connection. With the extending application of POFs, to increase the bandwidth of POFs and predict it exactly are of great importance in the practice. To clarify the parameters that affect the bandwidth of POFs helps to choose the raw materials of POFs, to improve the preparation technology and to choose reasonable methods to increase the bandwidth of POFs. The theoretical bandwidth properties of the POFs with different refractive index profiles disagree to some extent with those measured. However, the reason of the disagreement still remains a puzzle. In addition, the precise predicting tool for bandwidth of POFs is still absence at present time. The simulation models developed for glass optical fibers (GOFs) systems some decades ago appear to be invalid in consideration of POFs. In this paper, the factors affecting the bandwidth of POFs
     with different refractive index profiles were systematically analyzed. A new dispersion model was developed to predict precisely the bandwidth of POFs.
    Determination of the refractive index profiles of POFs is of great importance in the evaluation of performance, and design, manufacture of the fibers. Two sets of the equipments for measuring the refractive index of POFs were designed and manufactured on the basis of the measuring principle of both the focusing method and the refracted near-field method. The applicability and the advantages and disadvantages of these two methods were analyzed theoretically and verified by experiments.
    With the help of the far-field pattern of the POFs, the mode coupling effects in both the SI-POF and the GI-POF were systematically analyzed. The coupling length of both the SI-POF and the GI-POF was obtained. As for the SI-POF, the larger the numerical aperture (NA) of the incident rays is, the easier the mode coupling happens. When the NA of the incident rays is 0.1, mode coupling happens after transmitting for 5-10 in; whilst the NA of the incident rays is 0.4, mode coupling happens only after transmitting for 2.5 m. After transmitting for about 30 m, mode coupling finishes and the equilibrium mode distribution is established. As for the GI-POF, mode coupling happens after transmitting for 1 m and finishes after transmitting for 10 in.
    The effect of different sources to cause mode coupling for the POFs with different refractive index profiles was analyzed by comparison of mode coupling coefficient of both the SI-POF and the GI-POF. It is shown that the mode coupling
    
    
    coefficient of the SI-POF decreases first with the increasing mode number and then increases quickly when the mode number approaches the cutoff value. As for the GI-POF, the mode coupling coefficient does not change significantly with the increasing mode number. Furthermore, the mode coupling coefficient of SI-POF is 3-4 orders larger than that of the GI-POF. According to the mode coupling theory of POFs, all the mechanisms to cause mode coupling can be represented by a general refractive index perturbation. Coupling between neighboring modes occurs only if the perturbations with a spatial frequency component a> equals to the difference in the propagation constants between these two modes. Assuming that the refractive index profile of POFs meets the power-law, the larger the power index a is, the wider the perturbation period A spectrum of perturbations contributing to the mode coupling, that is, the easier the mode coupling happens. Considering both the probability and the level of the mode coupling, its effect on the properties of the SI-POF is found to be greater than on the GI-POF. Thus, when considering the dispersion property of the SI-POF, the effect of mode coupling cannot be neglected; while for the GI-POF, it is ignorable.
    The differential mode attenuation (DMA) profile of both the SI-POF and the GI-POF was obtained by the cut-back method. With the increasing mode number, the DMA properties of
引文
[1] 赵莹,马克仁,明天的网络服务,有线电视技术,2001,8(3)9-10.
    [2] 丁炜,宽带业务网的现状与展望,中国有线电视,2001,12:73-76.
    [3] Rose B..Home networks: a standards perspective, IEEE Communications Magazine, 2001, 39(12): 78-85.
    [4] Shimada K., Sasaki H., Noguchi, Y., The home networking system based on IEEE1394 and Ethernet technologies, Consumer Electronics, 2001. ICCE. International Conference on, 2001:234-235
    [5] Koike Y., Ishigure T., Sato M., et al., Polymer optical fibers Broadband Optical Networks and Technologies: An Emerging Reality/Optical MEMS/Smart Pixels/Organic Optics and Optoelectronics. 1998 IEEE/LEOS Summer Topical Meetings, 1998,20-24 : Ⅲ/13-Ⅲ/14
    [6] Giaretta G., White W., Wegmuller M., Onishi T., High-speed (11 Gbit/s) data transmission using perfluorinated graded-index polymer optical fibers for short interconnects (<100 m), IEEE Photonics Technology Letters, 2000, 12(3): 347-349.
    [7] Koike Y., Nihei E., Ishigure T., High bandwidth (2 GHz km) large core (0.5-1.0 mm) GI polymer optical fiber, Lasers and Electro-Optics Society Annual Meeting, 1993. LEOS'93 Conference Proceedings. 1993, IEEE, 15-18: 349-350.
    [8] Ishigure T., Nihei E., Yamazaki K., 2.5Gb/s 100m data transmission using graded index polymer optical fiber and high speed laser diode at 650-nm wavelength, Electron., Lett., 1995, 31 (6):467-468.
    [9] Yoshihara N., Low-loss, high-bandwidth fluorinated POF for visible to 1.3-μm wavelengths, Optical Fiber Communication Conference and Exhibit, 1998. OFC'98., Technical Digest, 1998, 22-27: 308.
    [10] van den Boom, H.P.A., Li W.,et al., High-capacity transmission over polymer optical fiber, Selected Topics in Quantum Electronics, IEEE Journal on, 2001, 7(3): 461-470.
    [11] Ishigure, T.; Koike, Y.; POF is overcoming silica in bit rate, Optical Fiber Communication Conference and Exhibit, 2001. OFC 2001,2001,4:ThC7-1-ThC7-3.
    [12] 佟世雄,塑料光导纤维,塑料工业,1985,(1):42-45.
    [13] Emslie C., Review polymer optical fibers, J. Mat. Sci., 1988,23:2281-2293.
    [14] 石晓东,塑料光纤在国外的发展和应用,电线电缆,1990,(5):5-10.
    [15] 吴静,陈晓燕编泽.塑料光纤的技术发展及其应用,光纤光缆传输技术,2001,3:21-40.
    [16] Murray R.T., POF-can it face the future? Plastics Materials for Optical Transmission, IEE Colloquium on, 1989, 27 : 2/1-2/4
    [17] Nihei E., Ishigure T., Keiko Y., Graded-index polymer optical fiber for high-speed data
    
    communication, Applied Optics, 1996, 35 (36):7085-7090.
    [18] Watanabe Y., Takano Y., Tsukamoto T., et al., The new optical wiring system for LAN in premises and residential area using perfluorinated GI-POF, Optical Fiber Communication Conference and Exhibit, 2002. OFC 2002,17-22:629-630
    [19] Cirillo J., Jennings K., Lynn M., et al., Plastic optical fiber based components for LAN and data communication applications, Electronic Components and Technology Conference, 1992. Proceedings., 42nd, 18-20 : 648-651
    [20] Yoshihara N., et al., transmission trials of perfluorinated GI-POF, Proceeding of OFC 2000, 2000, 255-257.
    [21] Tanaka C., Progress of perfluorinated GI-POF, Optical Communication, 2001. ECOC '01. 27th European Conference on, 2001,1: 66-67.
    [22] Shuntaro Y., Minoru S., POF for high-speed PC and home networks, OFC'98Technical digest, 1998, 307.
    [23] Ziemann O., Krauser J., The use of polymer optical fibers for in-house-networks,advantages of 520 nm LED transmission systems, Optical Communication, 1998. 24th European Conference on, 1998, 1:379-380.
    [24] Wittmann B., Johnck M., Neyer A.,ET AL., POF-based interconnects for intracomputer applications, Selected Topics in Quantum Electronics, IEEE Journal on, 1999, 5:1243-1248.
    [25] Thomas B., plastic optical fiber technology in consumer applications: practical, affordable and capable, IEEE WAM 2.4, 1991, 24-25.
    [26] Shimada K., Sasaki H., Noguchi Y., The home networking system based on IEEEI394 and Ethernet technologies, Consumer Electronics, 2001. ICCE. International Conference on, 2001, 234-235
    [27] Michihiko S., Kenji W., Kimitake U.,et al., A miniature optical transceiver for high speed POF optical link system, IEEE TUPM 8.4, 1998, 116-117.
    [28] 徐乃英,汽车用塑料光纤,电信快报,2001,10,23-25
    [29] Naritomi M., Model home project in Japan using GI-POE in Proc. POF'00 9th int. Conf. Plastic optical fibers and Applications, Boston, MA, 8-11.
    [30] 唐铟,吴祥军,浅谈塑料光纤在短距离通信中的应用,网络电信,2001,4,38-40.
    [31] 张荫谷,程永胜,塑料光纤制品灯光源装置,中国实用新型专利:ZL89205203.1.
    [32] 陈为森,张荫谷,光导纤维孔雀彩灯广告牌,中国使用新型专利,ZL8821173.2.
    [33] 《通信电缆及结构化布线实用手册》,中科多媒体电子出版社,2003.
    [34] 陈伟梧,光纤到家比铜线还便宜,《国际线缆与连接》,2002,8:9-12.
    [35] 吴静 译,塑料光纤的最新进展,光纤通信,1999,2.
    
    
    [36] Koike Y., Progress of plastic optical fiber technology, 22na European conference on optical communication, 1996, Oslo, 41-48.
    [37] Victor L., New high performance plastic optical fibers for data communications, OFC'98 Technical digest, 308.
    [38] 《47th IWCS》1998,P248-255.
    [39] Koeppen C., Shi R. F., Chen W.D., et al., Properties of plastic optical fiber, J. Opt. Soc. Am. B., 1998, 15(2): 727-739.
    [40] G.埃切列里,U.拉瓦约利,光纤和光器件的测量,宇航出版社,25.
    [41] Ishigure T., Sato M., Takanashi O., et al., Formation of the refractive index profile in the graded index polymer optical fiber for gigabie data transmission, J. Loghtwave Technol., 1997, 15:2095-2100.
    [42] Ishigure T., Tanaka S., Kobayashi E., et al., Accurate refractive index profiling in a graded-index plastic optical fiber exceeding gigabit transmission rates, J. Lightwave Technol.,, 2002, 20 (8): 1449-1456.
    [43] 陈抗生,电磁场与电磁波,230.
    [44] 江源,邹宁宇,聚合物光纤,化学工业出版社,18-24.
    [45] Koike Y., Ishigure T., Nihei E., "High-bandwidth graded-index polymer optical fiber," J. Lightwave Technol., 1995, 13(7): 1475-1489.
    [46] Yabre G., Theoretical investigation on the dispersion of graded-index polymer optical fibers, J. Lightwave Technol., 2000, 18(6): 869-877.
    [47] Koike Y., Ishigure T., Progress of low-loss Gl-polymer optical fiber from visible to1.5μm wavelength, ECOC 97, 1997, 448, 59-62.
    [48] Ishigure T., Nihei E., Koike Y., High-bandwidth, low-loss graded-index polymer optical fiber for near infrared use, Optical Communication, 1998. 24th European Conference on, 1998, 1: 231-232.
    [49] 江源,马永红,低损耗聚合物光纤,光纤与光缆及其应用技术,1997,6:55-61.
    [50] Kaino T., Jinguji K., Nara S., Low-loss PMMA-8 core optical fiber, 1983, 42 (7) :567-569.
    [51] Kaino T., Plastic optical tiers for near-infred transmission, Appl. Phys. Lett., 1986, 48(12) :757-758.
    [52] Sato M., Hirai M., Ishigure T., et al., High temperature resistant graded-index polymer optical fiber, J. Lightwave Technol., 2000, 18(12): 2139-2144.
    [53] Ueba Yoshinobu,Matsumiya Norifumi, Plastic optical tiber, 美国专利: USP 4568146, 1986。
    [54] Edward J. S., Clinton O., Plastic optical fiber, 美国专利: USP 4807964,1989.
    [55] Tatsukaml Y., Fujita K., Furuta M., et al., Method for producing plastic optical fiber with
    
    resistant heat,欧洲专利: EP 0190656,1986.
    [56] 黄汉生,日本塑料光纤发展动向,现代化工,1996,12:48-52.
    [57] Sato M., Ishigure T., Koike Y., Thermally stable high-bandwidth graded-index polymer optical fiber, J. Lightwave Technol., 2000, 18(7) :952-958.
    [58] Ishigure T., Sato M., Nihei E., et al., Graded-index polymer optical fiber with high thermal stability, Jpn. Appl. Phys., 1998, 37 :3986-3991.
    [59] Nihei E., Ishigure T., Koike Y, High-bandwidth, graded index polymer optical fibers for near-infrared use, Appl. Opt., 1996, 35(36) :7085-7090.
    [60] Meier J., Liever W., Heinlein W., et al., Time-domain bandwidth measurement of step-index plastic fibres. Electron. Lett., 1987, 22: 1208-1209.
    [61] Ishigure T., Nihei E., Koike Y, Optimum refractive index profile of the graded-index polymer optical fiber, toward gigabie data links, 1996, Appl. Opt., 35 (12) :2048-2053.
    [62] Ishigure T., Koike Y, Fleming W. J., Optimum index profile of the perflurinated polymer-based GI Polymer optical fiber and its dispersion propertites, J. Lightwave Technol.,2000, 18(2) : 178-184.
    [63] D.马库斯,杜柏林 于耀明译,光纤测量原理,北京:人民邮电出版社,70-71.
    [64] Personick S. D, J. Bell Syst. Tech., 1971, 50:843.
    [65] Marcuse D., ibid, 1973, 52:817.
    [66] Gloge D., ibid, 1972, 51:1767.
    [67] Garito A. F., Wang J., Gao R., Effects of random perturbations in plastic optical fibers, Science, 1998,281:962-967.
    [68] Ishigure T., Kano M., Koike Y, Which is a more serious factor to the bandwidrh of GI-POF: Differential mode attenuation or mode coupling?. J. Lightwave Technol., 2000,18(7) :959-965.
    [69] White W. R., Dueser M., Reed W. A., Onishi T. Intermodal dispersion and mode coupling in perfluorinated graded-index plastic optical fiber, IEEE Photo. Techn. Lett., 1999, 11(8) :997-999.
    [70] Jiang G., Shi R. F., Garito A. F. Mode coupling and equilibrium mode distribution conditions in plastic optical fibers, IEEE Photo. Techn. Lett., 1997, 9(8) : 1128-1130.
    [71] Kazuo Nagano, Shojiro Kawakami, Measurement of mode conversion coefficient in Graded-index fibers, Appl. Opt., 1980, 19(14) :2426-2434.
    [72] Kenichi Kitayama, Madahiro Ikeda, Mode coupling coefficient measurements in optical fiber, Appl., Opt., 1978, 17(24) :3979-3983.
    [73] Michael J. Y, Alan R. M., Distributed loss and mode coupling and their effect on time-dependent propagation in multimode fibers, Appl. Opt., 1993, 32 (33) : 6664-6677.
    
    
    [74] Olshansky R., Keck D. B., Pulse broadening in graded index optical fibers, appl. Opt. 1976,15:483-491.
    [75] Olshansky R. Mode coupling effects in graded-index optical fibers, Appl. Opt., 1975,14(4) :935-945.
    [76] Yabre G, Theoretical investigation on the dispersion of graded-index polymer optica fibers,J. Lightwave Technol.,2000,18(6) :869-877.
    [77] Raddatz L., White I. H. Influence of restricted mode excitation on bandwidth of multimode fiber links, IEEE Photo. Techn. Lett., 1998, 10(4) : 534-536.
    [78] Webster M, Raddatz L., White I. H., Cunningham D. G. A statistical analysis of conditioned launch for gigabit Ethernet links using multimode fiber, J. Lightwave Techn., 1999, 17(9) :1532-1541.
    [79] Raddatz L., White I. H., Cunningham D. G, Nowell M. C. An experimental and theoretical study of the offset launch technique for the enhancement of the bandwidth of multimode fiber links, J. Lightwave Techn., 1998, 16(3) : 324-331.
    [80] Haas Z. A mode-filtering scheme for improvement of the bandwidth-distance product in multimode fiber systems, J. Lightwave Technol., 1993, 11(7) : 1125-1131.
    [81] Yoshimura T,, Takahashi S., Koyamada Y., Modal baseband response measuring methods for plastic optical fibers, Proc.27th Conf. On Opt. Comm.,2001, Amsterdam, 24-25.
    [82] Takahashi S., Ichimura K., Time domain measurements of launching condition dependent bandwidth of all plastic optical fibers, 1991, Electronics Letters, 1991, 27(3) :217-219.
    [83] Yabre G,Comprehensive theory of dispersion in graded index optical fibers,J. LightwaveTechnol., 2000, 1 8(2) : 166-176.
    [84] Morikura S., Kinoshita K., Numata K., et al., High speed POF transmission technology and its standardization, Optical Communication, 2001. ECOC '01. 27th European Conference on, 2001, 1:20-21.
    [85] 李强,短距离通信用塑料光纤的标准和应用,网络电信,2002,8:39-42.
    [86] ATM,FORUM:155 Mbps plastic optical fiber and hard polymer clad fiber PMD specification,AF-PHYPOF 155-0079. 000, 1997, MAY.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700