新型永磁电机的设计、分析与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
永磁电机是一种很有发展潜力的高效节能动力装置,在工业生产和日常生活的诸多领域中正日益得到广泛的应用。在我国大力提倡节能减排的宏观背景下,开发和研究新型的高效节能永磁同步电动机,降低用电设备的耗电量,不仅符合国家的宏观政策导向,而且具有良好的社会和经济效益。复式永磁同步电机和直驱式抽油机就是针对油田中耗电量最大且为数众多的传统游梁式抽油机提出的。直驱式抽油机改变了复杂笨重的机械传动方式,利用复式永磁同步电机低转速、大输出转矩的特点,直接驱动抽油机负载,提高了抽油机的系统效率和功率因数,实现了良好的节电效果。复式永磁电机是将双盘式电机与圆筒形外转子电机在三维空间上组合而成的,提高了电机单位体积内的输出转矩。本论文从复式永磁同步电机的设计计算方法、电机内电磁场的分析、电机参数的优化、齿槽转矩的抑制、电机驱动控制系统的研究,到复式永磁电机的测试试验及其在直驱式抽油机中应用和系列化的讨论,对这一新型结构的电机进行了全面的理论分析和试验验证工作。
     本论文所研究的另一种永磁电机是针对磁浮交通系统中的长定子直线同步电机提出的改进型电机结构,即内置永磁体式永磁电励混合励磁直线同步电机。研究这一新型结构的出发点是为了减少悬浮励磁次级的耗电量,达到节省车载电源能耗的目的。这对减小磁浮列车上励磁次级的体积和重量,降低车载电源容量,提高整车性能都有一定的实际意义。
     本论文的研究工作主要集中在以下几个方面:
     1.在复式永磁同步电机这一新型结构的基础上,对现有的调速永磁同步电机的设计方法和解析计算公式进行归纳、总结及推演,形成了适用于复式永磁电机的电磁参数设计计算方法。对复式永磁电机工作特性的研究表明,定子直流电阻值对电机特性的影响很大,它使最大电磁功率对应的功角小于90°,使定子铜耗在电机总损耗中占据绝大部分,使电机效率随负载率的增加呈逐步下降的走势。
     2.针对复式永磁电机结构的特殊性,先使用三维CAD软件构建立体模型,直接在三维图形中进行结构修改工作,再用工程制图软件AutoCAD绘制二维工程图。为保证电机结构的可靠性,应用材料力学的相关知识,对以电机主轴为代表的主要零部件进行强度和刚度方面的分析校核工作。对于电机温升问题,将等效热路法进行适当的修改,推导出适合于复式永磁电机使用的温升计算公式,对样机的温升进行了计算,并与试验结果进行对比,误差不大于6%。
     3.应用永磁电机三维磁场的有限元分析方法,对复式永磁电机作适当简化后进行建模,使用该模型对电机内空载和负载磁场的分布情况、空载漏磁以及不同功角时的输出转矩等进行了分析计算。对于抑制复式永磁电机齿槽转矩的问题,采用齿槽转矩的解析分析与有限元计算相互印证的方式,对电机的筒形和盘形部分分别进行讨论。通过复式永磁电机的解析计算方法,以有限元方法为辅助,针对重要结构参数对电机性能的影响进行分析,由此得出这些参数的最佳取值范围。
     4.根据复式永磁电机直轴和交轴电感近似相等的特点,采用合适的矢量控制策略,并使用EKF算法估计转速以替代机械传感器的检测,实现复式永磁电机的无位置传感器矢量控制系统。从控制系统硬件电路的设计、系统框图的建立到软件流程的制定,对复式永磁电机的驱动控制系统进行了前期研究工作。采用MATLAB/Simulink仿真软件对控制系统进行了仿真分析,结果表明控制系统对电机的控制效果理想。
     5.在试验塔架上应用新型永磁电机测量系统对复式永磁电机进行了空载、负载和温升试验,并将电机的理论计算结果与试验数据进行了对比分析。
     6.根据游梁式抽油机的型号标准,从替代游梁式抽油机的角度对直驱式抽油机及复式永磁电机的系列化进行了讨论。说明了直驱式抽油机能够节电增产的原因,并给出了节电效果的实测数据。检测数据表明,同型号的直驱式抽油机比异步电机驱动的游梁式抽油机节电50%以上。
     7.对现有的永磁电励混合励磁直线同步电机进行结构改进的角度,提出了两种新型的混合励磁次级结构——内置永磁体半隔磁式和内置永磁体全隔磁式混合励磁结构。对比半隔磁式和全隔磁式结构,由于后者漏磁更少,同等条件下获得的悬浮力更大,因此对全隔磁式结构进行了更为深入细致的分析。采用二维电磁场的有限元分析方法,对全隔磁式混合励磁结构进行结构参数优化。通过分析悬浮力、推力和空载漏磁系数三个性能参数,将全隔磁式混合励磁结构与电励磁结构、与两种现有的混合励磁结构进行了对比分析。在以上所进行的全部研究工作中,第一、三和七项是本文的创新点所在。
Permanent magnet (PM) machines are a kind of highly efficient energy-saving power units, which have huge development potential. Their use is being increasingly applied in many fields of industry and daily life. Since our government has started to place emphasis on energy reduction and advocate energy reducing techniques, novel PM synchronous machines accord with energy-saving policies for this reason PM synchronous machines are primarily researched and developed in order to provide stable social and economic benefits. Compound permanent magnet synchronous machines (CPMSM) and direct-drive pumping units are put forward for replacing beam pumping units that they are in wide use and their power consumption is the largest on oil fields. The direct-drive pumping unit changes complex cumbersome mechanically-driven mode, and drives the load directly by the CPMSM that has the characteristic of low-speed and huge-torque. So it increases the system efficiency and improves the power factor. The CPMSM increases the output torque per unit volume because it combines one cylindrical outer-rotor electric machine with two disk electric machines in three-dimensional space. In this dissertation, the overall theoretical analysis and experiments of the CPMSM have been accomplished, which include design and calculation method of the CPMSM, electromagnetic field analysis, optimization of structural parameters, reduction of cogging torque, control system research, experiments on the test bed, and application & serialization of the CPMSM in the direct-drive pumping unit.
     The other kind of PM machine researched in the dissertation is the PM & electromagnetic hybrid excitation linear synchronous machine (HELSM) with internally placed PM, which is put forward for improving the long stator linear synchronous machine (LSM) used in the maglev transportation system. The purpose of researching the novel HELSM is reducing power consumption of the levitation excitation secondary so that the capacity of vehicular power supply and the volume of secondary can be decreased. It is of practical significance.
     All research work in the dissertation can be summarized in the following items.
     1. After putting forward the structure of the CPMSM, the electromagnetic parameters calculation methods of the CPMSM came into being, which based on generalizing the design methods and deducing the design formulae of variable-speed PM synchronous machines. The operating characteristic of the CPMSM manifests that the value of stator resistance has great influence on the machine characteristic. The stator resistance results that the power-angle corresponding for the maximal electromagnetic power is less than 90 degree, the stator copper loss is the main portion of the machine gross loss, and the machine efficiency gradually decreases with the load ratio increasing.
     2. Because of the special structure of the CPMSM, the three-dimensional machine model was designed with the three-dimensional CAD software in order to modifying the model conveniently. Then the planar engineering drawings were drawn with AutoCAD software. In order to ensure reliability of the structure, strength and rigidity of the main shaft were checked applying the theory of mechanics of materials. About temperature rise of the CPMSM, the equivalent thermal loop method was applied in the calculation of temperature rise. Furthermore, the calculation formulae of temperature rise for the CPMSM were deduced. Then the temperature rise of the model machine is calculated and compared with the experimental results. The error percentage is less than 6%.
     3. After building the analysis model for the CPMSM, the no-load & load magnetic field distribution, the no-load leakage flux, and the output torque under the different power-angle were analyzed and calculated with applying the three-dimensional finite element method of PM machines magnetic field. The measures which can reduce the cogging torque of the cylindrical part and the disk part were discussed respectively with applying the analytical method and the finite element method. In the same way the important structural parameters of the CPMSM were analyzed according to their effect on the machine performance. Therefore the optimal span of these parameters could be ascertained.
     4. Considering the d-axis and q-axis inductance of the CPMSM are almost equal, the sensorless vector control system of the CPMSM adopts suitable strategy of vector control and sensorless technology that estimates the rotational speed with Extended Kalman Filtering (EKF) algorithm. The primary research work was accomplished in the dissertation, such as designing circuits of the control system, plotting the system block diagram, framing the software flowchart and so on. The control system was analyzed with MATLAB/Simulink simulation software. The simulation results manifest that control effect of the machine control system is ideal.
     5. The no-load, load, and temperature rise test of the CPMSM were accomplished on the test bed with the novel PM machine measurement system. Then the theoretical calculation results were compared to the experimental data.
     6. According to the national standard of beam pumping units, the issues about serialization of CPMSM and direct-drive pumping units were discussed in order to replace already existing beam pumping units. The reasons why the direct-drive pumping unit can save energy and increase in yield are explained, and the test data about energy-saving effect are shown in the dissertation. The test data manifest that the same type of direct-drive pumping units can save 50% more energy than beam pumping units which are driven by induction machines.
     7. For improving on the existent structure of HELSM, two kinds of novel structure of HELSM are put forward, i.e. the incompletely isolated magnetic-field mode and the completely isolated magnetic-field mode with internally placed PM. By comparison of the incompletely isolated magnetic-field mode and the completely isolated magnetic-field mode, it can be seen that leakage flux of the latter is smaller, and its suspension force is larger under the same conditions. So the completely isolated magnetic-field HELSM is the main subject of investigation. The structural parameters of the completely isolated magnetic-field HELSM were optimized with the finite element method of two-dimensional magnetic field. By analyzing the suspension force, the propulsive force, and the no-load leakage coefficient, the completely isolated magnetic-field HELSM was compared with electromagnetic excitation LSM and with two kinds of existent HELSM.
     The first, third, and seventh items of above research work are the innovative points of the dissertation.
引文
[1]唐任远.现代永磁电机理论与设计.北京:机械工业出版社,1997.
    [2]J.F.Gierras,M.Wing.Permanent magnet motor technology[M].New York:Marcel Dekker.Inc,1997.
    [3]王秀和.永磁电机.北京:中国电力出版社,2007.
    [4]耿连发,吴延忠.现代永磁电机发展趋势.沈阳工业大学学报,1995,17(1):25-28.
    [5]叶云岳.直线电机原理与应用.北京:机械工业出版社,2000.
    [6]陈峻峰.永磁电机(上、下册).北京:机械工业出版社,1982.
    [7]陈伯时.矢量控制与直接转矩控制的理论基础和应用特色.电力电子,2004,2(1):7-11.
    [8]徐艳平,钟彦儒,杨惠.永磁同步电机矢量控制和直接转矩控制的研究.电力电子技术,2008,42(1):63-65.
    [9]谢宝昌,任永德.电机的DSP控制技术及其应用.北京:北京航空航天大学出版社,2005.
    [10]郭庆鼎,孙宜标,王丽梅.现代永磁电动机交流伺服系统.北京:中国电力出版社,2006.
    [11]田淳,胡育文.永磁同步电机直接转矩控制系统理论及控制方案的研究.电工技术学报,2002,17(1):8-12.
    [12]林海,李宏,李小川等.永磁同步电动机直接转矩控制策略研究.微特电机,2007,10:32-35,38.
    [13]王丽梅,高艳平.基于SVPWM的永磁同步电机直接转矩控制.沈阳工业大学学报,2007,29(6):17-21.
    [14]李耀华,刘卫国.永磁同步电动机直接转矩控制系统的最大转矩电流比控制.微特电机,2007,1:27-30.
    [15]谢颖.游梁式抽油机用节能电机工作性能的有限元计算及分析[硕士论文].哈尔滨:哈尔滨理工大学,2005.
    [16]严帅.油田抽油机用稀土永磁同步电动机研究[硕士论文].西安:西北工业大学,2003.
    [17]黄国治,傅丰礼.Y2系列三相异步电动机技术手册.北京:机械工业出版社,2004.
    [18]杨培东,鲁晓军.永磁电机在石油矿扬应用中的问题及对策.石油矿场机械,2003,32(4):82-83.
    [19]唐任远.稀土永磁电机发展综述.电气技术,2005,4:1-6.
    [20]宇富平,刘晓强,高中勇等.永磁电动机在抽油机上的节能效果测试分析.石油矿场机械,2005,34(1):83-85.
    [21]黄明星,范承志,叶云岳.新型复合永磁同步电机的设计与分析.电机与控制应用,2007,34(10):1-4,26.
    [22]黄苏融,钱慧杰,张琪等.现代永磁电机技术研究与应用开发.电机与控制应用,2007,34(1):1-6.
    [23]赵朝会,秦海鸿,严仰光.混合励磁同步电机发展现状及应用前景.电机与控制学报,2006,10(2):113-117.
    [24]Y.Amara,L.Vido,M.Gabsi,et al.Hybrid excitation synchronous machines:energy efficient solution for vehicle propulsion[C]//Proceedings of Vehicle Power and Propulsion Conference 2006.IEEE,2006:1-6.
    [25]Y.Amara,J.Lucidarme,M.Gabsi,et al.A new topology of hybrid synchronous machine[J].IEEE Transactions on Industry Applications,2001,37(5):1273-1281.
    [26]Hyung-Woo Lee,Ki-Chan Kim,and Ju Lee.Review of maglev train technologies[J].IEEE Transactions on Magnetics,2006,42(7):1917-1925.
    [27]吴祥明.磁浮列车.上海:上海科学技术出版社,2003.
    [28]T.C.Wang,Yeou-kuang Tzeng.A new electromagnetic levitation system for rapid transit and high speed transportation[J].IEEE Transactions on Magnetics,1994,30(6):4734-4736.
    [29]Yeou-kuang Tzeng,T.C.Wang.Optimal design of the electromagnetic levitation with permanent and electro magnets[J].IEEE Transactions on Magnetics,1994,30(6):4731-4733.
    [30]Du Yu-mei,Shi Li-ming,and Jin Neng-qiang.Analysis of the three-dimension forces in a hybrid maglev vehicle systemiC]//Proceedings of ICEMS 2003.Beijing,2003:563-565.
    [31]刘同娟.可控永磁悬浮系统不同永磁体厚度动态特性的研究[博士论文].北京:中科院电工所,2006.
    [32]杜玉梅,金能强,史黎明.可控永磁直线同步电机磁力的研究.2006年全国直线电机学术年会论文集.哈尔滨:直线电机专委会,2006:68-72.
    [33]卢琴芬,叶云岳.混合励磁直线同步电机的磁场与推力.中国电机工程学报,2005,25(10):127-130.
    [34]陈翱.混合励磁式直线同步电机及其驱动系统的研究[硕士论文].杭州:浙江大学,2004.
    [35]黄明星,叶云岳,陈翱.混合励磁直线同步电机磁场的有限元分析.微电机,2005,38(4):21-25.
    [1]王秀和.永磁电机.北京:中国电力出版社,2007.
    [2]唐任远.现代永磁电机理论与设计.北京:机械工业出版社,1997.
    [3]John S.Hsu,Donald J.Adams.Permanent magnet energy conversion machine with magnet mounting arrangment:US,5,952,756[P].1999-09-14.
    [4]陈世坤.电机设计(第2版).北京:机械工业出版社,2000.
    [5]程福秀,林金铭.现代电机设计.北京:机械工业出版社,1993.
    [6]顾其善.永磁电机的卡特系数.电机与控制应用,1986,5:11-14.
    [7]王庆春.表面磁体永磁电机主磁场的分布特性.船电技术,2000,1:17-21.
    [8]王庆春.永磁电机工作气隙中主磁场的特点.电机技术,2000,4:13-15.
    [9]王秀和,王兴华,刘玉庆等.永磁电机漏磁系数的确定.微电机,1999,32(4):48-49,58.
    [10]胡怡妍,郭振宏,唐任远.永磁同步电动机电抗参数的准确计算.中小型电机,1999,26(2):15-16.
    [11]王秀和,刘玉庆,王兴华等.永磁电机电枢计算长度的确定.中小型电机,1999,26(6):19-21.
    [12]黄学良,杜强,胡敏强等.交流绕组谐波漏抗系数的通用计算方法.中国电机工程学报,2001,21(10):63-66.
    [13]陈阳生,林友仰.永磁电机气隙磁密的分析计算.中国电机工程学报,1994,14(5):17-26.
    [14]N.Boules.Prediction of no-load flux density distribution in permanent magnet machines[J].IEEE Transactions on Industry Applications,1985,21(4):633-643.
    [15]邱捷,钱秀英.实心转子永磁电机稳态参数和工作特性的精确计算.中小型电机,1999,26(3):7-9.
    [16]王秀和,李岩,吴延中等.径向充磁永磁电机永磁体工作点的确定.电工电能新技术,1998,3:44-46.
    [17]Y.S.Chen,Z.Q.Zhu,and D.Howe.Calculation of d- and q-axis inductances of PM brushless ac machines accounting for skew[J].IEEE Transactions on Magnetics,2005,41(10):3940-3942.
    [18]高徐娇,赵争鸣,赵强.永磁同步电机的结构与其电磁参数关系分析.清华大学学报:自然科学版,2001,41(9):44-47.
    [19]李俊卿,叶东.永磁同步电动机的基本分析方法.电机技术,1999,1:3-6,24.
    [20]马晓鹏.变频调速永磁同步电动机的设计[硕士论文].杭州:浙江大学,2002.
    [21]施进浩.新型横向磁场永磁电机设计与研究[博士论文].上海:上海大学,2006.
    [22]窦满锋,刘卫国.高效节能稀土永磁同步电机设计技术研究.西北工业大学学报,2004,22(3):355-358.
    [23]唐任远.稀土永磁电机的关键技术与高性能电机开发.沈阳工业大学学报,2005,27(2):162-170.
    [24]卢琴芬,范承志,叶云岳.新型抽油机用盘式永磁电机的磁场与力特性.浙江大学学报:工学版,2008,42(4):651-655.
    [25]M.Aydin,S.Huang,and T.A.Lipo.Torque quality and comparison of internal and external rotor axial flux surface-magnet disc machines[J].IEEE Transactions on Industrial Electronics,2006,53(3):822-830.
    [26]林亨澍,干金云,汪信尧.新型外转子永磁电机的研制.中小型电机,1996,23(4):8-12.
    [27]刘亚丕,唐任远.钕铁硼永磁高温下退磁特性的初步研究.磁性材料及器件,1996,27(4):34-35,39.
    [28]付本国,宿晓宁,白传栋.UG NX2.0三维造型基础教程.北京:机械工业出版社,2004.
    [29](韩)严正锡等著,许明龙等译.Unigraphics NX专业特训教程.北京:人民邮电出版社,2005.
    [30]徐建平,王新程.精通AutoCAD 2004中文版.北京:清华大学出版社,2003.
    [31]吴宗泽.机械设计实用手册.北京:化学工业出版社,1999.
    [32]机械设计手册编委会.机械设计手册(新版第3卷).北京:机械工业出版社,2004.
    [33]李舜酩.机械疲劳与可靠性设计.北京:科学出版社,2006.
    [34]魏永田,孟大伟,温嘉斌.电机内热交换.北京:机械工业出版社,1998.
    [35](苏)菲利包夫著,杨斌译.电机中的热交换.北京:原子能出版社,1989.
    [36]杨菲.永磁电机温升计算及冷却系统设计[硕士论文].沈阳:沈阳工业大学,2007.
    [1]颜威利,杨庆新,汪友华等.电气工程电磁场数值分析.北京:机械工业出版社,2005:142-154.
    [2]王秀和.永磁电机.北京:中国电力出版社,2007.
    [3]刘国强,赵凌志,蒋继娅.Ansoft工程电磁场有限元分析.北京:电子工业出版社,2005.
    [4]倪光正.工程电磁场数值计算.北京:机械工业出版社,2004.
    [5]汤蕴璎.电机内的电磁场.北京:科学出版社,1998.
    [6]D.Howe,Z.Q.Zhu.Magnetic field analysis of permanent magnet machines[C]//Proceedings of 12th International Workshop on Rare-earth Magnets and Their Applications.Australia,1992:308-337.
    [7]M.Aydin,S.Huang,and T.A.Lipo.Optimum design and 3-D finite element analysis of non-slotted and slotted internal rotor type axial flux PM disc machines[C]// Proceedings of IEEE-PES Summer Meeting.Canada,2001:1409-1416.
    [8]Qu Ronghai,T.A.Lipo.Analysis and modeling of airgap & zigzag leakage fluxes in a surface-mounted-PM machine[C]//Proceedings of 37th IAS Annual Meeting.2002,4:2507-2513.
    [9]王群京,马飞,李国丽等.爪极电机空载时三维磁场的数值分析和电感计算.中国电机工程学报,2002,22(1):38-42.
    [10]刘哲民,陈谢杰,陈丽香等.基于3D-FEM的新型横向磁通永磁电机的研究.电工技术学报,2006,21(5):19-23.
    [11]陈谢杰,王秀和,刘哲民等.横向磁通永磁电机的三维电磁场分析.沈阳工业大学学报,2007,29(1):52-56.
    [12]张狄林.基于ANSOFT的轴向磁场永磁同步发电机性能计算.船电技术,2008,28(4):222-224.
    [13]N.Bianchi,S.Bolognani.Design techniques for reducing the cogging torque in surface-mounted PM motors[J].IEEE Transactions on Industry Applications,2002,38(5):1259-1265.
    [14]Z.Q.Zhu,D.Howe.Influence of design parameters on cogging torque in permanent magnet machines[J].IEEE Transactions on Energy Conversion,2000,15(4):407-412.
    [15]Z.Q.Zhu,D.Howe.Analytical prediction of the cogging torque in radial-field permanent magnet brushless motors[J].IEEE Transactions on Magnetics,1992, 28(2):1371-1374.
    [16]J.F.Gieras.Analytical approach to cogging torque calculation of PM brushless motors[J].IEEE Transactions on Industry Applications,2004,40(5):1310-1316.
    [17]Lateb R,Takorabet N,and Meibody-Tabar F.Effect of magnet segmentation on the cogging torque in surface-mounted permanent-magnet motors[J].IEEE Transactions on Magnetics,2006,42(3):442-445.
    [18]C.S.KOH,S.Y.HEE,S.CH H.,et al.Magnetic pole shape optimization of permanent magnet motor for reduction of cogging torque[J].IEEE Transactions on Magnetics,1997,33(2):1822-1827.
    [19]宋伟,王秀和,杨玉波.削弱永磁电机齿槽转矩的一种新方法.电机与控制学报,2004,8(3):214-217.
    [20]Yubo Yang,Xiuhe Wang,Rong Zhang,et al.The optimization of pole arc coefficient to reduce cogging torque in surface-mounted permanent magnet motors[J].IEEE Transactions on Magnetics,2006,42(4):1135-1138.
    [21]杨玉波,王秀和,丁婷婷等.极弧系数组合优化的永磁电机齿槽转矩削弱方法.中国电机工程学报,2007,27(6):7-11.
    [22]S.Huang,M.Aydin,and T.A.Lipo.Torque quality assessment and sizing optimization for surface mounted PM machines[C]//Proceedings of 36th IAS Annual Meeting.2001:1603-1610.
    [23]Y.Ohdachi,Y.Kawase,Y.Miura,et al.Optimum design of switched reluctance motors using dynamic finite element analysis[J].IEEE Transactions on Magnetics,1997,33(2):2033-2036.
    [24]Liu Qing-hua,M.A.Jabbar,and A.M.Khambadkone.Design optimization of wide-speed permanent magnet synchronous motors[C]// Proceedings of International Conference on Power Electronics.2002:404-408.
    [25]赵强,赵争鸣,高徐娇.永磁电机中永磁体尺寸优化设计.电机电器技术,2001,3:2-5.
    [26]D.Bochnia,W.Hofmann,and H.Hupe.Design optimization of permanent magnet motors by evolution strategies and finite element analysis[C]//Proceedings of Ninth International Conference on Electrical Machines and Drives.1999:297-301.
    [27]梁华,李训铭,严登俊.稀土永磁同步电机优化设计分析.南京理工大学学报,2002,26(12):138-143.
    [28]包广清,江建中.一种新型横向磁通永磁电机的建模与参数优化.大电机技术,2008,4:12-16.
    [1]谢宝昌,任永德.电机的DSP控制技术及其应用.北京:北京航空航天大学出版社,2005.
    [2]王秀和.永磁电机.北京:中国电力出版社,2007.
    [3]郭庆鼎,孙宜标,王丽梅.现代永磁电动机交流伺服系统.北京:中国电力出版社,2006.
    [4]李光友,王秀和,孟传富.稀土永磁同步电机的Park方程.电工电能新技术,1995,2:34-37.
    [5]李长红,陈明俊,吴小役.PMSM调速系统中最大转矩电流比控制方法的研究.中国电机工程学报,2005,25(21):169-174.
    [6]王正,常浩.永磁同步电机矢量控制系统研究.沈阳工业大学学报,2007,29(3):307-311.
    [7]周鹗,曾朝晖.高性能永磁同步电机矢量控制系统研究.电机与控制学报,1997,1(1):1-6.
    [8]张美玉,余佩琼.永磁直线同步电机矢量控制系统研究.浙江工业大学学报,2003,31(4):391-394,409.
    [9]江思敏.TMS320LF240x DSP硬件开发教程.北京:机械工业出版社,2003.
    [10]周霖,刘建存,张山.DSP控制工程技术应用.北京:国防工业出版社,2005.
    [11]周志敏,周纪海,纪爱华.IGBT和IPM及其应用电路.北京:人民邮电出版社,2006.
    [12]王浩全.Protel DXP电路设计与制版实用教程.北京:人民邮电出版社,2005.
    [13]江俊,沈艳霞,纪志成.基于EKF的永磁同步电机转子位置和速度估计.系统仿真学报,2005,17(7):1704-1707.
    [14]R.Dhaouadi,N.Mohan,and L.Norum.Design and implementation of an extended kalman filter for the state estimation of a PMSM[J].IEEE Transactions on Power Electronics,1999,6(3):491-497.
    [15]石会.基于EKF的永磁同步电机无传感器矢量控制系统研究[硕士论文].南京:南京航空航天大学,2007.
    [16]Y.F.Shi,Z.Q.Zhu,and D.Howe.Improved sensorless operation of interior PM BLAC motor drives with reduced-order EKF[J].International Journal of Automation and Computing,2006,1:99-106.
    [17]A.Consoli,G.Scarcella,and A.Testa.Industry application of zero-speed sensorless control techniques for PM synchronous motors[J].IEEE Transactions on Industry Applications,2001,37(2):513-521.
    [18]P.B.Schimidt,M.L.Gasped,G.Ray,et al.Initial rotor angle detection of a non-salient pole permanent magnet synchronous machine[C]// IEEE Industry Application Society Annual Meeting.New Orleans,Louisiana,1997.
    [19]齐放,邓智泉,仇志坚.一种永磁同步电机无速度传感器的矢量控制.电工技术学报,2007,22(10):30-34,41.
    [20]余佩琼,陆亿红,顾红斐等.基于EKF的永磁直线电机无位置传感器进给系统研究.浙江工业大学学报,2006,34(6):647-651.
    [21]薛花,姜建国.基于EKF永磁同步电机FMRAC方法的仿真研究.系统仿真学报,2006,18(11):3324-3327.
    [22](法)M.Mokhtari,M.Marie著,赵彦玲,吴淑红译.MATLAB与SIMULINK工程应用.北京:电子工业出版社,2002.
    [23]薛定宇,陈阳泉.基于MATLAB/SIMULINK的系统仿真技术与应用.北京:清华大学出版社,2002.
    [24]何亚屏,年晓红.永磁同步电机矢量控制MATLAB仿真研究.变流技术与电力牵引,2007,6:58-62.
    [25]吴冰.基于MATLAB/Simulink & SimPowerSystems的永磁同步电机矢量控制系统建模与仿真.电子机械工程,2008,24(3):57-59,64.
    [1]王益全,张炳义.电机测试技术.北京:科学出版社,2004.
    [2]徐伯雄,窦玉琴.电机量测.北京:清华大学出版社,1990.
    [3]刘君华,郭会军,赵向阳等.基于LabVIEW的虚拟仪器设计.北京:电子工业出版社,2003.
    [4]陈遐昌,王在宏.电机温升试验中的数据处理.微特电机,2006,1:45-46.
    [5]中华人民共和国国家标准(GB/T 20160-2006):旋转电机绝缘电阻测试.中国国家标准化管理委员会,2006.
    [6]LI Li-yi,CUI Shu-Mei,ZHENG Ping,et al.Experimental study on a novel linear electromagnetic pumping unit[J].IEEE Transactions on Magnetics,2001,37(1):219-222.
    [7]姜民政,王建萍,郑雪锋等.直线电机驱动抽油机的研究.石油矿场机械,2006,35(1):38-41.
    [8]李佃贞,鲁晓军,刘刚.提高游梁式抽油机系统效率分析.石油矿场机械,2005,34(5):104-106.
    [9]崔振华,王玉山,侯华业等.抽油机—深井泵装置系统效率的测试研究.石油矿场机械,1988,17(1):40-46.
    [10]王同义,闫敬东,董明霞等.抽油机用永磁同步电动机的研制及应用.节能技术,2004,22(6):39-41,44.
    [11]闫敬东.永磁同步电动机在抽油机上的应用分析.石油机械,2006,34(2):54-56.
    [12]史朝晖,胡会国,刘玉庆.永磁同步电动机在油田抽油机中的应用与节能分析.节能,2004,2:22-24.
    [13]白连平,张顺增,邵保林等.抽油机电动机运行效率现场测试方法研究.石油机械,2007,35(4):64-66.
    [14]宇富平,刘晓强,高中勇等.永磁电动机在抽油机上的节能效果测试分析.石油矿场机械,2005,34(1):83-85.
    [15]林萍萍,牛俊邦.游梁式抽油机变频调速控制装置的研制.电气传动,2008,38(2):15-17.
    [16]赵来军,程发兴,范樱花.抽油机变频控制器的应用与技术发展.石油机械,2003,31(10):56-58.
    [17]中华人民共和国石油天然气行业标准(SY/T 5044-2000):游梁式抽油机.国家石油和化学工业局,2000.
    [1]叶云岳.直线电机原理与应用.北京:机械工业出版社,2000.
    [2]赵朝会,秦海鸿,严仰光.混合励磁同步电机发展现状及应用前景.电机与控制学报,2006,10(2):113-117.
    [3]Y.Amara,L.Vido,M.Gabsi,et al.Hybrid excitation synchronous machines:energy efficient solution for vehicle propulsion[C]// Proceedings of Vehicle Power and Propulsion Conference 2006.IEEE,2006:1-6.
    [4]Du Yu-mei,Shi Li-ming,and Jin Neng-qiang.Analysis of the three-dimension forces in a hybrid maglev vehicle system[C]// Proceedings of the Sixth International Conference on Electrical Machines and Systems.2003:563-565.
    [5]杜玉梅,金能强,史黎明.可控永磁直线同步电机磁力的研究.2006年全国直线电机学术年会论文集.哈尔滨:直线电机专委会,2006:68-72.
    [6]卢琴芬,叶云岳.直线同步永磁电励混合式电动机的研究.电气技术,2005,7:10-14.
    [7]沈育栋,叶云岳,陈翱.永磁电励交替混合式直线同步电动机的设计与试验.微特电机,2005,4:10-12,15.
    [8]陈翱,叶云岳,沈育栋.永磁电励均匀混合式直线同步电机设计.中小型电机,2004,31(2):1-4.
    [9]卢琴芬.直线同步电机的特性研究[博士论文].杭州:浙江大学,2005.
    [10]陈宇.长定子直线同步电机的设计及其优化[硕士论文].杭州:浙江大学,2003.
    [11]Yeou-kuang Tzeng,T.C.Wang.Optimal design of the electromagnetic levitation with permanent and electro magnets[J].IEEE Transactions on Magnetics,1994,30(6):4731-4733.
    [12]J.Lee,H.W.Lee,Y.D.Chun,et al.The performance prediction of controlled-PM LSM in various design schemes by FEM[J].IEEE Transactions on Magnetics,2000,37(4):1902-1905.
    [13]杜玉梅,史黎明,金能强.混合励磁磁悬浮系统磁力分析及永磁体厚度对磁力的影响.2004年全国直线电机学术年会论文集.江苏太仓:直线电机专委会,2004:19-23.
    [14]刘同娟.可控永磁悬浮系统不同永磁体厚度动态特性的研究[博士论文].北京:中科院电工所,2006.
    [15]M.Andriollo,G.Martinello,A.Morini,et al.FEM calculation of the LSM propulsion force in EMS-maglev trains[J].IEEE Transactions on Magnetics, 1996,32(5):5064-5066.
    [16]卢琴芬,叶云岳.混合励磁直线同步电机的磁场与推力.中国电机工程学报,2005,25(10):127-130.
    [17]K.Yoshida,J.Lee,and Y.J.Kim.3-D FEM field analysis in controlled PM LSM for maglev vehicle[J].IEEE Transactions on Magnetics,1997,33(2):2207-2210.
    [18]Yang Junyou,Zhou Meiwen,Cui Jiefang,et al.Force analysis and test facility for permanent magnet levitation system[C]//Proceedings of the Fifth International Conference on Electrical Machines and Systems.2001,2:872-875.
    [19]K.Yoshida,T.Umino.Dynamics of the propulsion and levitation system in the controlled-PM LSM maglev vehicle[J].IEEE Transactions on Magnetics,1987,23(5):2353-2355.
    [20]F.Profumo,A.Tenconi,and G.Gianolio.PM linear synchronous motor normal force calculation[C]// Proceedings of International Conference Electric Machines and Drives.1999:116-118.
    [21]M.S.Kwak,S.K.Sul.A new method of partial excitation for dual moving magnet linear synchronous motor[J].IEEE Transactions on Industry Applications,2001,40(2):499-505.
    [22]K.Yoshida,H.Takimi,C.Jozaki,et al.Levitation and propulsion control in a new PMLSM controlled-repulsive maglev vehicle[C]// Proceedings of International Conference Electric Machines and Drives.1999:580-582.
    [23]黄明星,叶云岳,陈翱.混合励磁直线同步电机磁场的有限元分析.微电机,2005,38(4):21-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700