舰载激光—灯光通信一体机关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代舰船通信设备包括了各种短、中、长波的射频通信,以及古老的灯光通信,已经发展成一个成熟的系统。但随着技术的进步,现有的射频通信手段开始显露其五项主要的不足之处:带宽有限、易暴露目标、加解密工作复杂、频道管理严格、容易受到电磁干扰。灯光通信也有着自动化程度低、需要专业信号兵、通信速率过低等缺点。舰载激光—灯光通信一体机正是解决以上问题的有效途径。
     舰载激光—灯光通信一体机将集无线激光通信和全自动灯光通信一体。即以无线激光通信技术为基础,根据舰载平台的特点进行针对性设计,实现舰载无线激光通信。再利用激光通信终端的APT (Acquisition,Pointing,Tracking)系统的硬件完成全自动灯光通信的功能,使其在能进行无线激光通信的基础上还能向下兼容常规的灯光通信。本文对舰载激光—灯光通信一体机的若干关键技术进行了研究。
     文中首先介绍了国际和国内机动平台包括舰载激光通信的成功案例,调研了舰载无线激光通信的研究现状,以作为设计参考。
     然后分析了舰载无线激光通信链路的特点。从激光在普通大气中传输所受影响开始,分析大气对激光造成的吸收和散射,接收端的光强起伏、到达角起伏,以及背景辐射的影响。然后介绍了近海面大气的特性,这包括其大气结构常数随高度、风速、温度、季节、地点的变化,近海面大气对大气的衰减效应随高度、时间的变化。最后介绍了舰载无线激光通信接收端端机会使用的多模光纤耦合效率的特性。
     激光—灯光通信一体机的APT系统是其关键技术。从介绍舰船晃动的特性开始,进行了简单情况下的晃动仿真,以细化舰载平台的特殊影响。研究了跟瞄误差和光功率的关系,对两种常见APT系统的结构进行了比较。然后分别从粗跟踪硬件、软件以及精跟踪、硬件软件四个部分对系统设计进行详细阐述。最后对粗、精跟踪信息的交互和跟瞄误差进行了分析。
     灯光通信是激光—灯光通信一体机的另一个重要功能。因此,对其硬件上和粗跟踪的共享和需求上的不同进行了研究,并讨论了软件部分的图像处理算法。
     按以上系统的设计,搭建立了激光—灯光通信一体机的APT系统和灯光通信功能的验证平台,分别对粗跟踪对快速目标的跟踪功能、精跟踪对平台振动的抑制功能、以及灯光通信的白天、夜间环境下的通信进行了实验。结果表明粗、精跟踪系统分别能对大范围的运动和小角度的抖动进行有效抑制,其中粗跟踪系统可对2.7°/秒角速度的目标进行有效跟踪,残差控制在0.017°以内,残差主要频率小于9Hz。而精跟踪系统对于0.0158。角度频率为25Hz的抖动可有效跟踪,因此可以认为精跟踪系统能够补偿粗跟踪系统残差。而灯光通信系统在3.5km的通信距离下实现了15字/分钟的通信,其夜间能够不受恒亮干扰源的影响。但白天受背景光影响较大,该距离下在可能在背景光非常强的晴天的中午无法通信。
Modern warship communication equipment including a variety of short, medium and long wave radio frequency communication and even the old light communication,has grown into a mature system. But with the progress of technology, the existing radio frequency communication had shown five major disadvantages: limited bandwidth, easy to reveal, and the complex decryption, strict channel management, susceptible to electromagnetic interference. Light communication also has disadvantages of low degree of automation, needed of professional sailor, lower communication rate. Shipborne all-in-one for laser and light communication is the best way to solve the above problems.
     Shipborne all-in-one for laser and light communication will unite the free space laser communication and the automatic light communication together. It based on the free space laser communication technology and the existing light communication, and was specially designed according to the characteristics of the Shipborne platform. Using laser communication terminal APT (Acquisition, Pointing,Tracking) system hardware to realize automatic light communication function, can make it compatible with conventional lights communication on the basis of wireless laser communication. In this paper, some key techniques of ship-borne optical camera is studied.
     The succeful case of international and domestic mobile platforms laser communication including shipboard was introduced as a design reference.
     The characteristics of shipboard wireless laser communication link was analyed. The impact of atmosphere on laser transmitting, the atmospheric absorption and scattering of laser, the light intensity fluctuation and the arrival angle fluctuation at the receiving end, and the influence of background radiation were introduced. Then the characteristics of the atmosphere close to the sea-surface was studied.It includes the relationship between atmospheric refractive index and height, wind speed, temperature, the change of season, location was showed. And the Close to sea surface atmospheric attenuation effect to the laser about height and time in one day was analysed. Finally the coupling efficiency characteristics of the multi-mode fiber in the receiving end was introduced.
     The APT system is a key technology to the laser-light communication all-in-one. The analysis to characteristics of ship rocking, and a simulation in simple case was done to refine the influence of the carrier platform to laser communication. The relationship between tracking-pointing error and optical power was showed, the comparition of two common APT structure was done. And there is a detailed description for the whole system,respectively from coarse tracking hardware, software, and hardware and software of fine tracking system. Finally, coarse and fine tracking information interaction and tracking-pointing error are analyzed.
     Light communication is another important feature of the optical communication all-in-one. Therefore the the sharing hardware and the different demand of the coarse tracking the light communication was discussed, and the part of image processing algorithms in the software was elaborated.
     According to the above system design, optical communication all-in-one APT system is established.The experiment about the performance of coarse tracking for rapid tracing, precision tracking of platform vibration by the fine tracking system, light communication and lighting during the day, night were tested. Results show that the coarse and fine tracking system were effective, respectively for compensation a wide range movement and the small angle jitter.The coarse tracking system can be effective to2.7°/SEC angular velocity target tracking, with0.017°residual.The main frequency of the residual was less than9hz. The fine tracking system was effective for a0.0158°and25Hz frequency jitter tracking. So it can deemed that the fine tracking system can compensate the coarse tracking system residual error. The light communication systems achieved15words per minute communication rate at a distance of3.5km.In the night it will not affected by constant disturbance light source. but greatly influenced by the background during the day time. the distance in May in the background light at noon can't communicate very strong sunshine. The system may no work correctly under such a distance in a strong background light in a sunshine noon.
引文
[1]赵梓森,玻璃丝的神通——浅谈光纤通信[M]北京,清华大学出版社,2002
    [2]陈静,薛海中,刘学文,魏龙超,毛登森,冯茜自由空间光通信低功率激光干扰实验[J]红外与激光工程,2012,Vol41,No.5:1266-1270
    [3]ROMBA Jose, SODNIK Zoran, et al. ESA's bidirectional space-to-ground laser communication experiments. SPIE,2004, vol.5550, pp.287-298
    [4]Sandusky J V, Lesh J R, Planning for a long-term optical demonstration from the international space station [J]. SPIE,1998, Vol.3266, pp.128-134
    [5]JONO Takashi, TAKAYAMA Yoshihisa, et al. OICETS on-orbit laser communication experiments [J]. SPIE,2006, vol.6105, pp.610503.1-610503.11
    [6]AKAYAMA Yoshihisa, JONO Takashi, et al. Tracking and pointing characteristics of OICETS optical terminal in communication demonstrations with ground stations [J]. SPIE,2007, vol.6457, pp.645707.1-645707.9.
    [7]N. PERLOT, M. KNAPEK, et al. Results of the optical downlink experiment KIODO from OICETS satellite to optical ground station oberpfaffenhofen (OGS-OP). SPIE, 2007, vol.6457, pp.645704.1-645704.8.
    [8]Architecture Overview and Data Summary of a 5.4 km Free-Space Laser Communications Experiment[C] SPIE,2009, Vol.7464, pp
    [9]Air-to-Ground Lasercom System Demonstration Design Overview and Results Summary[C]SPIE,2010, Vol.7814, pp.78140y1-78140y9
    [10]Robert J. Murphy, Alicia M. Volpicelli, William Wilcox Jr., David A. Crucioli, and Timothy H. WilliamsA Conical Scan Free Space Optical Tracking System for Fading Channels[C]SPIE,2009, vol,7464, pp.74640p1-74640p7
    [11]W. S. Rabinovich, C. I. Moore, H. R. Burris, J. L. Murphy, M. R. Suite, R. Mahon, M. S. Ferraro, P. G. Goetz, L. M. Thomas, C. Font, G. C. Gilbreath, B. Xu, S. Binari. Free Space Optical Communications Research at the U.S. Naval Research Laboratory[C]SPIE,2010, vlo.7587, pp,758702p1-758702p15
    [12]Christopher I. Moore, Harris R. Burris, William S. Rabinovich, Michele Suite, etc.Lasercomm demonstration during US Navy Trident Warrior 06 Forcenet exercise[C]
    [13]Peter G. Goetz, William S. Rabinovich, Rita Mahon, etc. Modulating Retro-reflector Lasercom Systems at the Naval Research Laboratory[C]IEEE,2010:1601-1606
    [14]MIO TAR2HOST LASERCOMM EXPERIMENT IN TRIDENT WARRIOR08
    [15]赵英俊;王江安;任席闯舰载激光通信中大气对激光远场光强分布的影响[J]激光与红外,2009,vol.39(8):808-812
    [16]王江安 赵英俊 任席闯 大气湍流对舰载激光通信中光能量分布的影响[J]激光与红外,2009,vo1.39(5):473-476
    [17]任席闯 王江安 吴荣华 舰载激光通信传输仰角误差分析与评估[J]激光与红外,2009,vo1.39(4):372-374
    [18]Tingyu Wang Songlin Zhuang Study and Experiment of Ship Movement Simulation for Free Space Laser Communication[C]SPIE,2009,Vol7506
    [19]Tingyu Wang A Low-cost Four-degree-of-freedom Motionplatform for Ship-borne Free Space Laser Communication[J] JOURNAL OF COMMUNICATIONS,2010, VOL.5, NO. 9:647-653
    [20]L. C. Andrews, and R. L. Phillips, Laser Beam Propagation through Random Media, (SPIE, Washington,1998).
    [21]Andrews, L. C. et al. Aperture averaging of optical scintillations:power fluctuations and the temporal spectrum. Waves Random Media, Vol.10,2000, p. 53-70.
    [22]L. C. Andrews, C. Y. Young, A. Al-Habash, R. L. Phillips, and D. E. Tjin-Tham-Sjin, Fade statistics associated with a space ground laser communication link at large zenith angles [J]. in Proc. SPIE 3763,268-277 (1999).
    [23]N. Perlot et al. Measurements of the Beam-Wave Fluctuations over a 142-km Atmospheric Path. Proc. of SPIE Vol.6304,630410, (2006)
    [24]M. Jeganathan, G. Ortiz, A. Biswas etc., Overview of the Preliminary Design of the Optical Communication Demonstration and High-Rate Link Facility, Free Space Laser Communication Technologies XI, SPIE. Vol.3615, pp185-191,1999.
    [25]X. Zhu and J. M. Kahn, "Free-space optical communication through atmospheric turbulence channels, " IEEE Transactions in Communications,50,1293-1300, 2002.
    [26]X. Zhu and J. M. Kahn, "Performance bounds for coded free-space optical communications through atmospheric turbulence channels, " IEEE Trans. Commun., vol.51, no.8, pp.1233-1239, Aug.2003.
    [27]Stell M F, Moore C, Burris H R. Passive optical monitor for atmospheric turbulence and windspeed[C]SPIE,2003,5160:422-431
    [28]S. M. Haas, Capacity of and coding for multiple-aperture wireless optical communications, Ph.D. dissertation, Massachusetts Institute of Technology, 2003.
    [29]Isaac I. Kim, Brian Riley and Nicholas M. along, "Lessons learned from the STRV-2 satellite-to-ground lasercomm experiment, SPIE,2006, Vol.4272 pp.1-15
    [30]M. Uysal and C. N. Georgiades, "On the error performance analysis of space-time trellis codes," IEEE Trans. Wireless Commun., vol.3, no.4, pp.1128-1133, July 2004.
    [31]K. S. Shaik. Atmospheric propagation effects relevant to optical communication. TDA Progress Report,1988.
    [32]Jason J. Gorman, Nicholas G. Dagalakis, Bradley G. Boone, Multi-loop control of a nanopositioning mechanism for ultra-precision beam steeringFree-Space Laser Communication and Active Laser Illumination III, SPIE Vol.5160, pp170-182, 2004.
    [33]Kazuhiko Aoki, Hidehiko Kuroda, Satoshi Yashima, Akinori Satoh, Wide and Fine Pointing Mechanism with Flexible Supports for Optical Inter-satellite Communications, Free-Space Laser Communication Technolonies XI, SPIE Vol.3615. pp222-230,1999.
    [34]Kazuhiko Aoki, Yoshiho Yanagita, Hidehiko Kuroda, Koichi Shiratama, Wide-range fine pointing mechanism for free-space laser communications, Free-Space Laser Communication and Active Laser Illumination III, SPIE Vol.5160, pp495-507, 2004.
    [35]J. W. Strohbehn, Laser Beam Propagation in the Atmosphere (Springer-Verlag, Berlin,1978).
    [36]M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, "Mathematical model for the irradiance probabi lity densi ty function of a laser beam propagating through turbulent media, " Opt. Eng.40,1554-1562 (2001).
    [37]D. L. Fried, G. E. Mevers, M. P. Keister, Measurements of laser beam scintillation in the atmosphere. J. Opt. Soc. Am.57,787-797 (1967).
    [38]Y. E. Yenicea, R. Li, M. Takabeb, and T. Arugab, "Atmospheric turbulence measurements through stellar observations, " Proc. SPIE 3615,316-324 (1999).
    [39]B. E. Stribling, B. M. Welsh, and M. C. Roggemann, Optical propagation in non-Kolmogorov atmospheric turbulence Proc. SPIE 2471,181-196 (1995).
    [40]Y. Jiang, J. Ma, L. Tan, S. Yu, and W. Du, Measurement of optical intensity fluctuation over an 11.8 km turbulent path. Opt. Express 16,6963-6973 (2008).
    [41]A. Tunick, Statistical analysis of optical turbulence intensity over a 2.33 km propagation path. Opt. Express.15,3619-3628 (2007).
    [42]A. Tunick, Statistical analysis of measured free-space laser signal intensity over a 2.33 km propagation path. Opt. Express.15,14115-14122 (2007).
    [43]H. T. Yura, Physical model for strong optical-amplitude fluctuations in a turbulent medium. J. Opt. Soc. Am.64,59-67 (1974).
    [44]陈晶 星地光通信演示系统若干关键技术研究[D]武汉:武汉大学,2008
    [45]刘伟峰,谢永杰,赵乐至.天空背景辐射亮度测量与研究[J]应用光学,2012,Vo1.22(3):351-354
    [46]Ove Steinvall*, Goran Bolander, Lars Sjokvist, Mikael Petersson, Ove Gustafsson, Folke Bergiund, Karisson, Tomas Larsson, Frank Gustavsson. Single and double path laser link measurements over water[C]Proc. of SPIE,2004,Vol5412:37-53
    [47]Mark Chang, Carlos 0. Font, Freddie Santiago, Ya'itza Luna, Erick Roura, Sergio Restaino. Marine environment optical propagation measurements[C] Proc. of SPIE,2004, Vol5550:40-46
    [48]John Zeller and Tariq Manzur. Effects of evaporation layer on free-space optical communication links near sea surface at 1.55 μm[C] Proc. of SPIE,2011, Vol8184: 81840C1-81840C12
    [49]John Zeller and Tariq Manzur. Free-space optical communication links and evaporation layer study near sea surface at 1.55 μm[C]Proc. of SPIE,2011, Vol.8046:8046001-80460012
    [50]H. Henniger, B. Epple, H. Haan Maritime Mobile Optical-Propagation Channel Measurements[C]IEEE ICC,2010
    [51]Steve Hammel and Daniel Kichura. Turbulence effects on laser propagation in a marine environment[C] Proc. of SPIE,2008, Vol.7090:70900k1-70900kl2
    [52]Freddie Santiago, Christopher Wilco, Mark Chang, Carlos 0. Font, Erick Roura, Sergio Restainob. Low altitude horizontal scintillation measurements of atmospheric turbulence over the sea:Experimental results[C]Proc. of SPIE,2005, Vol.6014:6014131-6014139
    [53]Andreas, E. L,Estimating Cn2 over snow and ice from meteorological data[J] Optical Society,1998,5A:481-495
    [54]Paul A. Frederickson, Stephen Doss-Hammel, Dimitris Tsintikidis, and Kenneth Davidson, Recent results on modeling the refractive-index structure parameter over the ocean surface using bulk methods[C] Proc. of SPIE,2005, Vol.5891: 58910C1-58910C8
    [55]Frederickson, P. A, Davidson, K.L, Zeisse, C. R., Bendall C. S. Estimating the refractive index structure parameter over the ocean using bulk methods[J]Appl. Meteorology,2000, Vol.39:1770-1783.
    [56]Ove Steinvall, Goran Bolander, Lars Sjoqvist, Mikael Petersson. Single- and double-path 10.6 u m laser link measurements over sea water[J]Optical Engineering 2007,46(3):0360011-03600115
    [57]陈栋,饶瑞中基于Bulk方法的南海近海面大气湍流特征分析[J]大气与环境光学学报,2011,Vol.6(4):268-273
    [58]Carlos O. Font, Mark P. J. L. Chang, Eun Oh and Charmaine Gilbreath. Humidity contribution to the refractive index structure function[C] Proc. of SPIE,2006, Vol.6215:6215021-6215029
    [59]Carlos 0. Font, Mark P.J.L. Chang, Erick A. Roura, Eun Oh. On the relationship between Cn2 and humidi ty [C] Proc. of SPIE,2006,Vol.6268:62683D1-62683D12
    [60]A. W. Cooper Height Dependence of Optical Scintillation Over the Ocean[C]Topical Meeting on Optical Propagation through Turbulence,1974
    [61]乐时晓10.6μm激光海面通信传输的初步研究[J]成都电讯工程学院学报,1981
    [62]乐时晓近海面相对稳定传输层的激光闪烁[J]中国激光,1982,5:26-28
    [63]Stuart G. Gathman Optical properties of the marine aerosol as predicted by the Navy aerosol model[J]Optical Engineering,1983, Vol.22(1):57-62
    [64]C. M. Davies, Size distributions of atmospheric particles[J]Aerosol Sci. 1970, Vol.15:293-300
    [65]Alexander M. J. van Eijk, Jolanta T. Kusmierczyk-Michulec, Jacques P. PiazzolaThe Advanced Navy Aerosol Model (ANAM):Validation of small-particle modes
    [66]M. H. Smith and D. R. Bater, Radon concentrations over the Northeast Atlantic[C] UMIST Report, Mar.1992
    [67]Carl Zeissea, Stuart Gathmana, Douglas Jensena, Low Elevation Transmission Measurements at EOPACE Part I:Molecular and Aerosol Effects[C]SPIE,Vol.3125:109-122
    [68]高文静,罗振莹,王垒1海面激光大气衰减变化规律的初步研究[J]光电技术应用,2010,Vol.25(4):23-26
    [69]Roderic L. Olsen, David V. Rogers, Daniel B. Hodge,The aRb Relation in the Calculation of Rain Attenuation[C]IEEE Tansactions on antennas and propagation,1978, Vol. AP-26(2):318-329
    [70]T. H Carbonneau, D. R. Wisely, Opportunities and challenges for optical wireless: the competitive advantage of free space telecommunications links in today's crowded marketplace [C]SPIE,1998Vol.3232:119-128
    [71]P. J. Winzer and W. R. Leeb, "Fiber coupling efficiency for random light and its applications to lidar, " Opt. Lett.23,986-988 (1998).
    [72]W. R. Leeb, P. J. Winzer, and K. H. Kudielka, "Aperture dependence of the mixing efficiency, the signal-to-noise ratio, and the speckle number in coherent lidar receivers," Appl. Opt.37,3143-3148 (1998).
    [73]T. Weyrauch, M. A. Vorontsov, J. W. Gowens, and T. G. Bifano, "Fiber coupling with adaptive optics for free-space optical communication, " in Free-Space Laser Communication and Laser Imaging, D. G. Voelz and J. C. Ricklin, eds., Proc. SPIE 4489,177-184 (2002).
    [74]H. T. Yura, "Optimum truncation of a Gaussian beam in thepresence of random jitter," J. Opt. Soc. Am. A 12,375-379(1995).
    [75]马洁,李国斌船舶横摇运动的时间序列预报[J]北京机械工业学院学报,2006,Vo1.21(1):4-7
    [76]沈宏桂,对水面舰船静水横摇周期系数的修正[J]舰船科学技术,1983,Vol.4:1-9
    [77]荆兆寿,刘胜,杨文春.随机海浪信号仿真器的研究[J]信号与控制,1989,Vol.6:47-51
    [78]金鸿章,长峰波随机海浪的实时仿真和频谱分析[J]船舶工程,1987,Vol.1:24-30
    [79]Anderson E H, Evert M E, Glaese R M, et al. Satellite ultraquiet isolation technology experiment (SUITE):electromechanical subsystems [C] Part of the SPIE Conference on Industrial and Commercial Applications of Smart Structures Technologies,1999,3674:308-328
    [80]MacDonnell D. Occultation pointing maintenance and FOV for SAGE-III on the ExPRESS pallet [C]AIAA Conference and Exhibit on International Space Station Utilization,2001,5008:1-8.
    [81]李传鹏,黄海.基于Hexapod的精密跟瞄平台研究[J]宇航学报,2010,Vol.31(3):681-686
    [82]Vladimir V. Nikulin, Rahul M. Khandekar, Jozef Sofka, Agile acousto-optic trackingsystem for free space optical communications[J]Optical Engineering,2008,47(6):1-6
    [83]Shinhak Lee. Pointing accuracy improvement using model-based noise reduction method [J].SPIE,2002, Vol.4635, pp.65-71.
    [84]李晓峰,罗彤,邓科,等.采用CCD的空间光通信光斑位置提取重心算法的分析及实验[J].2004,6:13-15.
    [85]李春艳,谢华,李怀锋,孙才红.高精度星敏感器星点光斑质心算法[J].光电工程,2006,33(2):41-44.
    [86]A. Biswas, S. Lee, Ground-to-Ground Optical Communications Demonstration, [C] The Telecommunications and Mission Operations Progress Report, May 15,2000, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
    [87]Abhijit Biswas, Malcolm W. Wright, Babak Sanii, Norman A. Page,45 Km horizontal path optical link demonstrations
    [88]任航,张涛.基于灰度投影法运动估计的成像CCD平移补偿法[J]应用光学,2009,Vol.30(3):417-422
    [89]秦义,付小宁,黄峰.激光光斑定位的多圆拟合算法的研究[J]西安科技大学学报,2006,26(4):519-523
    [90]李为民,俞巧云.光点定位中的曲面拟合迭代算法[J]光学技术,2004,30(1):1-3
    [91]Lee Shinhak. Pointing Accuracy Improvement using Model-Based Noise Reduction Method[C]SPIE,2002,4635:65-71

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700