K(D_xH_(1-x))_2PO_4晶体生长及性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
K(H1-xDx)2PO4晶体是一类性能非常优良的非线性光学晶体。随着激光技术的出现,KDP类晶体得以广泛的应用。在激光核聚变装置中,采用具有较高的非线性光学系数、较高的激光损伤阈值和较宽的透过区间的KDP晶体对1064nm的基频光实现二倍频光的输出。由于受到KDP晶体的横向受激拉曼散射损伤的影响,ICF工程选择70%-DKDP晶体的Ⅱ类晶片将倍频出的0.53gm的激光与透射出来的部分1.05μm的激光耦合产生0.35μm的紫外光,从而实现三倍频转换。DKDP晶体最重要的应用就是其电光性能的应用,如电光调制器和Q-开关等电光器件的制作。此外12%-DKDP晶体的折返波长恰处于1.05μm波段,可以支持带宽大于20nm(晶体通光长度10mm)的1.05μm激光的高效二倍频。目前,国内外围绕着KDP和DKDP晶体的生长性能进行了广泛的研究。但是对于部分氘化程度的K(H1-xDx)2PO4晶体研究甚少。因此,本文系统的研究了不同氘化程度的K(H1-xDx)2PO4晶体的生长动力学、结构、光谱、光学性质和高温相变等。本论文的主要内容如下:
     1.利用激光偏振干涉法实时测量系统研究了生长条件和氘化程度对晶体柱面生长速度和死区的影响,并从晶体生长动力学包括质量扩散机制和生长机制方面进行讨论分析。
     研究了氘化程度对晶体柱面的生长动力学的影响。利用螺位错和二维成核生长机制对柱面生长速度实时测量结果进行拟合可知,在低过饱和度区间晶体的柱面生长主要是由螺位错生长机制控制,而在高过饱和度区间则由二维成核机制控制。DKDP晶体的动力学系数略高于KDP晶体,而两者均高于部分氘含量的溶液中晶体柱面的生长动力学系数。比较低氘化程度的K(H1-xDx)2PO4(溶液氘含量y<90%)晶体的柱面生长速度发现,随氘含量增加,生长死区和台阶自由能轻微减小。而对于高氘化程度的K(H1-xDx)2PO4(溶液氘含量y≥90%)晶体,台阶自由能略高。这主要是由于影响晶体生长死区的杂质种类和相对浓度变化引起的。
     测量了温度对不同氘化程度的K(H1-xDx)2PO4晶体的柱面生长的影响,发现:低氘化程度的K(H1-xDx)2PO4(溶液氘含量y<90%)晶体随着溶液起始饱和温度的降低,晶体柱面生长死区明显减小,生长速度增大。对于DKDP晶体,实时测量结果以及二维成核拟合得到的动力学参数与上述结果相反:随着温度的降低,晶体柱面生长速度反而增大。这也与DKDP晶体生长时我们经常观察到的现象一致,即随着生长温度的降低晶体柱面容易扩展,晶体越长越胖。
     利用H3P04调节KDP溶液的pH值,研究了不同酸度溶液中晶体柱面生长速度随过饱和度的变化规律。实验结果表明在增大溶液的酸性,死区减小而过渡区由于溶液粘度的增大而变宽,当溶液pH降低到2.3时,KDP的溶解度明显增大,死区减小到0.1℃。
     根据上述结果,我们分别利用传统降温和点籽晶快速生长法在不同温度下生长了一系列氘化程度的K(H1-xDx)2PO4晶体。
     2.利用粉末XRD研究了不同氘化程度的K(H1-xDx)2PO4晶体的结构。结果表明,D原子取代(部分的)H原子并未改变晶体的结构对称性,而晶胞参数a随氘含量增大而增大,但并不呈完全的线性依赖关系。晶胞参数c随氘含量的变化仅有小幅度的增大。高分辨X射线衍射(HRXRD)结果表明,不同氘化程度的K(H1-xDx)2PO4晶体的结构完整性差异甚小,采用传统法或在高温区间采用快速法生长的晶体具有良好地结晶完整性。
     3.采用V棱镜法测量了一系列氘化程度的K(H1-xDx)2PO4晶体的折射率。随着晶体氘含量的增大,晶体的折射率、双折射率都随之减小。分别利用Sellmeier方程和线性方程对K(H1-xDx)2PO4晶体的折射率与波长和氘含量进行拟合,结果与测量结果非常吻合。根据这些拟合公式可以计算出任意氘化程度的K(H1-xDx)2PO4晶体不同波长的折射率,为计算不同氘含量的晶体的非线性光学系数提供基本的参数。同时发现了一种简单的利用折射率确定晶体的氘含量的方法。根据y63纵向电光效应原理,测量了K(H1-xDx)2PO4晶体的半波电压,并根据所测得的半波电压和折射率计算出了电光系数y63。结果显示晶体的氘含量与电光系数Y63基本成线性依赖关系。
     4.利用透过、红外和拉曼光谱系统的研究了氘化所引起得K(H1-xDx)2PO4晶体光谱的变化。K(H1-xDx)2PO4晶体的X方向比Z方向的透过波段宽。相对于KDP晶体,氘化的晶体红外波段的透过率随氘含量逐渐增大,完全氘化的DKDP红外截止边扩展了0.6μm。在近红外的基频波长1064nm时,随晶体氘化程度的升高,吸收系数逐渐减小,DKDP晶体在1064nm处几乎无吸收;晶体在中间波段,倍频波长532nm处,几乎无吸收;在紫外波段三倍频波长355nm时,产生紫外吸收,但是对晶体的氘化程度不敏感。 K(H,_XDX)2PO4晶体红外光谱结果说明:相对于KDP晶体中的O-H振动,DKDP晶体中的O-D振动引起的吸收频率减小。KDP-DKDP混晶中,O-H与O-D振动共存,O-H与O-D振动彼此独立,无相互作用。KDP晶体,在200-1200cm-1范围内可以观察到6个拉曼峰,主要是由P04阴离子团簇的内振动引起的。氘化程度大于29%的晶体产生了两个由O-D振动引起的新的拉曼峰。在K(H1-xDx)2PO4晶体中,随着晶体氘化程度的增加,振动模发生红移现象,这种拉曼位移线性依赖于晶体的氘含量。D原子取代部分的H原子,P04最强振动模的强度下降,70%-DKDP的散射强度达到最低,可以有效的抑制在三倍频过程中的横向受激拉曼散射
     5.锥光干涉、散射颗粒和激光损伤阈值的测试结果说明:部分氘化的K(H1-xDx)2PO4晶体的光学质量略差于纯的KDP和DKDP晶体的光学质量;传统生长的K(H1-xDx)2PO4晶体的比快速法生长的晶体的光学质量更好。比较1-on-1和R-on-1两种测试方式时晶体损伤阈值可以发现,同一样品,R-on-1测试方式的损伤阈值是1-on-1方式的1.5-4.3倍,激光预处理效果明显。1064nm波长激光,不同氘化程度的晶体损伤阈值的激光预处理后损伤阈值提高的幅度差不多。晶体激光预处理后55%-DKDP晶体的损伤阈值仍然比完全氘化的DKDP晶体的阂值小50%以上。测试波长为355nm时,经激光预处理后,55%-DKDP晶体的损伤阈仅比DKDP晶体的损伤阈值小5%。这说明不同频率的激光对不同种类的晶体缺陷的预处理效果不同,3ω激光对晶体激光预处理后晶体的损伤阈值相差无几。测试了不同部位不同切割方向的晶体抗损伤情况,发现切片方向对晶体的抗损伤影响较大。Z切方向的晶片的损伤阈值是II类切片方向晶体的1.6倍左右。
     6.分别利用热重分析、高温介电常数和热台显微镜和偏光显微镜研究了不同氘化程度的K(H1-xDx)2PO4晶体的高温相变机制和高温相变点与氘化程度之间的关系。热重分析结果说明K(H1-xDx)2PO4晶体于478-481K这个范围内开始分解,D原子取代H原子,并不会导致晶体的热分解的起始温度有太大的差异。用介电常数测量分析了K(H1-xDx)2PO4晶体室温至475K之间的热行为。结果发现:与Imry等人的理论模型所预测的结果一致,K(H1-xDx)2PO4晶体确实存在高温相变。第一类相变Tp,相变温度随着晶体氘化程度逐渐降低。在KDP及12%-DKDP晶体中还观察到第二类相变Tl,对晶体氘化程度不敏感。在氘含量为12%-55%的KDP-DKDP混晶中观察到介电异常点Tl′,在KDP和DKDP晶体中未观察到。此介电异常点非常靠近相变Tl,而且与相变Tl相似,对晶体的氘含量不敏感。晶体在相变温度易附近有大量裂纹的产生:KDP晶体达到相变温度后产生裂纹,随后裂纹扩展;而DKDP晶体达到相变温度后产生大量的裂纹,而且裂纹数量继续增加。室温的锥光干涉图说明KDP和DKDP晶体具有良好的光学均匀性,当温度达到相变Tp温度时,锥光干涉图样发生变化。这可能是由于晶体四方单斜相变引起的。
Potassium dihydrogen phosphate (KDP) and its (partialy) deuterated form DKDP and K(H1-xDx)2PO4are the most popular nonlinear optical crystals with good performances. With the development of laser technology, KDP-type crystals have been widely used. KDP crystal, characterized by high damage threshold, good nonlinear optical coefficients and high transmission of wide-spectrum, is adopted to generate second harmonic for the conversion process1064nm→532nm. The Transverse Stimulated Raman Scattering (TSRS) in tripler with KDP of ICF is the most probable destructive nonlinear effects. Therefore, the copropagating second harmonic and residual fundamental beams that emerge from the doubling crystal enter the70%-DKDP crystal, where a third-harmonic beam is created by sum-frequency mixing of the fundamental and second-harmonic beams (1064nm+532nm→355nm). DKDP, with high electro-optic coefficients, are widely used as electro-optical modulators and Q-switches. Type I12%-DKDP crystal of which retracing point (i.e., wavelength) occures at1054nm can support efficient SHG over20nm bandwidth of the fundamental pulses in the10-mm-long crystal. At the moment, the growth and propertites of KDP and DKDP was investigated widely in the world. Those studies are rarely conducted in partially deuterated K(H1-xDx)2PO4, especially for K(H1-xDx)2PO4with low deuterated level. Therefore, in this work we systematically study on the growth kinetics, growth technology, optical properties and high-temperature transition of K(H1-xDx)2PO4with different deuterium content. The primary coverage is as follows:
     1. The dependence of growth rate and dead zone on supersaturation of (100) face of K(H1-xDx)2PO4with different growth condition and deuterium content by using laser polarization interference technique. The results are analysized by the theory of mass transport effect within the boundary layer as well as screw dislocation and two-dimensional nucleus models.
     Growth kinetics of K(H1-xDx)2PO4with different deuterium content was studied. The experimental results on the (100) face growth rate were fitted with screw dislocation and two-dimensional nucleus models. It indicates that the latter is more suitable for higher supersaturation while the former dominates at lower region. The growth rate and growth kinetics coefficient of DKDP is slightly larger than that of KDP. Dead zone and step free energy of K(H1-xDx)2PO4(deuterium concentration of solution y<90%) slightly decrease with deuterated degree. For highly deuterated K(H1-xDx)2PO4(y≥90%), these parameters decreased when the deuterated degree reduced.
     The results of growth rate of (100) face of K(H1-xDx)2PO4with different saturation temperature show that low saturation temperature broaden the dead zone of KDP and partially deuterated K(H1-xDx)2PO4. Conversely, DKDP have greater growth rate and kinetics coefficient of (100) face at lower temperature solution. This can explain the phenomenon that tapping and fatting occurs in KDP and DKDP as the temperature drops, respectively.
     The growth rate and dead zone of (100) face of KDP were measured with different pH by adding phosphoric acid (H3PO4). The results showed that the magnitude of dead zone reduce and transition region became wider, while the dead zone decreased to0.1℃with an increased acid content (pH-2.3).
     According to these parameters of growth of these crystals, a series of K(H1-xDx)2PO4were grown with different growth condition by using tranditional temperature-lowering and rapid growth methods.
     2. From the results of powder X-ray diffraction (XRD), it shows that the no changes occurred on symmetry of structure in K(H1-xDx)2PO4crystals, while lattice parameter a super linearly increases and lattice parameter c changes little with a increase of deuterium content of crystal. High resolution XRD was taken to characterize crystalline perfection. It is indicated that crystalline perfection in KDP-DKDP mixed crystals are as well as pure KDP and DKDP. It is also show that crystals grown by tranditional method and crystals grown in high temperature range by rapid method have good crystalline perfection.
     3. Refractive indices of K(H1-xDx)2PO4crystals, in which the range of x was from0to1, were measured in the visible region by V-prism method. The measured data revealed that both refractive index and birefringence decreased with the increasing of the deuterium content in K(H1-xDx)2PO4crystals. Furthermore, there is a good linear dependence of refractive index on deuteration level. In terms of numerical fits to Sellmeier formula were made, permitting the interpolation consistent with the experimental data. Refractive indices of deuterated KDP crystal with arbitrary deuterium content at varying wavelength are provided to predict phase-matching behavior of frequency doubling according to our data and formulas. Meanwhile, our results provide a potential method to quantify the deuterium content of K(H1-xDx)2PO4crystals by measuring the refractive index. According to longitudinal electro-optic effect of γ63, half-wave voltage of K(H1-xDx)2PO4crystals were measured. Results of linear electro-optic coefficient K(H1-xDx)2PO4crystals, based on the experimental values of half-wave voltage and refractive index, show that there is a linear relationship betweenty63and deuterium content of crystals.
     4. Isotopic effects on the optical properties in KDP-DKDP mixed crystals have been researched and compared with pure KDP and DKDP crystal. Transmission spectra were recorded in the region190-2700nm for the Z-cut and X-cut plates of K(DxH1-x)2PO4crystals. It can be found that the X-cut plates have higher transmission efficiency especially in near-infrared region than that of Z-cut plate derived from the same crystal. The deuterated crystals have higher transmission efficiency and the infrared absorption edges of DKDP red-shifted by0.6μm in comparision to KDP. Absorption coefficient at1064nm and infrared absorption edge both show monotone increasing with the increase of deuterium content. No absorption are observed at532nm in all crystals. At355nm in the UV region, there are some absorption which is not sensitive to deuteration concentration. The O-H/O-D stretching vibrations were recorded in the infra-red spectra and proposed assignments for the infra-red bands in K(DxH1-x)2PO4have been performed. At the same time, this indicates that hydrogen modes and the deuterium modes in crystals are essentially independent with each other. Six Raman peaks, arise mainly from internal vibration modes of the H2PO4anion in KDP, are observed in the frequency range200-1200cm-1. New peaks of715and965cm-1are found in K(DxH1-x)2PO4 (x≥29%), which are also observed in infrared spectrum. Raman spectra show that the frequencies of internal vibrations of PO4tetrahedrons is red-shifted caused by replacement of hydrogen by deuterium atoms, especially for v1(PO4). Dependence of v1(PO4) shift on the degree of deutration perfectly linear. Meanwhile, the scattering cross-section of intense Raman line can be reduced by deuteration and minimum occurred in70%-DKDP. This means that70%-DKDP, preventing laser damage caused by Transverse stimulated Raman scattering (TSRS), is more suitable to be as tripler in ICF.
     5. Optical properties of K(DxH1-x)2PO4were measured by conoscopic interference, scattering particles and laser damage threshold. Lower degree of perfection were observed in K(DxH1-x)2PO4mixed crystals in comparision to pure KDP and DKDP crystals. The R-on-1bulk threshold of K(DxH1-x)2PO4crystals are1.5-4.3times of the damage threshold with1-on-1test. It is proved that laser conditioning is an efficient way to improve the damage resistance. However, laser conditioning at1064nm made the damage threshold raised3-4times. Test at355nm with R-on-lmode shows damage threshold of all K(DxH1-x)2PO4crystals reached more than30(J/cm2,@3ns), clearly demonstrating the presence of a threshold fluence for conditioning. There is little difference in the damage resistance of transparent crystals taken from the first-and last-grown materials, respectively. Damage threshold of Z-cuts is about1.6times of one of tripler cuts (type II), indicating that dependence of bulk damage on the light is with the orientation effect.
     6. Measurements of dielectric constants and thermogravimetric analysis (TGA), microscopy were used to study high-temperature transition in K(H1-xDx)2PO4crystals. The data of TGA demonstrate that the onset of thermal decompositions occurs at478-481K in K(DXH1-X)2PO4crystals with different deuterium content. Our results show the existence of two kinds of phase transitions Tp and Tι, both of which are no business of thermal decomposition. The Tp is dependent on a change in hydrogen/deuterium bond, and this temperature drops with the increase of deuterium content of crystals. At the same times, a large number of cracks appears in K(H1-xDx)2PO4observed from microscopy. The Tι transition associated with H2PO4 group rotation was observed in KDP and12%-DKDP crystals. In the KDP-DKDP Mixed crystals(12%
引文
[1]D. Fimerl, Ferroelectrics,72 (1987) 95.
    [2]E. Giebe and A. Scheibe, Simple Method of Qualitatively Indicating Piezoelectricity in Crystals Z. Phys.33 (1925) 760.
    [3]J West, Z Kristallogr, A quantitative X-ray analysis of the structure of Potassium dihydrogen phosphate (KH2PO4).74 (1930) 306-332.
    [4]G. Busch and P. Scherrer, A new seignettoelectric substance, Naturwiss.23 (1935) 737.
    [5]Busch, Helv. Dielectric measurements on KH2PO4 and. KH2ASO4 at low temperatures Phys. Acta.11(1938),269.
    [6]C. Slater, Theory of the transition in KH2PO4, J. Chem. Phys.9 (1941) 16.
    [7]Frazer B C, Peninsky R. X-ray Analysis of the Ferroelectric Transition in KH2PO4. Acta. Crystallogr.6 (1953) 273.
    [8]Bacon G E, Pease R S. A Neutron Diffraction Study of Potassium Dihydrogen Phosphate by Fourier Synthesis. Proc. Roy. Soc, Lond.220 (1953)397.
    [9]B.Zwicker and P. Scherrer, Electrootische Eigenschaften der. seignetteelctrischen Kristalle KH2PO4, Helv. Phys. Acta.17 (1944) 346.
    [10]R.O.Carpenter, Electro-optic effect in uniaxial crystals of the dihydrogen phosphate type. III. Measurement of coefficients, J. Opt. Soc. Amer.40 (1950), 225.
    [11]J. A. Giordmaine, Mixing of Light Beams in Crystals, Phys. Rev. Lett.8 (1962) 19.
    [12]D. Eimerl, Electro-optic, linear, and non-linear optical properties of KDP and its isomorphs, Ferroelectrics.72 (1987) 95-139.
    [13]P.J. Wegner, J.M. Auerbach, C.E. Barker, S.C. Burkhart, S.A. Couture, J.J. DeYoreo, R. L. Hibbard, L. W. Liou, Frequency converter development for the National Ignition Facility, in:W. Howard Lowdermilk, (Eds.), Third Annual International conference on Solid State Lasers for Application (SSLA) to Inertial Confinement Fusion (ICF), Monterey, California, (1999) 392-405.
    [14]H. Y. Zhu, Wang, T. W. G. Zheng, P. Yuan, L. J. Qian, and D. Y. Fan, Efficient second harmonic generation of femtosecond laser at μm, Opt. Express.12 (2004)2150-2155.
    [15]J. Paisner, Kenneth Manes, et al. The National Ignition Facility:An overview. Energy & Technology Review, UCR1-52000-94-12, December,1994.
    [16]王淦昌,袁之尚,惯性约束核聚变,安徽教育出版社,1996.
    [17]朱士尧,核聚变研究的发展历史,物理1990年02期113-117.
    [18]Nikogosyan D N. Nonlinear Optical Crystals:A Complete Survey. Cork, Ireland: Springer, (2005) 119.
    [19]R.J. Nelmes, V.R. Eiriksson, K.D. Rouse, Structural studies of the system KH2PO4-KD2PO4, Solid State Communications,11 (1972) 1261-1264.
    [20]J. Nakano, Y. Shlozaki, and E. Nakamura, X-Ray Structural Study of KD2PO4 at Room Temperature, J. Phys. Soc. Japan.34 (1973) 1423.
    [21]N. S. J. Kennedy, R. J. Nelmes, F. R. Thornley and K. D. Rouse, Recent structural studies of the KH2PO4-KD2PO4 system, Ferroelectrics,14 (1976) 591-593.
    [22]A.N. Holden, Crystal growing apparatus, Disc. Faraday Soc.,5 (1949) 312.
    [23]N. Zaitseva et al. The effect of impurities and supersaturation on the rapid growth of KDP crystals, J. Crystal Growth,204 (1999) 512-524.、
    [24]T. Sasaki, A. Yokotani, Growth of Nonlinear-optical Crystals for Laser-frequency Conversion, J. Cryst. Growth,99 (1990) 820.
    [25]鲁智宽,高章寿等,溶液循环流动法生长大尺寸KDP晶体,人工晶体学报,27(1996)19-22.
    [26]N. Zaitseva, J. Atherton, R. Rozsa.et al., Design and benefits of continuous filtration in rapid growth of large KDP and DKDP crystals [J]. J. Crystal Growth, 197(1999)911-920.
    [27]杨上峰,苏根博等,添加剂下KDP晶体的快速生长[J].人工晶体学报,28(1999)42-47.
    [28]李国辉,苏根博等,新添加剂下KDP晶体快速生长及其性能表征[J].人工晶 体学报,34(2005)336-339.
    [29]周稳观,罗山.快速生长大型KDP晶体[J].激光与光电子学进展,37(2000)7.
    [30]王希敏,许实等.ADP晶体快速生长及其相关性能研究[J].人工晶体学报,23(1994)33-38.
    [31]Guohui Li, Genbo Su, Xinxin Zhuang, Zhengdong Li, Youping He, A new method to determine the deuterium content of DKDP crystal with thermo-gravimetric apparatus, J. Crystal Growth,29 (2006) 220-223.
    [32]Loiacono, G M, Balascio J F, and Osborne W. Effect of Deuteriation on Ferroelectric Transition Temperature and The Distribution Coefficient of Deuterium in K(H1-xDx)2PO4 [J]. Applied Physics Letter,24 (1974) 455-456.
    [33]C. Belouet, M. Monnier, R. Crouzier, Strong isotopic effects on the lattice parameters and stability of highly" deuterated D-KDP single crystals and related growth problems, J. Crystal Growth,30 (1975) 151-157.
    [34]R. V. Strel'nikova, and L. N. Rashkovich, Ranges of existence of the monoclinic and tetragonal forms K(H1-xDx)2PO4 in aqueous solutions, Sov. Phys.-Crystallogr.22 (1977) 483-485.
    [35]L. N. Rachkovich, KDP-family single crystals, Bristol, Philadephia and New York; Adam Hilger,1991:19.
    [36]Zhong Weizhuo, Luo Haosu, Hua Sukun. Crystal surface structure and its growth units of anionic coordination polyhedra, Journal of Synthetic Crystal,33 (2004) 471-474.
    [37]Zhong W Z, Zheng Y Q, Shi E W, et al. Structures of solutions, melts of crystal growth and growth units, Journal of synthetic crystals,31 (2002) 425-431.
    [38]J. J. De Yoreo, T. A. Land, and J. D. Lee, Limits on Surface Vicinality and Growth Rate due to Hollow Dislocation Cores on KDP{101}, Phys. Rev. Lett. 78(1997)4462-4465.
    [39]A. A. Chernov, E. I. givargizov, Kh. I. Bagdasarov, V. A. Kuznetsov, L. L. Dem'yantsev, and A. N. Lobachev, Modern Crystallography,3 (1980) 115.
    [40]W.J.P. van Enckevort, Surface microtopography of aqueous solution grown crystals, Progress in Crystal Growth and Characterization,9 (1984) 1-50.
    [41]L.N. Rashkovich, A.A. Mkrtchyan and A.A. Chernov, Optical Interference Investigation of Growth Morphology and Kinetics of (100) Face of ADP from Aqueous Solution, Sov. Phys. crystallogr.,30 (1985) 219-223.
    [42]J. J. De Yoreo, T. A. Land, and B. Dair, Growth Morphology of Vicinal Hillocks on the{101} Face of KH2PO4:From Step-Flow to Layer-by-Layer Growth, Phys. Rev. Lett.73 (1994) 838-841.
    [43]T. A. Land, A. J. Malkin, Yu.G Kuznetsov, A. McPherson, and J. J. De Yoreo, Mechanisms of Protein Crystal Growth:An Atomic Force Microscopy Study of Canavalin Crystallization, Phys. Rev. Lett.75,2774-2777 (1995).
    [44]Xiling Yu, Yi Sun, Huizhu Jiang, Shujun Zhang, Growth kinetics of the metastable tetragonal phase of potassium dideuterium phosphate (DKDP) crystals, J. Crystal Growth,166 (1996) 195-200.
    [45]V. I Bredikhin, G. L Galushkina, V. P Ershov, V. I Rubakha, N. R Shvetsova, Rapid growth of DKDP crystals from high-acidity solutions, J. Crystal Growth, 207 (1999) 122-127.
    [46]Nicholas A. Booth, Terry Land, Paul Erhmann, and Peter G. Vekilov, The Aspect Ratio of Potassium Dideuterium Phosphate (DKDP) Crystals, Crystal Growth & Design,5 (2005) 105-11
    [47]Guohui Li, Xue Liping, Genbo Su, Xinxin Zhuang, Zhengdong Li, Youping He, Study on the growth and characterization of KDP-type crystals, Journal of Crystal Growth,274 (2005) 555-562.
    [48]N.Y. Garces, K.T. Stevens, L.E. Halliburtona,, M. Yan, N.P. Zaitseva, J.J. De Yoreo, Optical absorption and electron paramagnetic resonance of Fe ions in KDP crystals, Journal of Crystal Growth,225 (2001) 435-439.
    [49]Bo Wang, Chang-shui Fang, Sheng-lai Wang, Xun Sun, Qing-tian Gu, Yi-ping Li, Xin-guang Xu, Jian-qin Zhang, Bing Liu, Xiao-ming Mou, The effects of Sn4+ ion on the growth habit and optical properties of KDP crystal, Journal of Crystal Growth,297 (2006) 352-355.
    [50]Jianqin Zhang, Shenglai Wang, ChangShui Fang, Xun Sun, Qingtian Gu, Yiping Li, Bo Wang, Bing Liu, Xiaoming Mu, Growth habit and transparency of sulphate doped KDP crystal, Materials Letters,61 (2007) 2703-2706.
    [51]常新安,臧和贵,陈学安,肖卫强,DKDP晶体生长溶液中多磷酸根离子的检测,硅酸盐学报,2007.
    [52]E. Anachkova and I. Savatinova, Isotopic shift and model interzction in K(H1-xDx)2PO4 crystals, Phys. Stat. Sol. (b) 131 (1985) K101.
    [53]Singleton M F, Cooper J F, Andreson B D, et al. Laser-induced bulk damage potassium dihydrogen phosphate crystals. Appl Phys Lett,1988,52:857-859
    [54]Yokotani A, Sasaki T, Yokotani K, et al. Improvement of the bulk laser damage threshold of potassium dihydrogen phosphate crystals by ultraviolet irradiation. Applied Physics Lett,1986,48(16):1030-1032
    [55]B. M. Van Wonterghem, et al. ICF Quarterly Report, Vol.5, NO.l; J. H. Campbell, et al., ICF Quarterly Report,Vol.5,No.1
    [56]Nishida Y, Yokotani A,Sasaki T,et al.Improvement of the bulk laser damage threshold of potassium dihydrogen phosphate crystals by reducing the organic impurities in growth solution[J].Appl Phys Lett,1988,52(6):420-421
    [57]B.Woods.M. Runkel.M.Yan,et al.,LLNL Report,UCRL-JC-125369
    [58]Masahiro Nakatsuka, Kana Fujioka, Tadashi Kanabe, Hisanori Fujita, Rapid growth over 50mm/day of water-soluble KDP crystal, Journal of Crystal Growth, 171(3-4) (1997) 531.
    [59]I. P. Kaminow, "Microwave dielectric properties of NH4H2PO4, KH2ASO4, and partially deuterated KH2PO4," Phys. Rev., vol.138, pp. A1539-A1543, May 1965.
    [60]Y. Imry, I. Pelah, and E. Wiener, Proton Dynamics in Hydrogen-Bonded Ferroelectrics, J. Chem. Phys.43 (1965) 2332.
    [61]M. O'Keeffe and C. T. Perrino, "Proton Conductivity in Pure and Doped KH2PO4," J. Phys. Chem. Solids 28,211-215 (1967).
    [62]J. Grinberg, S. Levin, I. Pelah, E. Wiener, Isotope effect in the high temperature phase transition of KH2PO4, Solid State Communications,5(1967) 863-865.
    [63]R. Blinc, V. Dimic, D. Kolar, G. Lahajnar, J. Stepisnik, S. Zumer, N. Vene, and D. Hadzi, J. Chem. Phys.49,4996 (1968).
    [64]J. Grinberg, S. Levin, I. Pelah, D. Gerlich, High temperature phase transitions and metastability in KDP type crystals, Phys. Stat. Sol.(B) 49,857(1972)
    [65]Y. Shapira, S. Levin, D. Gerlich, S. Szapiro, High-temperature phase transition i n RbH2PO4, KD2PO4 and KH2As04, Ferroelectrics,17 (1977) 459-464.
    [66]Jong-Ho Park, Kwang-Sei Lee, Jeong-Bae Kim and Jung-Nam Kim, Impedance relaxation of KH2PO4 at high temperatures, Journal of Physics:Condensed Matter 8 (1996) 5491-5499.
    [67]S. Vyazovkin, T.L. Ferrin, Thermomechanical study of the high temperature phase transition in KH2PO4, Solid State Communications 113 (2000) 627-631.
    [68]Ramos, J. and Vargas, R. A. (2005), Study of the phase behaviour of chemically doped KH2PO4. phys.stat. sol. (c),2:3722-3725.
    [69]M. Olee. Solid-state Light Value, in:Proc. Intern. Conf. on Technical Programme Electrooptics 71, Brighton, (1971) 207-218.
    [70]R.A.Saeks, C. E. Barker, R. B. Erlieh. Stimulated Raman scattering in large-aperture, high-fluence frequency-cinversion crystals, ICF quarterly report, LLNL,24(1992)179.
    [71]李云南溶液过饱和度和氘化程度对KDP/DKDP晶体光学性能影响的研究.山东大学硕士学位论文2005
    [72]J. H. Campbell, R. T. Maney, L. J. Athertonetal. Large aperture, high damage threshold optics for beamlet. LLNL Report, UCRL-LR-105821-95-1
    [73]J. Swain, S. Stokowski, D. Milam, F. Rainer, Improving the bulk laser damage resistance of potassium dihydrogen phosphate crystals by pulsed laser irradiation, Appl. Phys. Lett.,40 (1982) 350-352.
    [74]Bespalov V L, Brediklin V I, Ershov V P, et al. Growth of Crystals,17 (1989), Consultants Bureau, New York.
    [75]Z Tun, R J Nelmes, W F Kuhs and R F D Stansfield. A high-resolution neutron-diffraction study of the effects of deuteration on the crystal structure of KH2PO4. J. Phys. C:Solid State Phys.21 (1988) 245.
    [76]A. Yokotani, T. Sasaki, K. Yokotani, T. Yamanaka, C. Yamanaka, Improvement of the bulk laser damage threshold of potassium dihydrogen phosphate crystals by ultraviolet irradiation. Appl. Phys. Lett.,48 (1986) 1030-1032.
    [77]F. Abdi, M. Aillerie, M. D. Fontana, B. Wyncke, F. Brehat. Study of contributions to temperature dependence of the phase shift in an electro-optic crystal, Optical and Quantum Electronics,29 (1997) 441-550.
    [1]Zhong Weizhuo, Luo Haosu, Hua Sukun. Crystal surface structure and its growth units of anionic coordination polyhedra, Journal of Synthetic Crystal,33 (2004)471-474.
    [2]于锡玲、尤静林、王燕等.晶/液界面边界层结构的微区研究,中国科学(E辑),32(2)(2002)158-166.
    [3]Yu Xiling, Yue Xuefeng. Holographic Studies of Diffusivities of KDP and DKDP in the Solutions, Crystal Research and Technology,27 (1992) 825-830.
    [4]H.V. Alexandru, C. Berbecaru, Al. Grancea, V. Iov. KDP prismatic faces: kinetics and the mechanism of their growth from solutions, Journal of Crystal Growth,166(1996)162.
    [5]J. J. De Yoreo, T. A. Land, and J. D. Lee. Limits on Surface Vicinality and Growth Rate due to Hollow Dislocation Cores on KDP{101}, Phys. Rev. Lett., 78 (1997) 4462.
    [6]K. Sangwal, J. Bore, T. Palczynska. On the growth hillock vicinality and normal growth rates of the (101) face of KDP crystals, Journal of Crystal Growth,194 (1998)214.
    [7]N. Zaitseva, L. Carman, I. Smolsky. Habit control during rapid growth of KDP and DKDP crystals, Journal of Crystal Growth 241 (2002) 363-373.
    [8]V.I Bredikhin, G.L Galushkina, V.P Ershov, V.I Rubakha, N.R Shvetsova. Rapid growth of DKDP crystals from high-acidity solutions, J. Cryst. Growth,207 (1999) 122-126.
    [9]Nikogosyan D N, Nonlinear Optical Crystals:A Complete Survey [M]. Cork, Ireland:Springer,2005:119.
    [10]Wenjie Liu, Xin Yin, Shenglai Wang, et al. Dependence of refractive indices on deuterium content in K(H1-xDx)2PO4 crystals, Optics & Laser Technology,44 (2012) 1769-1772.
    [11]N. Zaitseva, L. Carman. Rapid growth of KDP-type crystals, Progress in Crystal Growth and Characterization of Materials,43 (2001) 1-118.
    [12]V.I. Bespalov, V.I. Bredikhin, V.P. Ershov, et al. Growth of Crysals,17 (1991) 123.
    [13]E. P. Efremova, V.A. Kuznetsov, A.Yu. Klimova, et al. Crystallogr. Rep.,38 (5) (1993) 674
    [14]S. K. Sharma, Sunil Verma, B.B. Shrivastava, et al. In situ measurement of pH and supersaturation-dependent growth kinetics of the prismatic and pyramidal facets of KDP crystals, Journal of Crystal Growth 244 (2002) 342-348.
    [15]S. L. Wang, Z. S. Gao, Y. J. Fu, et al. Study on rapid growth of highly-deuterated DKDP crystals, Crystal Research and Technology,38 (2003) 941-945.
    [16]Nikogosyan D N, Nonlinear Optical Crystals:A Complete Survey [M]. Cork, Ireland:Springer,2005:119.
    [17]Wenjie Liu, Xin Yin, Shenglai Wang, et al. Dependence of refractive indices on deuterium content in K(H1-xDx)2PO4 crystals, Optics & Laser Technology,44 (2012) 1769-1772.
    [18]N. Zaitseva, L. Carman. Rapid growth of KDP-type crystals, Progress in Crystal Growth and Characterization of Materials,43 (2001) 1-118.
    [19]N. Kubota, M. Yokota, J.W. Mullin. Supersaturation dependence of crystal growth in solutions in the presence of impurity, J. Cryst. Growth,182 (1997) 86-94.
    [20]T.A. Eremina, V.A. Kuznestov, N.N. Eremin, et al. On the mechanism of impurities influence on growth kinetics and surface morphology of KDP crystals-II:experimental study of influence of bivalent and trivalent impurities ions on growth kinetics and surface morphology of KDP crystals, J. Cryst. Growth,273 (2005) 586-593.
    [21]Chang X A, Han L H, Zang H G, Chen X A, Xiao W Q. Variation of Polyphosphate Ion Concentration in Grow th Solution of DKDP Crystal, Journal of Synthetic Crystals,39 (2010) 235-238.
    [22]K. Slwang, E. Mielnicxek, Effect of Fe (III) on the growth kinetics of ammonium oxalate monohydrate crystals from aqueous solutions, Journal of Crystal Growth,233 (2001) 343-354.
    [23]Zhong D G, Teng B, Zhang G H, et al. Influence of pH on Solubility and Solution Stability of KDP Crysta, Journal of Synthetic Crystals,35:6 (2006)1209-1211
    [24]V. A. Kuznetsov, E. P. Efremova, T. M. Okhrimenko et al. Growth and Certain Properties of KDP Crystals Affected by pH and Temperature, Growth of Crystals 20 (1996) 79-87.
    [25]Loiacono, G M, Balascio J F, and Osborne W. Effect of Deuteriation on Ferroelectric Transition Temperature and The Distribution Coefficient of Deuterium in K(H1-xDx)2PO4. Applied Physics Letter,1974,24:455-456.
    [1]Campbell J H, Atherton L J, De Yorer J J, et al. Large-Aperture, High-Damage-Threshold Optics for Beamler. California:Lawrence Livermore National Laboratory,1995.52.
    [2]Webb M S, Eimerl D and Velsko S P. High-Bandwidth Second-Harmonic Generation in Partially Deuterated KDP. SPIE Proceedings,1992,1626:318.
    [3]Zhu H Y, Wang T, Zheng W Q et al. Efficient Second Harmonic Generation of Femtosecond Laser at One Micron. Optic Express,2004,12(10):2150-2155.
    [4]Campbell J H, Atherton L J, De Yorer J J, et al. Large-Aperture, High-Damage-Threshold Optics for Beamler. California:Lawrence Livermore National Laboratory,1995.52.
    [5]Bhagavannarayana G, Budakoti G C, Maurya K K, Kumar B. Enhancement of crystalline, piezoelectric and optical quality of LiNbO3 single crystals by post-growth annealing and poling. Journal of Crystal Growth,2005,282: 394-401.
    [6]Batyreva I A, Bespalov V I, et al. Growth and Investigation of Optical Single Crystals for High-power Laser Systems. Journal of Crystal Growth,1981, 52:832.
    [7]张克从,王希敏.非线性光学晶体材料科学.北京:科学出版社,1996.100.
    [8]S. C. Varshney and A. A. Gundjian. Laser induced lattice strains and damage threshold limitation due to lattice defects in transparent optical materials, Appl. Optics 19 (1980) 455.
    [9]N. Bloembergen. Role of Cracks, Pores, and Absorbing Inclusions on Laser Induced Damage Threshold at Surfaces of Transparent Dielectrics, Appl. Optics,12 (1973) 661-664.
    [10]Herbert S. Bennett, C. D. Cantrell. Absorbing precipitates in cadmium telluride: estimates for catastrophic laser-damage thresholds, Appl. Optics, 16 (1977) 2931-2933.
    [11]Ramasamy G, Bhagavannarayana G, Meenakshisudaram S, The Concentration Effects of s-, p-, d- and f-Block Element Doping on the Growth, Crystalline Perfection and Properties of KDP Crystals. CrystEngComm,2012,14: 3813-3819.
    [12]West J, Kristallogr Z, A quantitative X-ray analysis of the structure of Potassium dihydrogen phosphate (KH2PO4). Ferroelectrics,1930,74:306-332.
    [13]Tuntl Z, Nelmest R J, et al. A high-resolution neutron-diffraction study of the effects of deuteration on the crystal structure of KH2PO4. Physics of the Solid State,1988,21:245-258.
    [14]Nelmes R J, Structure Studies of KDP and the KDP-Type Transition by Neutron and X-ray Diffraction:1970-1985. Ferroelectrics,1987,71:87-123.
    [15]De Yoreo J J, Woods B W. A Study of Residual Stress and the Stress-optic Effect in Mixed Crystals of K(H1-xDx)2PO4. Journal of Applied Physics,1993,73: 7780-7789.
    [16]Kim S A, Choi Y N, Lee C H. Neutron-Diffraction Study of K(H1-xDx)2PO4. Applied Physics A,2002,74:1194-1196.
    [17]Doremus R, Roberts B, Turnbull D. Growth and Perfection of Crystals. New York:John Wiley & Sons,1958:411
    [1]S. W. Mark, E. David and P. V. Stephan. Wavelength insensitive phase-matched second-harmonic generation in partially deuterated KDP, J. Opt. Soc. Am. B, 1992,9:1118-1127.
    [2]F. Zernike, Refractive Indices of Ammonium Dihydrogen Phosphate and Potassium between 2000A and 1.5μ, J. Opt. Soc. Am,1964,54:1215-1219.
    [3]R. A. Phillips, Temperature variations of the index of refraction of ADP, KDP, and deuterated KDP, J.Opt. Soc. Am,1966,56:629-632.
    [4]N. P. Barnes and D. J. Gettemy. Variation of the refractive index with temperature and the tuning rate for KDP isomorphs, J. Opt. Soc. Am,1982,72: 895-898.
    [5]K. W. Kirby and L. G. DeShazer LG, Refractive indices of 14 nonlinear crystals isomorphic to KH2PO4, J. Opt. Soc. Am. B,1987,4:1074-1078.
    [6]G. M. Loiacono, J. F. Balascio and W. Osborne, Effect of deuteriation on ferroelectric transition temperature and the distribution coefficient of deuterium in K(H1-xDx)2PO4, Appl. Phys. Lett,1974,24:455-456.
    [7]Thomas Hurser Christopher W, Hollars Wigbert J, Siekhaus James J, De Yoreo, Tayyab I, Suratwala, Land Teresa A. Characterization of proton exchange layer profiles in KD2PO4 crystals by micro-Raman spectroscopy. Applied Spectroscopy 2004,58:349-51.
    [8]Li GH, Su GB, Zhuang XX, Li ZD, He YP. A new method to determine the deuterium content of DKDP crystal with thermo-gravimetric apparatus. Optical Materials 2005,29:220-3.
    [9]X. Yin, Z. S. Shao, M. K. Lv, The Measurement of Refractive Index with V Prism, Infrared and Laser Engineering.4 (1987) 53-55. Chinese.
    [10]张克从,王希敏,非线性光学晶体材料科学(第二版),科学出版社,2005.
    [11]J. H. Gladstone, and T. P. Dale, dispersion and sensitiveness of liquids, Phil. Trans. Royal Soc, London 1864, pp.317-343.
    [12]Z Tun, R J Nelmes, W F Kuhs and R F D Stansfield. A high-resolution neutron-diffraction study of the effects of deuteration on the crystal structure of KH2PO4. J. Phys. C:Solid State Phys.21 (1988) 245.
    [13]A. S. Vasilevskaya, Sov. Phys. Crystallogr.11 (1967) 644.
    [14]Vysochanskii Yu.M., Slivka V.Yu., Buturlakin A.P. et al. The soft mode in Sn2P2S6. Fiz. Tverd. Tela,20 (1978) 90-93.
    [1]P. A. Franken, A E. Hill, C. W. Peters and G. Weinrich, "Generation of Optical Harmonics", Phys. Rev. Lett 7,118 (1961).
    [2]R. A. Saeks, C.E. Barker, R. B. Erlieh. Stimulated Raman scattering in large-aperture high fluence frequency-conversion crystals [C], ICF quarterly report[R], LLNL,1992,2(4):1-9.
    [3]S. A. Belkov, G. C. Koehelnasov, S. M. Kulikov et.al. Stimulated Raman scattering in frequency eonversion crystal [C1. SPIE,1995,2633:506-512
    [4]C. E. Barker, R. A. Saeks, B. M. Van Wonterghem et al. Transverse stimulated Raman seattering in KDP [C]. SPIE,1995,2633:501-505.
    [5]W.L. Liu, H.R. Xia, X.Q. Wang, Z.C. Ling, D.G. Ran, J. Xu, Y.L. Wei, Y.K. Liu, S.Q. Sun, H. Han, Characterization of deuterated potassium dihydrogen phosphate single crystals grown by circulating method, Journal of Crystal Growth,293 (2006) 387-393.
    [6]J.P.马蒂厄,光学(上、下),Pergamon. Press出版社,1987
    [7]Nelmes R J, Structure Studies of KDP and the KDP-Type Transition by Neutron and X-ray Diffraction:1970-1985 [J], Ferroelectrics,1987,71:87-123.
    [8]DIEGUEZ E, CINTAS, HERNANDEZ P. et al. Ultra-violet absorption and growth bands in KDP, Journal of Crystal Growth 1985.73:193-195
    [9]A. S. Barker and and A. J. Sievers, "Optical studies of the vibrational properties of disordered solids," Rev. Mod. Phys.47, Supp.2, S1-S180 (1975).
    [10]R. Blinc, D. Hadzi, The infra-red spectra of some ferroelectric compounds with short hydrogen bonds, Molecular Physics,1 (1958) 391-405.
    [11]Zhao Peng, Xia Hairui, Ling Zongcheng, WANG Peji, Sun Yan, Zhang Zhong, Raman Spectra Analysis of DKDP Crystal, Spectroscopy and Spectral Analysis, 27(2007),292-294.
    [12]T. Huser, C.W. Hollars, W.J. Siekhaus, J.J. De Yoreo, T.I. Suratwala, T.A. Land, Characterization of proton exchange layer profiles in KD2PO4 crystals by micro-Raman spectroscopy, Applied spectroscopy,58 (2004) 349-351.
    [13]Stavros G. Demos, Rajesh N. Raman, Steven T. Yang, et al. Estimation of the Transverse Stimulated Raman Scattering Gain Coefficient in KDP and DKDP at 2ω,3coand 4ω, Proc. of SPIE 8190(2011).
    [1]张克从,王希敏。非线性光学晶体材料科学[M].北京;科学出版社,1996:100.
    [2]P.J. Wegner, J.M. Auerbach, C.E. Barker, S.C. Burkhart, S.A. Couture, J.J. DeYoreo, R. L. Hibbard, L. W. Liou, Frequency converter development for the National Ignition Facility, in:W. Howard Lowdermilk, (Eds.), Third Annual International conference on Solid State Lasers for Application (SSLA) to Inertial Confinement Fusion (ICF), Monterey, California, (1999) 392-405.
    [3]Sangwal K. Prog Crystal Growth and Charact,32 (1996) 3-43.
    [4]Guohui Li, Genbo Su, Xinxin Zhuang, Zhengdong Li, Youping He, A new method to determine the deuterium content of DKDP crystal with thermo-gravimetric apparatus, J. Crystal Growth,29 (2006) 220-223.
    [5]Z Tun, R J Nelmes, W F Kuhs and R F D Stansfield. A high-resolution neutron-diffraction study of the effects of deuteration on the crystal structure of KH2PO4, J. Phys. C:Solid State Phys.21 (1988) 245.
    [6]R. J. Nelmes. Structural studies of KDP and the KDP-type transition by neutron and X-ray diffraction, Ferroelectrics 71 (1987) 87-123.
    [7]Ruth Hawley-Fedder", Harry Robey, Tom Biesiada, Martin DeHaven, Randy FloydA, Ian Burnham. Rapid Growth of Very Large KDP and KD*P Crystals in Support of the National Ignition Facility, in Society of Photo-Optical Instrumentation Engineers45th Annual Meeting, San Diego, CA, July 30 August 04,2000.
    [8]Alan K. Burnham, Michael Runkel, R. A. Hawley-Fedder. Low-temperature growth of DKDP for improving laser-induced damage resistance at 350 nm, in Laser-Induced Damage in Optical Materials:2000, Proc. SPIE 4347 (2001)373-381.
    [9]R. A. Negres, N. P. Zaitseva, P. DeMange, and S. G. Demos. A new expedited approach to evaluate the importance of different crystal growth parameters on the laser damage performance in KDP and DKDP, in Laser-Induced Damage in Optical Materials:2006.
    [10]Mike Runkel, Stephen Maricle, Rich Torres, et al. The effect of thermal annealing and second harmonic generation on bulk damage performance of rapid-growth KDP type I doublers at 1064 nm, in 32nd Annual Symposium on Optical Materials for High Power Lasers Boulder, CO October (2000)16-18.
    [11]王圣来,王波,张光辉,等。退火温度对KDP晶体光学均匀性的影响研究,强激光与离子束,16(4)(2002)437-440.
    [12]De Yoreo, J.J., Woods, B.W. A study of residual stress and the stress-optic effect in mixed crystals of K(DxH1-x)2PO4, J. Appl. Phys.73(11) (1993) 7780.
    [13]王耀水,朱锐,叶桂芬,刘向阳,洪远珍,蔡诗武,KDP晶体缺陷形成机理的研究,无机材料学报,2(1989)108-111.
    [14]颜明山,吴德祥,曾金波,张秀珠,李晓仓,大截面KDP类型晶体的生长,人工晶体学报,15(1986)1-4.
    [15]Alan K. Burnham, Michael Runkel, Michael D. Feit, et al. Laser-Induced Damage in Deuterated Potassium Dihydrogen Phosphate, Applied Optics,42 (2003) 5483-5495.
    [16]S. Dinakaran, Sunil Verma, S. Jerome Das, G. Bhagavannarayana, S. Kar, K.S. Bartwal, Investigations of crystalline and optical perfection of SHG oriented KDP crystals, Appl. Phys. A,99 (2010) 445-450.
    [17]A. Yokotani, T. Sasaki, K. Yokotani, T. Yamanaka, C. Yamanaka, Improvement of the bulk laser damage threshold of potassium dihydrogen phosphate crystals by ultraviolet irradiation. Appl. Phys. Lett.,48 (1986) 1030-1032.
    [18]J. Swain, S. Stokowski, D. Milam, F. Rainer, Improving the bulk laser damage resistance of potassium dihydrogen phosphate crystals by pulsed laser irradiation, Appl. Phys. Lett.,40 (1982) 350-352.
    [19]H. Newkirk, J. Swain, S. Stokowski, D. Milam, D. Smith, H. Klapper, X-ray topography of laser-induced damage in potassium dihydrogen phosphate crystals, J. Cryst. Growth,65 (1983) 651-659.
    [20]Doremus R, Roberts B, Turnbull D. Growth and Perfection of Crystals [M]. New York:John Wiley & Sons,1958:411.
    [21]H.F. Robey. Numerical simulation of the hydrodynamics and mass transfer in the large scale, rapid growth of KDP crystals-2:computation of the mass transfer, Journal of Crystal Growth,259 (2003) 388-403.
    [1]K. Fujioka, S. Matsuo, T. Kanabe, H. Fujita, and M. Nakatsuka, Optical properties of rapidly grown KDP crystal improved by thermal annealing, J. Crystal Growth 181(1997) 265-271.
    [2]牟晓明.有机染料等杂质对KDP晶体生长与性质的影响及晶体退火条件研究[D],山东大学博士学位论文,2009。
    [3]L. J. Atherton, F. Rainer, J. J. De Yerro, I. M. Thomas, N. P. Zaitseva, F. P. De Marco, Thermal and laser conditioning of production and rapid growth KDP and KD*P Crystals. Proc. SPIE,2114 (1993) 36-45.
    [4]E. Rapoport, Phase Transformations and Melting in KH2PO4 to 40 kbar, J. Chem. Phys.53(1970)311.
    [5]E. Rapoport, J. B. Clark, and P. W. Richter, High-pressure phase relations of RbH2PO4, CsH2PO4, and KD2PO4, J. Solid State Chem.24 (I 978) 423-433.
    [6]M. O'Keeffe and C. T. Perrino, Proton conductivity in pure and doped KH2PO4, J Phys. Chem. Solids 28 (1967) 211-218.
    [7]J. Grinberg, S. Levin, I. Pelah, and E. Wiener, Isotope effect in the high temperature phase transition of KH2PO4, Solid State Commun.5 (1967) 863-865.
    [8]R. Blinc, V. Dimic, D. Kolar, G Lahajnar, J. Stepisnik, S. Zumer, N. Vene, and D.Hadzi, High-Temperature Phase Transition in KH2PO4, J. Chem. Phys.49 (1968) 4996.
    [9]J. Grimberg, S. Levin, I. Pelah, and D. Gerlich, High temperature phase transitions and metastability in KDP type crystals, Phys. Status Solid (B)49 (1972) 857.
    [10]A. I. Baranov, V. P. Khiznichenko, and L. A.Shuvalov, High temperature phase transitions and proton conductivity in some kdp-family crystals, Ferroelectrics 100 (1989) 135-141.
    [11]B.-K. Choi and S-C. Chung, Electrical conductivity and high temperature phase transition studies on KH2PO4 crystals,Ferroelectrirs 155 (1994),153-158.
    [12]B.-K. Choi, J. Korean Phys. Soc.,27 (1994) S54-S58.
    [13]L. P. Pereverzeva, N. Z. Pogosskaya, Yu. M. Poplavko, V. I. Pakhomov, I. S. Rez, G. B. Sil'nitskaya, Fiz. Tverd. Tela,13 (1971) 3199
    [14]L. B. Harris and G J. Vella, Direct current conduction in ammonium and potassium dihydrogen phosphate, J. Chem. Phys.58 (1973) 4550.
    [15]A. Joanid, M. Popescu, N. Vlahovici, and I. Bunget, On the phase transition of KH2PO4 at T≈110℃, physica status solidi (a),82(1984) K125-K128.
    [16]I. Licea, A. loanid, and A.Dafinei, High temperature phase transition in KH2PO4, physica status solidi (a),118 (1990) 131-139.
    [17]I. Licea, A. loanid, and A.Dafinei, Electrical Conductivity in KH2PO4 around the High Temperature Phase Transition, physica status solidi (a),133 (1992) 291-297.
    [18]K. Itoh, T. Matsubayashi, E. Nakamura, and H. Motegi, X-Ray Study of High-Temperature Phase Transitions in KH2PO4, J. Phys. Soc. Jpn.39 (1975) 843-844.
    [19]R. Blinc, D. E. O'Reilly, E. M. Peterson, and J. R. Williams, High-Temperature Phase Transition in RbH2PO4, J.Chem. Phys.50(1969) 5408.
    [20]V.A. D'yakov, V.A. Koptsik, I.V. Lebedeva, A.V. Mishchenko, L.N. Rashkovich, Kristallografiya,18 (1973) 1227.
    [21]Y. Shapira, S. Levin, D. Gerlich, S. Szapiro, High-temperature phase transition i n RbH2PO4, KD2PO4 and KH2As04, Ferroelectrics,17 (1977) 459-464.
    [22]A.T. Amandosov, I.A. Velichko, L.N. Rashkovich, Kristallografiya,26 (1981) 406.
    [23]D. Orlandi and P. Simon, Ferroelectrics 125(1992)455-460.
    [24]I. Seliger, V. Zagar, and R. Blinc, Nuclear-quadrupole double-resonance study of RbH2PO4 in the supercooled high-temperature monoclinic phase, Phys. Rev. B 47(1993) 14753-14756.
    [25]M. E. Brown, L. Glasser, J. Larson, high temperature thermal properties of KDP; phase transition and tecompositions, Thermochim. Acta,30 (1979) 233-246.
    [26]J. X. Ding, Tao Wang, Shenglai Wang, Deliang Cui, Xiaoming Mu, Xinguang Xu, Effect of pressure on thermal stability and decomposition of KDP crystals, Chinese Physics Letters,28 (2011) 026402 (1-3).
    [27]Humayun Khan, A. H. Khan, High temperature phase transition in KH2PO4 crystal, Bull. Mater. Sci.,16 (1993) 357-363.
    [28]J. A. Subramony, S. Lovell, W. Kaminsky, B. Kahr, Structure of a high temperature phase of potassium dideuteriophosphate (DKDP), Solid State Communications,132 (2004) 827-830.
    [29]M. E. Brown, L. Glasser, J. Larson, High temperature thermal properties of KH2PO4:Phase and tecomposition, Thermochim. Acta,30 (1979) 233-246.
    [30]G. Ravi, A.S. Haja Hameed, P. Ramasamy, Effect of temperature and deuterium concentration on the growth of deuterated potassium dihydrogen phosphate (DKDP) single crystals, Journal of Crystal Growth 207 (1999) 319-324.
    [31]Y. Imry, I. Pelah, and E. Wiener, Proton Dynamics in Hydrogen-Bonded Ferroelectrics, J. Chem. Phys.43 (1965) 2332.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700