基于线控技术的四轮主动转向汽车控制策略仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
四轮转向(4WS)技术是改善汽车操纵稳定性及提高行驶安全性的最常用的、有效的主动底盘控制技术。为了充分发挥四轮转向系统对车辆侧向动力学的影响,基于近年来线控转向技术的发展,论文以前、后轮均可控的全主动四轮转向汽车为研究对象,以车辆侧向动力学特性及控制作为研究方向,全面考虑线性、不确定性及非线性因素对汽车操纵稳定性的影响,对四轮主动转向汽车控制策略进行了比较系统深入的研究。
     进行了4WS汽车非线性动力学模型分析以及基于多体动力学分析软件ADAMS的虚拟样机建模研究,并利用MATLAB/Simulink实现了4WS汽车非线性动力学模型的数值计算,为不同控制策略的研究和控制效果的验证提供了精度较高、运算较快的底盘控制系统实时仿真平台;此外,利用ADAMS/Controls模块实现了由MATLAB/Simulink设计的控制器与由ADAMS/View建立的4WS汽车虚拟样机进行“机械—控制系统”可视化联合仿真的思想。
     基于线控技术和最优控制原理,提出了四轮主动转向汽车的模型跟踪控制策略。在分析了车辆转向的理想状态后,进行了主动4WS汽车前、后轮转角最优跟随控制器设计和算法推导。开环仿真表明:在线性操纵区域内,基于最优控制的主动4WS汽车实现了零化汽车质心侧偏角与跟踪期望横摆率的控制目标;在引入“单点预瞄最优曲率”驾驶员模型后,通过闭环系统双移线仿真和评价指标分析得出:最优控制主动4WS汽车具有更好的路径跟踪精度和更优的主动安全性综合评价指标,对正常行驶情况下的驾驶员操作具有智能辅助作用,提高了汽车高速行驶时的转向性能。
     针对具有不确定性的4WS汽车,提出了非线性滑模变结构控制策略。将实际车辆的前、后轮侧偏刚度及外界干扰视为有界的不确定性参数,设计了四轮主动转向的滑模变结构控制器以克服车辆未知的参数摄动与外部扰动影响,并进行了控制效果的鲁棒性验证。闭环仿真表明:滑模控制的不确定性4WS汽车能够很好的跟踪确定性理想转向模型,控制系统对于一定范围内的车辆参数变化和外部干扰具有鲁棒性,对路面附着条件的变化具有一定的适应性。此外,论文基于扩展Kalman滤波理论,还研究了利用侧向加速度测量值对汽车质心侧偏角与横摆角速度进行状态估计的软测量技术。
     考虑到在轮胎侧偏力达到饱和情况下,4WS系统对车辆稳定性改善有限的局限,针对后轮具有主动转向功能的4WS汽车,提出了利用后轮主动转向和差动制动联合作用产生补偿横摆力矩的车辆稳定性控制策略(VSC),进行了多变量输入输出的车辆稳定性控制系统模糊控制器的设计,并利用遗传算法对VSC模糊控制器参数及隶属函数分布进行了优化,改善了系统的瞬态响应性能。通过开环仿真及虚拟样机测试表明:所设计的VSC控制系统可以保障车辆在极限转向工况下的稳定性,有利于提高车辆在危险行驶中的主动安全性。
     针对4WS转向控制器与VSC稳定性控制器这两种主动控制子系统共存情况下的集成与协调策略进行了研究,利用状态变量相平面法进行了车辆失稳的量化判定,并依此确定这两种不同底盘控制子系统的有效作用域,采用模糊判决方法进行了控制任务分配,避免了二者之间控制目标的冲突与硬切换动作的发生,并通过数值仿真验证了所提出的协调控制策略的可行性。
The four-wheel steering (4WS) system is an effective active control technology for improving maneuverability and safety of vehicle in common use. In order to take full advantage of 4WS vehicle, on the basis of the development of steer-by-wire (SBW) technology, the characteristics of vehicle lateral dynamics and its control strategies are regarded as the research direction by this thesis, and the influences of linearity, uncertainty and nonlinear on vehicle dynamics are also fully considered by this thesis, then, a systematic research on control strategies for active 4WS vehicle is carried out.
     In the beginning, the dynamics analysis of 4WS vehicle is carried out and its nonlinear differential equation is established, then the calculation method of this nonlinear model is studied and implemented by using the MATLAB/Simulink software. All above works provide a real-time simulation platform of chassis control system with higher accuracy and quicker runtime that can verify different control strategies and control effects for 4WS vehicle. Furthermore, a virtual prototype of 4WS vehicle is founded by using the ADAMS software, and the viewable simulation of this virtual prototype combined with the controllers designed by MATLAB/Simulink is also realized by using ADAMS/Controls block.
     By means of the SBW technology and optimum control theory, a control strategy which need follow an ideal model is proposed for active 4WS vehicle, and this ideal vehicle model followed is determined too. Subsequently, the optimum controller that is used to control the angles of front and rear wheels of 4WS vehicle is designed. The open loop simulation indicates that the optimum controller can decrease the sideslip angle, and can keep the desired yaw rate at the same time during a steering process. The close loop simulation after introducing driver model shows that the 4WS vehicle under optimum control has better accuracy in path deviation and better evaluation index of active safety, and has an intelligently assistant function for manipulate of driver. So, the maneuverability when vehicle is driving at higher speed is improved.
     A sliding mode variable structure control strategy (SMC) is studied when 4WS vehicles are disturbed by some uncertain elements. The SMC controller is designed for active 4WS vehicle by treating the cornering stiffness of the front and rear tires and outer disturbance as uncertain parameters, but their variance in a limited range, and by using a linearity model as an ideal target followed. This SMC controller can maintain the vehicle with near zero sideslip angles, and track desired yaw rate, the controlled vehicle system behaves favorable robustness: The simulation test of a closed-loop system indicates that the SMC controller can overcome the effect of parameters perturbations and outer disturbances on system stability, and can adapt variance of the road adhesion condition to a certain extent. Furthermore, a state estimate method for sideslip angle and yaw rate of vehicle is discussed by using the measurable lateral acceleration signal based on the Kalman filtering principle.
     Because the 4WS system has limited effect on stability of vehicle when the sum of all tyre side force arrive maximum, so, a vehicle stability control strategy (VSC) is proposed for 4WS vehicle, a fuzzy controller of VSC system with multi-input and multi-output variables is designed by combining active rear-wheel steering with differential braking technology. Furthermore, the distributing of membership function and scale parameters of fuzzy controller are optimized by using Genetic Algorithms and the optimized results indicate that the transient response of vehicle is improved. The open loop simulation shows that the VSC system can ensure effectively the stability, and increase the active safety during critical steering process of vehicle.
     A kind of coordination control project between the 4WS steering controller and VSC stability controller is researched. Firstly, whether or not the vehicle lost its stability is estimated by using phase plane of state variables. Secondly, the valid action ranges of different controller are determined, and the control signals of different controller are also assigned by using fuzzy method. With all of above works, the conflict of control goal between the two controllers and the hard switch action of rear wheels are avoided accordingly. At last, a simulation test shows that this coordination control strategy is feasible and effective.
引文
1 《汽车工程手册》编辑委员会.汽车工程手册基础篇[M].北京:人民交通出版社,2001.
    2 郭孔辉.汽车操纵动力学[M].长春:吉林科学技术出版社,1991.
    3 赵又群,郭孔辉.汽车操纵性评价的发展、研究意义与基本问题[J].汽车技术,1998,(5):1-4.
    4 郭孔辉,丁海涛,宗长富.人—车闭环操纵生评价与优化的研究进展[J].机械工程学报,2003,39(10):27-34.
    5 Namio Irie and Junsuke Kuroki.4WS technology and the prospects for Improvement of vehicle dynamics [J].SAE Paper 901167,1990.
    6 Eguchi T ,Sakita Y ,Kawagoe K et al.Development of “Super Hicas”,a new rear wheel steering system with phasereversal control[J].SAE Paper 891978,1989.
    7 Takiguchi Tadahiko,Yasuda Noritaka,etal.Improvement of vehicle dynamics by vehicle-speed-sensing four-wheel steering system[J].SAE Paper 860624,1986.
    8 Kawakami Hirosi,Sato,Hiroki,et al.Development of integrated system between active control suspension,active 4WS,TRC and ABS [J].SAE paper 920271,1992.
    9 Nagai Masao,Hirano Yutaka,et al.Integrated control of active rear wheel steering and direct yaw moment control[J].Vehicle System Dynamics,1997,27(5-6):357-370.
    10 陈祯福.汽车底盘控制技术的现状和发展趋势[J].汽车工程,2006,28(2),105-113.
    11 喻凡,林逸.汽车系统动力学[M].北京:机械工业出版社,2005.
    12 Ackermann Juergen.Robust yaw damping of cars with front and rear wheel steering [J].IEEE Transactions on Control Systems Technology,1993,1 (1):15-20.
    13 Furukawa Y,Yuhara N,Sano Set al.A review of four-wheel steering studies from the viewpoint of vehicle dynamics and control[J],Vehicle System Dynamics,1989,18:151-186.
    14 屈求真,刘延柱.四轮转向汽车的动力学控制现状及展望[J].中国机械工程,1999,10(8):946-949.
    15 屈求真,刘延柱.四轮转向汽车的控制策略[J].汽车技术,1999,(2):5-7.
    16 乔宇.汽车四轮转向的动力学特性与混杂控制研究[D].天津大学,2002.
    17 Sano,S.et al.Influence of vehicle response parameters on drivers control performance[C].Proc.of FISITA 18th Internatonal Congress,Hamburg,1980.
    18 Sano S,Furukawa Y,Shiraishi S.Four wheel steering system with rear wheel steer angle controlled as a function of steering wheel angle[J].SAE Paper 860625,1986.
    19 Song J G,Yoon Y S.Feedback control of four-wheel steering using time delay control[J].International Journal of Vehicle Design.1998,19(3):282-298.
    20 Aga M ,Kusunoki H ,Satoh Yet al.Design of 2-degree-of-freedom control system for active front-and-rear-wheel steering[J].SAE Paper 901746,1990.
    21 Bakker E,Nyborg L,Pacejka H B.Tire modeling for use in vehicle dynamics studies[J].SAE Paper 870421,1987.
    22 Kunsoo Huh,Joonyoung Kim.Active steering control based on the estimated tire forces[J].Journal of Dynamic Systems,Measurement,Control,2001,123:505-511.
    23 Zeid A,Chang D.Simulation of multi-body systems for the computer aided design of vehicle dynamic control[J].SAE Paper,1991,(1 0):18-19.
    24 Suresh B A,Gilmore B J.Vehicle model complexity how much is too much[J].SAE Paper 940656:1994.
    25 Xia Xunmao.A nonlinear analysis of closed loop driver/vehicle performance with four-wheel steering control[D].Clemson University,1990.
    26 Xia X,Law E H.Nonlinear analysis of closed loop driver/automobile performance with four wheel steering control[J].SAE Paper 920055,1992.
    27 Smith D E,Starkey J M.Effects of model complexity on the performance of automated vehicle steering controllers:controller development and evaluation[J].Vehicle System Dynamics,1994,23:627-645.
    28 Smith D E,Starkey J M.Effects of model complexity on the performance of automated vehicle steering controllers:model development,validation and comparison[J].Vehicle System Dynamics,1995,24:163-181.
    29 刘兴初,张建武,刘奋.四轮转向非线性侧向动力学模型[J].上海交通大学学报,2005,39(9):1466-1469.
    30 刘奋.四轮转向汽车侧向动力学特性及其控制研究[D].上海交通大学,2003.
    31 张伯俊.四轮转向汽车横向动力学特性及控制研究[D].天津大学,2006.
    32 焦风.四轮转向汽车虚拟样机与闭环控制操纵动力学仿真[D1.东南大学,2004.
    33 姚永建,韩强.四轮转向汽车的非线性模型及其动力方程[J].华南理工大学学报(自然科学版),31(11):49-52.
    34 Yuhara N,Horiuchi S,Arato Y.A robust adaptive rear wheel steering control system for handling improvement of four-wheel steering vehicles[J].Vehicle System Dynamics,1991,20:666-680.
    35 Wang Y Q,Gnadler R,Schieschke R.Vertical load-deflection behavior of a pneumatic tire subjected to slip and camber angles[J].Vehicle System Dynamics,1996,25:137-146.
    36 Horiuchi S ,Yuhara N,Takei A.Two degree of freedom/H_∞ controller synthesis for active four wheel steering vehicles[J].Vehicle System Dynamics,1996,25:275-292.
    37 You S S,Jeong S K.Vehicle dynamics and control synthesis for four-wheel steering passenger cars[J].Proceeding of the Institution of Mechanical Engineers,Part D,Journal of Automobile Engineering,1998,212:449-461.
    38 Yaniv O.Robustness to speed of 4WS vehicles for yaw and lateral dynamics[J].Vehicle System Dynamics,1997,27:221-234.
    39 Hsu L.Variable structure model-reference adaptive control using only input and output meas-urements:the general case [J].IEEE Transaction on Automatic Control,1990,35(11):1238-1243.
    40 Fujishiro,T.,Ito,K.Four wheel steering system employing model-following control[J].Automotive Engineering,1988,42(3):304-310.
    41 Masugi KAMINAGA.J.Karl HEDRICK.Adaptive sliding mode control in the presence of saturating tire forces[J].JSME International Journal Series C,1999,42(2):281-286.
    42 管西强,屈求真,张建武,等.四轮转向汽车的模型跟踪变结构控制[J].机械工程学报,2002,38(3):54-58.
    43 屈求真,刘延柱,张建武.四轮转向汽车自适应模型跟踪控制研究[J].汽车工程,2000,22(2):73-76.
    44 Furukawa Y,Abe M.Advanced chassis control system for vehicle handling and active safety[J].Vehicle System Dynamics,1997,28:59-86.
    45 Kaminage,M.Vehicle control using intelligent sliding surface[J].Proc.of AVEC'96,Aachen,1996.
    46 陈南.车辆动力学和4WS车辆操纵性能控制:现状、问题和发展[C].国际学术动态,2002(3):20-23.
    47 Shiotsuka T.Adaptive control of 4WS system by using neural network[J].Vehicle System Dynamics,1993,22:411-424.
    48 Hoyong Kim.An intelligent control of vehicle dynamic system by artificial neural network[D].North Carolina State University,1994.
    49 Nagai M ,Ueda E,Moran A.Nonlinear design approach to four-wheel-steering systems using neural networks[J].Vehicle System Dynamics,1995,24:329-342.
    50 Anthony B.Will.Intelligent vehicle braking and steering control systems[D].Purdue University,1997.
    51 李普,陈南,孙庆鸿.基于状态观测器的4WS车辆最优随动操纵研究[J].机械工程学报,2004,40(1):50-55.
    52 殷国栋,陈南,李普.基于降阶观测器的四轮转向车辆随动操纵瞬态稳定性分析[J].中国机械工程,2004,15(14):1298-1301.
    53 殷国栋,陈南.4WS车辆μ综合鲁棒主动侧倾操纵性能控制[J].东南大学学报(自然科学版),2006,36(3):384-388.
    54 刘奋,张建武,屈求真.基于定量反馈理论的汽车转向控制系统设计[J].上海交通大学学报,2002,36(8):1191-1195.
    55 刘奋,张建武,屈求真,等.基于QFT的四轮转向控制系统设计[J].汽车工程,2002,24(1):68-72.
    56 周宇奎,谷正气,王和毅.汽车主动四轮转向系统的解耦自适应控制研究[J].机械与电子,2004,(10):11-13.
    57 谷正气,周宇奎,海贵春,等.主动四轮转向系统对高速汽车侧风稳定性的控制研究[J].湖南大学学报(自然科学版),2006,33(1):51-54.
    58 罗颂荣.神经网络在汽车四轮转向控制中的应用[J].计算机测量与控制,2003,11(6):442-443.
    59 郭孔辉,轧浩.车辆四轮转向系统的控制方法[J].吉林工业大学学报,1998,28(4):1-4.
    60 祁永宁.4WS车辆直接横摆力矩控制与硬件在环仿真系统[D].东南大学,2005.
    61 Jeonghoon Song,Heungseob Kim,Kwangsuck Boo.A study on an anti-lock braking system controller and rear-wheel controller to enchane vehicle lateral stability[J].JAUTO225(?)IMechE 2007,Proc.IMechE vol.221 Part D:J.Automobile Engineering:777-787.
    62 Segel L.An overview of developments in road vehicle dynamics:Past,Present and Future[C].Proceedings of the Institution of Mechanical Engineers,Vehicle Ride and Handling International Conference,1993.
    63 张威,张景海,隗海林,等.汽车动力学仿真模型的发展[J].汽车技术,2003,(2):l-4.
    64 贺昱曜,闫茂德.非线性控制理论及应用[M].西安:西安电子科技大学出版社,2007.
    65 郭孔辉,轧浩.四轮转向的控制方法的发展[J].中国机械工程,1998,9(5):73-75.
    66 Lee Y,Kim S,Sub M,Son H.Linearized dynamic analysis of a four-wheel steering vehicle[J].Trans Kor Soc Automot Engrs,1994,2:101-109.
    67 涂志祥.基于模糊控制的汽车动力学稳定性控制(VDC)研究[D].长沙理工大学,2004.
    68 王辉.四轮转向汽车的控制研究和操纵动力学仿真分析[D].上海交通大学,2007.
    69 Junjie He,D A Crolla,M C Levesley,and W J Manning.Coordination of active steering,driveline,and braking for integrated vehicle dynamics control[J].JAUTO265(?)IMechE 2006,Proc.IMechE vol.220 Part D:J.Automobile Engineering:1401-1421.
    70 M J L Boada,B L Boada,A Munoz,and V Diza.Integrated control of front-wheel steering and front braking forces on the basis of fuzzy logic[J].JAUTO124~IMechE 2006,Proc.IMechE vol.220 Part D:J.Automobile Engineering:253-267.
    71 C March,Shim.Integrated control of suspension and front steering to enhance vehicle handling[J].JAUTO152(?)IMechE 2007,Proc.IMechE vol.221 Part D:J.Automobile Engineering:377-391.
    72 Donghyun Kim,Hyunsoo Kim.Vehicle stability control with regenerative braking and electronic brake force distribution for a four-wheel drive hybrid electric vehicle[J].D00605(?)IMechE 2006,Proc.IMechE vol.220 Part D:J.Automobile Engineering:683-693.
    73 韩宗奇,余志生,万嘉鐄.汽车转弯制动性能的模拟计算[J].汽车工程,1991,13(1):23-34.
    74 武建勇.提高车辆操纵稳定性的底盘集成控制系统设计与方法研究[D].上海交通大学,2008.
    75 安部正人著,陈辛波译.汽车的运动和操纵[M].北京:机械工业出版社,1998.
    76 郭应时,魏朗.汽车轮胎理论模型的分析[J].西安公路交通大学学报,1998,1 8(2):65-68.
    77 DugoffH.,Fancher P.S.,Segel L.An analysis of tire traction properties and their influence on vehicle dynamic performance[J].SAE Paper 700377,1970.
    78 Pacejka H B,Bakker E.Magic formula tyre model[J].Vehicle system dynamics,1993,21:1-18.
    79 Pacejka H B,BESSELINK I J M.Magic formula tyre mode with transite properties[J].Vehicle system dynamics,1997,27:234-249.
    80 K H Guo,Dang Lu,L Ren.A unified non-steady non-linear tyre model under complex wheel motion inputs including extreme operating conditions[J].JSAE Review,2001,22(4):395-402.
    81 袁忠诚.轮胎稳态侧向半经验模型的研究[D].长春:吉林大学,2003.
    82 郭孔辉,袁忠诚,卢荡.UniTire轮胎稳态模型的联合工况预测能力研究[J].汽车工程,2006,28(6):565-568.
    83 袁忠诚,卢荡,郭孔辉.UniTire与Magic Formula稳态模型的对比研究[J].汽车技术,2006,(2):7-10.
    84 范成建,熊光明,周明飞.MSC.ADAMS应用与提高[M].北京:机械工业出版社,2006.
    85 屈求真,刘延柱.汽车轮胎侧偏特性的研究现状及其发展[J].上海交通大学学报,1999,33(6):755-759.
    86 瞿宏敏,程军.汽车动力学模拟中的轮胎模型述评[J].汽车技术,1996,(7):1-8.
    87 魏朗.用于碰撞事故中车辆动力学模拟的轮胎模型分析[J].西安公路交通大学学报,1999,19(2):73-76.
    88 MSC.ADAMS2005/Tires uesr's manual[EB/OL].http://www.mscsoftware.com.
    89 MSC.ADAMS2005/Caruesr's manual[EB/OL].http://www.mscsoftware.com.
    90 李军,邢俊文,覃文洁,等.ADAMS实例教程[M].北京:北京理工大学出版社,2002.
    91 Peter G,Adamczyk,David Gorsich,Gregory Hudas.Lightweight Robotic Mobility:Template-based Modeling for Dynamics and Controls Using ADAMS and MATLAB[C].2003 SAE World Congress:2003-01-0269.
    92 Daniel Westbom,Petter Frejinger.Yaw control using rear wheel steering[C].Regnr:iTH-ISY-EX-3273,Linkoping,21~(st) November 2002.
    93 SimWe 仿真论坛 B05:MSC.ADAMS[EB/OL].http://forum.simwe.com/forum-23-1.html.
    94 MSC.ADAMS2005/View uesr's manual[EB/OL].http://www.mscsoftware.com.
    95 MSC.ADAMS2005/Controls uesr's manual [EB/OL].http://www.mscsoftware.com.
    96 van Zanten A,Erhardt R,PfaffG,et al.Control aspects of the Bosch-VDC[J],Proc.of AVEC' 1996:573-608.
    97 沈晓鸣.基于广义执行器—受控对象的车辆底盘集成控制的研究[D].上海交通大学,2006.
    98 于长官.现代控制理论及应用[M].哈尔滨:哈尔滨工业大学出版社,2005.
    99 章卫国,卢京潮,吴方向.先进控制理论与方法导论[M].西安:西北工业大学出版社,1999.
    100 程军.车辆动力学控制的模拟[J].汽车工程,1999,21(4):199-205.
    101 姚国成.汽车稳定性控制策略的仿真研究[D].吉林大学,2007.
    102 Irene Chow.Simulation of 1VD Brake-Steer Controller[C].Technical Report,Ford Motor Co.,July,1995.
    103 Anton T.van zanten,R ainer Erhardt,GeorgP faff.VDC,The vehicle dynamics control system of Bosch.SAE Paper 950759,1995.
    104 Will A B,Zak S.H.Modelling and control of an automated vehicle[J].Vehicle System Dynamics,1997,27(3):131-155.
    105 祁永宁,陈南,李普.四轮转向车辆的直接横摆力矩控制[J].东南大学学报(自然科学版),2004,34(4):451-454.
    106 朱德军,陈南,任祖平.基于H∞理论的车辆稳定性控制[J].精密制造与自动化,2005,(1):49-52.
    107 Dirk E.S,Jone M.S.Effect of model complexity on the performance of automated vehicle steering controllers:model development,validation and comparison[J].Vehicle System Dynamics,1995,24(2):163-181.
    108 郭孔辉.驾驶员一汽车闭环操纵运动的预瞄最优曲率模型[J].汽车工程,1984,(3):1-16.
    109 郭孔辉.预瞄跟随理论与人一车闭环系统大角度操纵运动仿真[J].汽车工程,1992,14(1):1-1 1.
    110 宗长富,开发型驾驶模拟器逼真度改进与汽车操纵稳定性综合评价研究[D].吉林工业大学,1988.
    111 郭孔辉马凤军,孔繁森.人一车一路闭环系统驾驶员模型参数辨识[J].汽车工程,2002,24(1):20-24.
    112 陆子玉.四轮转向汽车操纵性和稳定性的联合优化及仿真研究[D].南京航空航天大学,2007.
    113 林棻.驾驶员—四轮转向汽车闭环系统运动稳定性研究[D].南京航空航天大学,2005.
    114 宗长富,郭孔辉.汽车操纵稳定性的研究与评价[J].汽车技术,2000,(6):6-11.
    115 International standard.Road vehicle-test procedure for a severe lane-change maneuver.ISO/3888,1975.
    116 Harvey Lipkin.Vehicle steering study[C].Sebastien Feve & Alexandre Huret Ecole Nationaled' Ingenieurs de Metz.
    117 郭孔辉.人一车一路闭环操纵系统主动安全性的综合评价与优化设计[J].汽车技术,1993,(4):4-12.
    118 林柏忠.关于人一车一路闭环系统稳定性及操纵性的研究[D].吉林工业大学,1994.
    119 梅生伟,申铁龙,刘康志.现代鲁棒控制理论与应用[M].北京:清华大学出版社,2003.
    120 胡跃明.变结构控制理论与应用[M].北京:科学出版社,2003.
    121 刘金琨.滑模变结构控制MATLAB仿真[M].北京:清华大学出版社,2005.
    122 杨盐生.不确定系统的鲁棒控制及其应用[M].北京:科学出版社,2004.
    123 Sam-Jun Seo,Dong-Kim.Design of a fuzzy model based sliding mode control for nonlinear systems[J].ICCAS2005,June 2-5,K1NTEX,Gyeonggi-Do,Korea.
    124 O Mokhiamar,M Abe.Examination of different models following types of yaw moment control strategy for improving handling safety of a car-caraven combination[J].D12602 (?)IMechE 2003,Proc.Instn Mech.Engrs vol.217 Part D:J.Automobile Engineering:561-571.
    125 Toshihiro Hiraoko,Osamu Nishihara,Hiromitsu Kumamoto.Active four-wheel steering system for zero sideslip angle and lateral acceleration control[C].Kyoto University,Japan,2003.
    126 Haojian Xu,Petros A Ioannou,Majdedin Mirmirani.Adaptive sliding mode control design for a hypersonic flight vehicle[C].CATT TECHNICAL REPORT No.02-02-01.
    127 白圣建,黄新生.变结构控制的抖振问题研究[J].计算机仿真,2006,23(6):155-158.
    128 陈峰,刘国栋.基于模糊切换增益调节的全局滑模控制[C].2007中国控制与决策学术年会论文集:127-130.
    129 罗荣锋.高速汽车侧风稳定性及其影响参数研究[D].湖南大学,2005.
    130 徐进,邵毅明.风压中心位置对汽车侧风稳定性影响的虚拟试验分析[J].中国机械工程,2007,18(15):1877-1881.
    131 Aleksander Hac,Melinda D.Simpson.Estimation of Vehicle Side Slip Angle and Yaw Rate[C].SAE 2000 World Congress,SAE Technical Paper Series 2000-01-0696.
    132 施树明,Henk Lupker,Paul Bremmer,Joost Zuurbier.基于模糊逻辑的车辆侧偏角估计方法[J].汽车工程,2005,27(4):426-430.
    133 G Hodgson,M C Best.A parameter identifying a Kaknan filter observer for vehicle handling dynamics[J].D 18304 (?)IMechE 2006,Proc.IMech.E Vol.220 Part D:J.Automobile Engineering:1063-1072.
    134 Edward.J,Bedner.Jr.Hsien H.Chen.A supervisory control to manage brakes and Four-wheelsteer systems[C].SAE 2004 World Congress,SAE Technical Paper Series 2004-01-1059.
    135 M Abe.Vehicle dynamics and control for improving handling and active safety:from four- wheelsteering to direct yaw moment control[J].K00699(?)IMechE 1999,Proc.Instn Mech.Engrs vol.213 Part K:J.Automobile Engineering:87-101.
    136 李国勇.智能控制及其MATLAB实现[M].北京:电子工业出版社,2005.
    137 王耀南,孙炜.智能控制理论及应用[M].北京:机械工业出版社,2008.
    138 丁海涛.轮胎附着极限下汽车稳定性控制的仿真研究[D].吉林大学,2003.
    139 周红妮.车辆稳定性控制方法与策略的比较研究[D].武汉科技大学,2007.
    140 王德平,郭孔辉.车辆动力学稳定性控制的控制原理与控制策略研究[J].机械工程学报,2000,36(3):97-99.
    141 Y.Shibahata,K.Shimada,T.Tomari.Improvement of vehicle maneuverability by Direct Yaw Moment control[J].Vehicle System Dynamics,1993,22:465-481.
    142 王德平,郭孔辉,宗长富.车辆动力学稳定性控制的理论研究[J].汽车工程,2000,22(1):7-9.
    143 Shoji Inagaki,Ikuo Kshiro,Masaki Yamamoto.Analysis on vehicle stability in Critical Cornering using Phase-Plane Method[J].International Symposium on Advanced Vehicle Control,AVEC'94,No.9438411.
    144 Koibuchi.K,et al.Vehicle stability control in Limit Comering by active brake[J].SAEpaper 960487,1996.
    145 He,J.Integrated vehicle dynamics control using active steering,driveline and braking[D].University of Leeds,UK,2005.
    146 向辉.车辆转向稳定性的的极限环控制方法研究[D].吉林大学,2006.
    147 余卓平,高晓杰,张立军.用于车辆稳定性控制的直接横摆力矩及车轮变滑移率联合控制研究[J].2006,28(9):844-848.
    148 黄洪钟,赵正佳,姚新胜,等.遗传算法原理、实现及其在机械工程中的应用研究与展望[J].机械设计,2000,(3):1-6.
    149 雷英杰,张善文,李续武,等.MATLAB遗传算法工具箱及应用[M].西安:西安电子科技大学出版社,2005.
    150 唐国元.车辆防抱制动系统及制动稳定性控制策略的仿真研究[D].华中科技大学,2005.
    151 时招军,邓辉文,黄笑鹃.基于完备性和语义性的隶属函数GA优化方法[J].计算机科学,2005,32(3):223-225.
    152 田小梅,龚静.实数编码遗传算法的评述[J].湖南环境生物职业技术学院学报,2005,11(1):025-031.
    153 侯光钰.车辆防抱死制动系统的控制技术研究[D].东南大学,2005.
    154 高晓杰,余卓平,张立军.基于车辆状态识别的AFS与ESP协调控制研究[J].汽车工程,2007,29(4):283-291.
    155 杜峰,魏朗,赵建有.基于状态反馈的四轮转向汽车最优控制[J].长安大学学报(自然科学版),2008,28(4):91-94.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700