新型磁场调制式磁性齿轮的设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁性齿轮依靠磁场作用传递转矩,其输入与输出之间非接触性传递的特点使得它在特定场合较机械齿轮具有特殊的优势。但是传统结构磁性齿轮转矩密度低,限制了磁性齿轮的推广应用。新型磁场调制式磁性齿轮内外转子采用同心式结构,有效提高了永磁体的利用率,其转矩密度较传统结构有了较大的提高,因此具有较好的应用前景。本文围绕这种新型磁场调制式磁性齿轮展开研究,具体做了以下几方面的工作:
     第一,采用解析法和二维有限元法对磁场调制式磁性齿轮的工作原理进行了详细分析,特别是对调磁环在这种新型磁性齿轮中的作用进行了重点研究,突出了调磁环所起到的磁场调制作用;在对新型磁性齿轮的转矩脉动问题进行分析研究的基础上,设计制造了一台传动比为7.33:1的新型磁性齿轮;并对磁性齿轮的两个重要特性——即静态转矩特性和稳态运行转矩特性进行了有限元计算分析。
     第二,根据国外文献资料,其所开发新型磁性齿轮样机实测最大转矩与二维有限元计算结果存在较大差异。本文在详细介绍基于标量磁位的三维有限元方法的基础上,编制了三维有限元程序,并将该程序成功地应用到新型磁性齿轮的分析之中,研究了新型磁性齿轮端部效应对计算静态转矩特性的影响。通过对二维有限元、三维有限元不考虑端部效应、三维有限元考虑端部效应计算结果以及实验结果的对比分析,表明新型磁性齿轮的端部效应非常明显,准确的静态转矩计算必须采用三维有限元进行。同时由于本文采用了标量磁位法,使得三维有限元计算时间大大减少,为采用三维有限元法进行新型磁性齿轮参数优化设计奠定了基础。
     第三,磁性齿轮中铁损耗是其主要损耗,本文以有限元为辅助工具,对新型磁性齿轮的铁损耗问题进行了详细分析,指出了降低铁损耗,提高传动效率的设计准则。根据新型磁性齿轮的工作原理,要实现一定范围内的传动比,其内转子磁极对数有多种选取方案。本文从优化设计的角度出发,对比分析了不同磁极对数对磁性齿轮性能的影响,并在此基础上指出了新型磁性齿轮内转子磁极对数选取原则。
     第四,从提高磁性齿轮机械可靠性的角度出发,提出了一种外转子改进型拓扑结构,并申请了专利。利用三维有限元程序对该结构进行了参数优化设计,研究了4个主要设计参数对磁性齿轮性能的影响情况,并在此基础上制造了样机。实验结果表明,该样机转矩密度和传递效率均较高,具有推广应用的价值。
     第五,目前磁性齿轮的研究基本上都是关于其静态特性的研究。磁性齿轮不具有自起动能力,其运转是依靠外部装置驱动运行的,要进行比较完善的磁性齿轮动态性能研究,就必须建立起其外部驱动装置与磁性齿轮的联合仿真模型。本文以时步法为基础,建立起了电机配磁性齿轮传递系统的有限元联合仿真模型,解决了联合仿真模型中具有3条运动边界的问题,编制了控制联合仿真模型运行的主控程序。搭建了电机配磁性齿轮传动系统联合仿真平台,并进行了仿真研究。仿真结果表明本文所建立的联合仿真模型的正确性。该联合仿真模型的成功建立,为深入研究磁性齿轮动态性能提供了可能,同时也为实现两个有限元模型进行联合仿真提供了一次成功的范例。
Magnetic gears, whose input sides are physically isolated with the output sides, have special advantages over mechanical gears in some occasions. However, traditional magnetic gears have low torque density, because they are poor utilities of permanent magnets, which limits their applications greatly. The novel field modulated magnetic gear (FMMG) is concentric configuration thus can enhance the utilities of permanent magnets greatly. Its torque density can be several times bigger than the traditional one's, so field modulated magnetic gear will have broad applications. The works in this thesis are focused on design and research on this novel magnetic gear. Generally speaking, the main works include the following ones:
     Firstly, the basic principle of FMMG is elaborated by both analytical method and two-dimensional (2D) finite element method (FEM). In FEM analysis, special work is done to the modulator ring to stand out its field modulated function in the gear. Based on the research on the cogging torque in this kind of magnetic gear, a novel FMMG with ratio 7.33:1 is proposed. Then, the two most important characteristics of magnetic gear, namely static torque characteristic and the stable torque characteristic are analyzed by the static field computations.
     Secondly, according to the papers published by foreign researchers, the maximum static torques computed by 2D FEM exhibited serious errors with respect to the actual results. In this thesis, a 3D-FEM is developed to analyze the end-effect of the FMMG The key is to adopt the scalar magnetic potential so that the required data manipulation and computation can be significantly reduced. A realistic magnetic gear is analyzed by using both the proposed 3D-FEM and the traditional 2D-FEM, which shows the accuracy of the developed 3D-FEM. And the computed result also shows the proposed 3D-FEM can get the results within a reasonable time, which makes the possibility to use the proposed 3D-FEM to do optical design in regards of computation time.
     Thirdly, in this thesis the author carries on research on the iron core losses in FMMG by the FEM. Thus the author points out design guidelines to reduce the iron core losses. The optical choice of the number of the inner rotor pole pairs is also done by the author, with the respects to iron losses, cogging torque, mechanical arts and crafts and so on.
     Then, a new topology of this MFMG, which improvement is done in the outer rotor and has already been applied for a patent by the author, is proposed. Optimization work is done by the 3D FEM to find out the influence of the main parameters on the performance of the MFMG Then a prototype of this new topology is developed and test is done to the prototype. Test results show both the torque density and the efficiency of the prototype are high enough to practical applications.
     Finally, dynamic performance of the MFMG is done by the author. Magnetic gears have no self-start ability and they must be driven by a external equipment, so in order to do research on the dynamic performance of magnetic gears the model must include both the magnetic gear and the external equipment. In this thesis the Co-simulation FEM model of motor and magnetic gear is established and hence the dynamic performance of the transmission system is studied.
引文
1.K.Atallah,D.Howe.A novel high-performance magnetic gear.IEEE Transactions on Magnetics.Vol.37,No.4,July 2001,pp.2844-2846.
    2.K.Atallah,S.D.Calverley,D.Howe.Design,analysis and realization of a high-performance magnetic gear.IEE Proceedings-Electric Power Applications.Vol.151,No.2,March 2004,pp.135-143.
    3.包广清.大功率聚磁式横磁通永磁电机设计及其优化技术研究:[博士论文].上海:上海大学,2006年5月
    4.P.O.Rasmussen,T.O.Andersen,F.T.Jorgensen,O.Nielsen.Development of a high-Performance magnetic gear.IEEE Transactions on Industry Applications.Vol.41,No.3,May/June 2005,pp.764-770.
    5.唐任远.现代永磁电机理论与设计.北京:机械工业出版社,1997
    6.K.Tsurumoto,S.Kikuchi.A New Magnetic Gear Using Permanent Magnet.IEEE Transactions on Magnetics.Vol.MAG-23,No.5,September 1987,pp.3622-3624.
    7.S.Kikuchi,K.Tsurumoto.Design on Characteristics of A New Magnetic Worm Gear Using Permanent Magnet.IEEE Transactions on Magnetics.Vol.29,No.6,part 2,November 1993,pp.2923-2925.
    8.Shinki Kikuchi,Katsuo Tsurumoto.Trial Construcion of A New Magnetic Skew Gear Using Permanent Magnet.IEEE Transactions on Magnetics.Vol.30,No.6,November 1994,pp.4767-4769.
    9.Koji Ikuta,Shunichi Makita,Suguru Arimoto.Non-contact Magnetic Gear for Micro Transmission Mechanism.Micro Electro Mechanical Systems,30January-2 February,1991,pp.125-130.
    10.M.H.Nagrial,J.Rizk,A.Hellany.Design and Development of Magnetic Torque Couplers and Magnetic Gears.International Conference on Electrical Engineering, 11-12 April 2007, pp.1-5.
    11. F.T. Jorgensen, T. O. Andersen, P. O. Rasmussen. Two dimensional model of a permanent maget spur gear. Industry Applications Conference, 2-6 October 2005. Vol. 1, pp. 261-265.
    12. Yeong-Der Yao, Gwo-ji Chiou, Der-Ray Huang, Shyh-jier Wang. Theoretical Computations for The Torque of Magnetic Coupling. IEEE Transactions on Magnetics. Vol. 31, No. 3, May 1995, pp. 1881-1884.
    13. D. R. Huang, Y D. Yao, S. M. Lin, S. J. Wang. The Radial Magnetic Coupling Studies between Magnetic Gears. IEEE Transactions on Magnetics. Vol. 31, No. 6, November 1995, pp. 3752-3754.
    14. Y D. Yao, D. R. Huang, S. M. Lin, S. J. Wang. Theoretical Computation of the Magnetic Coupling between Magnetic Gears. IEEE Transactions on Magnetics. Vol. 32, No. 3, May 1996, pp. 710-713.
    15. Y D. Yao, D. R. Huang, C. C. Hsieh, D. Y Chiang, S. J. Wang, T. F. Ying. The Radial Magnetic Coupling Studies of Perpendicular Magnetic Gears. IEEE Transactions on Magnetics. Vol. 32, No. 5, September 1996, pp. 5061-5063.
    16. Y D. Yao, D. R. Huang, C. C. Hsieh, D. Y. Chiang, S. J. Wang. Simulation Study of the Magnetic Coupling between Radial Magnetic Gears. IEEE Transactions on Magnetics. Vol. 33, No. 2, March 1997, pp. 2203-2206.
    17. Y. D. Yao, D. R. Huang, C. M. Lee. S. J. Wang, D. Y. Chiang, T. F. Ying. Magnetic Coupling Studies between Radial Magnetic gears. IEEE Transactions on Magnetics. Vol. 33, No. 5, September 1997, pp. 4236-4238.
    18. E. P. Furlani. Formulas for the Force and Torque of Axial Couplings. IEEE Transactions on Magnetics. Vol. 29, No. 5, September 1993, pp. 2295-2301.
    19. E. P. Furlani. A Formula for the Levitation Force between Magnetic Disks. IEEE Transactions on Magnetics. Vol. 29, No. 6, November 1993, pp. 4165-4169.
    20. R. Wang, E. P. Furlani, Z. J. Cendes. Design and Analysis of a Permanent Magnet Axial Coupling Using 3D Finite Element Field Computations. IEEE Transactions on Magnetics.Vol.30,No.4,July 1994,pp.2292-2295.
    21.E.P.Furlani.A Two-Dimensional Analysis for the Coupling of Magnetic Gears.IEEE Transactions on Magnetics.Vol.33,No.3,May 1997,pp.2317-2321.
    22.陈匡非,杜玉梅.平行轴永磁磁性的特性研究.微特电机,2004,(4):5-8
    23.张建涛,夏东.永磁齿轮转矩特性研究.机械,2005,(3):3-5
    24.张建涛,夏东.永磁齿轮在人工心脏中的应用研究.微特电机,2005,(9):5-10
    25.赵韩,杨志轶,田杰.永磁齿轮传动力矩计算方法研究.机械工程学报,2001,37(11):66-70
    26.赵韩,杨志轶.永磁齿轮传动力矩三维分析与计算.农业机械学报,2001,32(6):95-99
    27.田杰,邓辉华,赵韩,王勇.稀土永磁齿轮传动系统动态仿真研究.中国机械工程,2006,17(22):2315-2318
    28.田杰,邓辉华,张萍,赵韩.考虑非线性磁导率稀土永磁齿轮磁场研究.机械工程师,2006,(1):92-94
    29.赵韩,陶骏,田杰,杜世俊.磁场积分法在稀土永磁齿轮传动结构场分析中的应用.机械工程学报,2000,36(8):29-32
    30.赵韩,田杰.用有限元法设计稀土永磁齿轮传动.机械科学与技术,2000,19(2):207-209
    31.郑伟刚,罗延科,李屹.稀土永磁磁力齿轮传动实验研究.机械制造.2004,42(483):52-54
    32.J.Rizk,M.H.Nagrial,A.Hellany.Analysis and Design of Torque Couplers and Magnetic Gears.The 4~(th) International Power Electronics and Motion Control Conference.August 2004,Vol.3,pp.1799-1804.
    33.W.Wu,H.C.Lovatt,J.B.Dunlop.Analysis and Design Optimisation of Magnetic Couplings Using 3D Finite Element Modelling.IEEE Transactions on Magnetics.Vol.33,No.5,September 1997,pp.4083-4085.
    34.施卫东,魏东.磁力泵中磁力驱动装置的设计.四川工业学院学报.1999, 18(4):5-9
    35.Doug Twyford.英国HMD公司无泄漏磁力驱动泵的开发与研究.化工装备技术.1997,18(3):50-53
    36.R.M.Hornreich,S.Shtrikman.Optimal Design of Synchronous Torque Couplers.IEEE Transactions on Magnetics.Vol.Mag-14,No.5,September 1978,pp.800-802.
    37.Caio Ferreira,Jayant Vaidya.Torque Analysis of Permanent Magnet Coupling Using 2D and 3D Finite Elements Methods.IEEE Transactions on Magnetics.Vol.25,No.4,July 1989,pp.3080-3082.
    38.E.P.Furlani,R.Wang,H.Kusnadi.A Three-Dimensianal Model for Computing the Torque of Radial Couplings.IEEE Transactions on Magnetics.Vol.31,No.5,September 1995,pp.2522-2526.
    39.廖伟强,张斌,曾德长.磁力传动及其应用与设计.机械设计与制造.2007,(5):148-150
    40.曹卫东,施卫东,孔繁余.磁力泵联轴器设计.水泵技术.2004,(6):8-11
    41.陈存东,魏其顺,徐大为.磁力泵涡流损失比率的探讨.水泵技术.2000,(5):27-29
    42.孔繁余,陈刚,曹卫东,孙建,季建刚.磁力泵磁性联轴器的磁场数值计算.机械工程学报.2006,42(11):213-218
    43.陈伟.国内磁力驱动泵的现状和发展.化工设备与管道.1994,(3):45-51
    44.郭兰升,郝向东.75KW磁力传动泵的设计与研究.水泵技术.1996,(5):3-7
    45.薛宽容.200KW无泄漏高温磁力传动泵研制成功.石油化工设备技术.2007,(3):35
    46.S.Mezani,K.Atallah,D.Howe.A high-performance axil-field magnetic gear.Journal of Applied Physics.99,08R303 2006.
    47.K.Atallah,J.Wang,D.Howe.A high-performance linear magnetic gear.Journal of Applied Physics.97,10N516 2005.
    48.Wolfgang Hafla,Andre Buchau,Wolfgang M.Rucker.Efficient design analysis of a novel magnetic gear on a high performance computer.www.emeraldinsight.com/0332-1649.htm.
    49.K.T.Chau,Dong Zhang,J.Z.Jiang,Chunhua Liu,Yuejin Zhang.Design of a Magnetic-Geared Outer-Rotor Permanent-Magnet Brushless Motor for Electric Vehicles.IEEE Transactions on Magnetics.Vol.43,No.6,June 2007,pp.2504-2506.
    50.L.N.Jian,K.T.Chau,Dong Zhang,J.Z.Jiang,Zheng Wang.A Magnetic-geared Outer-rotor Permanent-magnet Brushless Machine for Wind Power Generation.2007IAS,New Orleans,USA,September,23-27,2007,pp.573-580.
    51.Xinhua Liu,K.T.Chau,J.Z.Jiang,L.N.Jian.Analysis of Concentric Magnetic Gears Using Three Dimensional Scalar Magnetic Potential Finite Element Method.Intermag2008,Madrid,Spain,May,4-8,2008.
    52.傅为农.斜槽异步电机的场路耦合时步法有限元模型及其应用:[博士论文].上海:上海大学,1997
    53.胡敏强,黄学良.电机运行性能数值计算方法及其应用.南京:东南大学出版社.2003
    54.A.E.Fitzgerald,Charles Kingslve Jr,Stephen D.Umans.Electric Machinery (Sixth Edition],.北京:清华大学出版社,2003
    55.汤蕴璆等.电机学.西安:西安交通大学出版社,1993
    56.许实章.电机学(上、下册).北京:机械工业出版社,1980
    57.刘瑞芳.基于电磁场数值计算的永磁电机性能分析方法研究:[博士论文].南京:东南大学,2002年12月
    58.刘瑞芳,胡敏强,严登俊.永磁电机中永磁体数学模型的分析.微电机,2001 34(1):7-14
    59.龚宇,崔巍,施进浩,江建中.永磁电机有限元时步法的研究与应用.微特电机,2005,(10):5-8
    60.Sheppard J.Salon.Finite Element Analysis of Electrical Machine.Kluwer Academic Publishers,1995
    61.Z.Q.Zhu,David Howe.Influence of Design Parameters on Cogging Torque in Permanent Magnet Machines.IEEE Transactions on Energy Conversion.Vol.15,No.4,December 2000,pp.407-412.
    62.胡之光.电机电磁场的分析与计算.北京:机械工业出版社,1982
    63.郑文鹏.基于标量磁位三维有限元法新型横向磁场电机设计与研究:[博士论文].上海:上海大学,2006
    64.A.B.J.Reece and T.W.Preston,Finite Element Methods in Electrical Power Engineering.New York:Oxford University Press Inc.,2000.
    65.S.A.Nasar and G.Y.Xiong.Determination of the field of a permanent-magnet disk machine using the concept of magnetic charge.IEEE Transactions on Magnetics,Vol.24,No.3,May 1988,pp.2038-2044.
    66.I.D.Mayergoyz,M.V.K.Chari and J.D'Angelo.A new scalar potential formulation for three-dimensional magnetostatic problems.IEEE Transactions on Magnetics,Vol.23,No.6,November 1987,pp.3889-3894.
    67.M.V.K.Chari,A.Konrad,J.D'Angelo and M.A.Palmo.Finite element computation of three-dimensional electrostatic and magnetostatic field problems.IEEE Transactions on Magnetics,Vol.19,No.6,November 1983,pp.2321-2324.
    68.U.K.Madawala and J.T.Boys.Magnetic field analysis of an ironless brushless DC machine.IEEE Transactions on Magnetics,Vol.41,No.8,August 2005,pp.2384-2390.
    69.P.Cambell,M.V.K.Chari and J.D'Angelo.Three-dimensional finite element solution of permanent magnet machines.IEEE Transactions on Magnetics,Vol.21,No.6,November 1981,pp.2997-2999.
    70.S.M.Zheng and R.H.Wang.A new method for the solution of three dimensional magnetostatic fields,using a scalar potential.IEEE Transactions on Magnetics,Vol.21,No.6,November 1985,pp.2177-2180.
    71.孟庆龙,颜威利等.电器数值分析.北京:机械工业出版社,1992
    72.谢德馨,姚缨英,白保东,李锦彪.三维涡流场的有限元分析.北京:机械工业出版社,2000
    73.张东.新型双定子永磁电机的设计与研究:[博士论文].上海:上海大学,2007年10月
    74.S.L.Ho,H.L.Li,W.N.Fu,and H.C.Wong,A Novel Approach to Circuit-Field-Torque Coupled Time Stepping Finite Element Modeling of Electric Machines.IEEE Transactions on Magnetics.Vol.36,No.4,July 2000,pp.1886-1889.
    75.Fu W.N.,Zhou P.,Lin D.;Stanton S.,Cendes Z.J..Modeling of solid conductors in two-dimensional transient finite-element analysis and its application to electric machines,IEEE Transactions on Magnetics.Vol.40,No.2,Part 1,March 2004,pp.426-434.
    76.Hui Tan,Fu W.N.,Jianzhong Jiang.A multi-pole brushless DC motor and its analysis using time stepping finite element method.Power Electronics and Motion Control Conference,2000.Proceedings.IPEMC 2000.The Third International Volume 3,15-18 Aug.2000 Page(s):1308-1311.
    77.W.N.Fu,Z.J.Liu.Estimation of Eddy-Current Loss in Permanent Magnets of Electric Motors Using Network-Field Coupled Multislice Time-Stepping Finite-Element Method.IEEE Transactions on Magnetics.Vol.38,No.2,March 2002,pp.1225-1228.
    78.S.L.Ho,W.N.Fu,H.L.Li,H.C.Wong,H.Tan.Performance Analysis of Brushless DC Motors Including Features of the Control Loop in the Finite Element Modeling.IEEE Transactions on Magnetics.Vol.37,No.5,September 2001,pp.3370-3374.
    79.S.L.Ho,W.N.Fu.A Comprehensive Approach to the Solution of Direct Coupled Multislice Model of Skewed Rotor Induction Motors Using Time-stepping Eddy-current Finite Element Method.IEEE Transactions on Magnetics.Vol.33,No.3,May 1997,pp.2265-2273.
    80.Chan,C.C..Jiang J.Z..Chen G H.,Chau,K.T..Computer simulation and analysis of a new polyphase multipole motor drive.IEEE Transactions on Industrial Electronics.Vol.40,No.6,December 1993,pp.570-576.
    81.G.H.Jang,J.H.Chang,D.P.Hong,K.S.Kim.Finite-element analysis of an electromechanical field of a BLDC motor considering speed control and mechanical flexibility.IEEE Transactions on Magnetics.Vol.38,No.2,March 2002,pp.945-948.
    82.M.A.Jabbar,Hla Nu Phyu,Z.J.Liu.Performance Analysis of the Starting Process of a Disk Drive Spindle Motor by Time Stepping Finite Element Method.IEEE Transactions on Magnetics.Vol.40,No.4,July 2004,pp.3204-3206.
    83.Yong Wang,K.T.Chau,J.Z.Jiang.Transient Analysis of a New Outer-Rotor Permanent-Magnet Brushless DC Drive Using Circuit-Field-Torque Coupled Time-Stepping Finite-Element Method.IEEE Transactions on Magnetics.Vol.38,NO.2,March.2002,pp.1297-1300.
    84.Longya Xu,Weinong Fu.Evaluation of third harmonic component effects in five-phase synchronous reluctance motor drive using time-stepping finite-element method.IEEE transactions on Industry Applications.Vol.38,No,3,May/June 2002,pp.638-644.
    85.Xinhua Liu,Jianzhong Jiang,Yu Gong,Ye Ding.Simulation of Permanent Magnet Synchronous Motor with Dual Closed Loop by Time-Stepping Finite Element Model.IPEMC2006,Shanghai,P.R.C.,August.2006,Volume 2,pp.1223-1227.
    86.Marco A.Arjona L.,Parameter Calculation of a Turbogenerator During an Open-Ciruit Transient Excitation,IEEE Transactions On Energy Conversion,Vol.19,No.1,March 2004,pp.46-52.
    87.严登俊,刘瑞芳,胡敏强,韩敬东.处理电磁场有限元运动问题的新方法. 中国电机工程学报.2003,23(8):163-167
    88.章跃进,江建中,崔巍.数值解析结合法提高电机磁场后处理计算精度.中国电机工程学报.2007,27(3):68-72
    89.章跃进.旋转电机磁场计算数值解析结合研究:[博士论文].上海:上海大学,2005年5月
    90.孙玉田等.电机动态有限元法中的运动问题.大电机技术.1997,(6):15-20
    91.彭国伦.Fortran95程序设计.北京:中国电力出版社,2002.9
    92.电机工程手册,第二版.北京:机械工业出版社,1996.7
    93.张琛.直流无刷电动机原理与应用(第二版).北京:机械工业出版社,2004
    94.王群京.稀土钕铁硼永磁同步电动机的设计理论及计算机仿真.合肥:中国科学技术大学出版社,1997.10
    95.陈精一,蔡国忠.电脑辅助工程分析ANSYS使用指南.北京:中国铁道出版社,2001.4
    96.谭建国.使用ANSYS6.0进行有限元分析.北京:北京大学出版社,2002.5
    97.陈世坤.电机设计.北京:机械工业出版社,1990
    98.谭浩强.FORTRAN语言.北京:清华大学出版社,1990.3
    99.王成元等.矢量控制交流饲服驱动电动机.北京:机械工业出版社,1995
    100.李钟明,刘卫国等.稀土永磁电机.北京:国防工业出版社,1999.7
    101.赵凯华,陈熙谋.电磁学.北京:高等教育出版社,2003.4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700