船舶横摇非线性随机动力学行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
船舶倾覆会造成重大的财产损失和人员伤亡,有关船舶事故的研究,尤其是如何防止诸如倾覆等恶性事故的研究越来越引起人们的重视。船舶倾覆研究比较复杂,主要困难有两点:一是涉及到船舶大幅度摇荡运动,这种情况下船舶运动具有很强的非线性,对于非线性问题,目前还缺乏有效的数学工具;二是涉及波浪外载荷的随机性,这导致了倾覆的发生是一个具有一定概率的随机事件。对于发生甲板上浪的船舶,因其行为的复杂性,倾覆问题的研究更加困难。目前,人们通常以一些经验性的要求来防止倾覆发生。然而,满足稳性规范的船舶在海浪中倾覆事故的频频发生,暴露出了目前基于静力学稳性规范的不足。
     本文应用非线性随机动力学理论和方法研究了规则和随机波浪中,无甲板上浪和甲板上浪两种情况下船舶横摇的非线性动力学特性,研究了船舶倾覆过程的分岔和混沌等复杂动力学行为,进一步揭示了船舶倾覆的机理,建立了预报船舶倾覆的准则。以一条长66.01m的拖网船为例,得到的主要结论如下:
     (1)应用非线性动力学方法研究了无甲板上浪和甲板上浪时船舶在规则波浪中横摇运动的稳定性,导出了横摇定常周期解的稳定条件,解释了横摇响应中存在的跳跃现象。研究表明,无甲板上浪时,船舶运动由于横摇角过大而失稳;甲板上浪后,船舶在较低的海况下即会失去运动稳定性,横摇运动跨越三个平衡点,横摇中心快速且反复的转移,在一些不确定力的作用下会使运动失稳并导致船舶倾覆。
     (2)用随机Melnikov均方准则研究了随机波浪中无甲板上浪和甲板上浪两种情况下船舶横摇的混沌参数域。研究表明,甲板上浪严重影响船舶的稳性,混沌参数域的大小与波浪激励参数的大小密切相关,波浪激励参数越大,混沌参数域越大。甲板上浪后,船舶的非混沌参数域比无甲板上浪时的非混沌参数域小很多。提高阻尼将抑制随机混沌的发生,实际设计中,通过改进船体外型和采用舭龙骨提高阻尼来提高船舶的抗倾覆特性。
     (3)提出了随机波浪中甲板上浪后船舶运动相空间转移率的计算方法,以相对相空间转移率作为船舶稳性损失的度量,定量比较了随机波浪中无甲板上浪和甲板上浪两种情况下船舶的抗倾覆能力,计算表明甲板上浪严重影响船舶的稳性。
     (4)用路径积分法求解了无甲板上浪时船舶横摇的概率密度函数。计算表明,无甲板上浪时船舶横摇响应的联合概率密度函数为单峰。在非混沌参数域中,联合概率密度函数的形状趋于稳定,船舶运动以概率1安全。在混沌参数域中,联合概率密度函数值在空间发散,船舶停留在安全域中的概率随着时间的推移逐渐减小,波浪激励参数越大,减小的越快,当时间足够长时,横摇状态必将离开安全域,从理论上讲,这种情况下船舶最终必然倾覆。另外,在混沌参数域中横摇运动相流,周期的从正、负稳性消失角周围流出安全域,船舶可能发生的倾覆由横摇角超过正、负稳性消失角引起。
     (5)用路径积分法求解了甲板上浪后船舶横摇的概率密度函数。研究表明,甲板上浪后,船舶横摇响应的联合概率密度函数有两个峰,船舶运动过程有两个可能的横摇状态。当这两个峰不相通时,对于相平面上任意一组确定的初始条件,船舶运动只能实现其中的一个横摇状态而不发生跳跃。当这两个峰相通时,横摇运动跨越三个平衡点,对于相平面上任意一组确定的初始条件,船舶运动在两个横摇状态间随机跳跃,并可能导致船舶倾覆。计算横摇响应的庞加莱截面表明,随机噪声使横摇响应的混沌吸引子面积有所扩散。
     (6)基于非线性随机动力学理论提出了随机波浪中船舶横摇倾覆的判定准则,将计算过程程序化,为实际应用文中提出的准则奠定了基础。
Lots of possessions and lives are lost when ship capsize. People pay more and more attention to study the ship accidents, especially the stability against capsizing. Capsizing is a very complicated event and the main difficulties involve two sides. One is the strong nonlinearity because of the large toss of ship. However, there are not enough effective methods to solve the strong nonlinear problems. The other is that the capsizing occurs in a probability because of the random characteristic of the waves force. As for the water on deck ship, it is harder to investigate the capsizing for its complicated behaviors. Now, only some experiential criteria are presented to prevent capsizing. Nevertheless, the shortcomings of them are revealed distinctly after a great deal of ships capsized that satisfied the current static criteria.
     The nonlinear dynamics for ship roll excited by the regular waves and random waves are studied by the nonlinear stochastic dynamic theory without and with considering the water on deck. The bifurcation and chaos related to capsizing are investigated, the capsizing mechanisms are farther interpreted, and the criteria for predicting ship capsizing are established. The calculation results are given for 66.01 meters long trawler.The main conclusions obtained are as following:
     (1) The stability for ship roll in regular waves is studied by the nonlinear dynamic methods without and with considering water on deck, respectively. The stable conditions for the periodic stationary roll motion are ascertained, and the jump phenomena are explained analytically. It is found that if water on deck doesn’t occur, the stability of ship roll loses because of the large roll angle. After water on deck occurs, stability of ship roll loses under weak wave excitation, the roll response includes three equilibrium points and the center around which the ship rolls is transferred frequently and reiteratively, that may result in roll stability losing and ship capsizing if the ship is excited by some uncertain force.
     (2) The random chaotic parameter region of the ship roll without and with water on deck in the random waves is studied by the random Melnikov mean square criterion. It is found that water on deck affects ship stability severely. The area of the random chaotic parameter region relates closely with the wave excitation parameters, it increases with the increasing of the wave excitation. The area of the nochaotic parameter region diminishes greatly after water on deck occurs. The random chaos in the ship roll can be controled by increasing the damping, the stability against capsizing can be increased by improving ship exterior and adding the keel.
     (3) The calculational methods for the phase space flux of the ship roll are presented with considering water on deck in the random waves. The stability against capsizing is compared quantitatively by the phase space flux between the ship without condiering the water on deck and with considering the water on deck in the random waves. It is found that the water on deck affects ship’s stability severely.
     (4) The probability density function of the ship roll without water on deck is calculated by the path integral method. It is found that the joint probability density function has a single peak. In the nochaotic parameter region, the shape of it goes to steady, and the ship roll is safe in probability 1. While in the chaotic parameter region, the value of the joint probability density function disappeared gradually, the probability of the ship holding in the safe states decreases as time progresses and it decreases more quickly for the strong wave excitation. The roll response will leave the safe states for enough time and the ship will capsize theoretically in the end. In the chaotic parameter region, the phase flux of the ship roll leaves the safe states periodically from neighborhood of the positive and the negative stability vanish angle. It is shown that the ship capsizing may relate to the roll angle exceeding the stability vanish angle when water on deck doesn’t occur.
     (5) The probability density function of the ship roll with water on deck is calculated by the path integral method. It is found that the joint probability density function has two peaks and the ship roll process has two possible roll states. If the two peaks are unconnected, only one roll state can be achieved and no jump happened in the roll response for a set of intitial conditions of the phase plane. If the two peaks are connected, the roll response includes three equilibrium points and roll process jumps randomly from one roll state to another one. That may lead the ship to instability and even to capsizing. It is shown in Poincare maps that the random noise diffuses the area of the chaotic attractor of roll response.
     (6) The capsizing criteria of ship roll in the random seas are established based on the nonlinear random dynamic theory and the calculation process is modularized. This makes it easy to use the criteria in the real engineering.
引文
[1] Kreuzer E., Wendt M., Ship capsizing analysis using advanced hydrodynamic modeling, Philosophical Transactions of the Royal Society, Series A, 2000, 358(1771): 1835-1851
    [2] 施内克鲁特(德),船舶水动力学,上海:上海交通大学出版社,1997
    [3] 张文摈,姚震球,蒋志勇,船舶稳性理论研究的方法及进展,华东船舶工业学院学报,2002,16(1):7-11
    [4] 柳存根,船舶设计中的稳性及优化算法研究:[博士学位论文],上海:上海交通大学,1996
    [5] Virgin L.N., The nonlinear rolling response of a vessel including chaotic motions leading to capsize in regular seas, Applied Ocean Research,1987, 9(2): 331-352
    [6] Nayfeh A.H. and Khdeir.A.A., Nonlinear rolling of ships in regular beam seas, International Shipbuilding Progress, 1986, 33(379):40-49
    [7] Nayfeh A.H. and Khdeir.A.A., Nonlinear rolling of biased ships in regular beam seas, International Shipbuilding Progress, 1986, 33(381):84-93
    [8] Nayfeh A.H. and Sanchez N.E., Stability and complicated rolling responses of ships in regular beam seas, International Shipbuilding Progress, 1990, 37(412): 331-353
    [9] Sanchez N.E and.Nayfeh A.H, Nonlinear rolling motions of ships in long- itudinal waves, International Shipbuilding Progress, 1990, 37(411): 247-272
    [10] Liaw Y. and Bishop S.R., Nonlinear heave-roll coupling and ship rolling, Nonlinear Dynamics, 1995, 8(2):197-211
    [11] Holappa K.W., and Falzarano J.M., Application of extended state space to nonlinear ship rolling, Ocean engineering, 1999, 26(3): 227-240
    [12] Taylan M., The effect of nonlinear damping and restoring in ship rolling, Ocean Engineering, 2000, 27(9):921-932
    [13] Taylan M., Static and dynamic aspects of a capsize phenomenon, Ocean engineering, 2003, 30(3):331-350
    [14] Surendran S. and Venkata Ramana Reddy J., Numerical simulation of ship stability for dynamic environment, Ocean engineering 2003, 30(10): 1305-1317
    [15] Thompson J.M.T., Basic concepts of nonlinear dynamics, In: Proceeding of. IUTAM Symp on the Non-linearity and Chaos in Engineering Dynamics, London, USA, 1993
    [16] Thompson J.M.T., Rainey R.C.T. and Soliman M.S., Ship stability criteria based on chaotic transients from incursive fractals, Philosophical Transactions of the Royal Society, Series A, 1990, 332(1624):149-167
    [17] Soliman M.S., Thompson J.M.T., Integrity measures quantifying the erosion of smooth and fractal basins of attraction , Journal of Sound and Vibration,1989, 135(3): 453-475
    [18] Thompson J.M.T., Ueda Y., Basin boundary metamorphoses in the canonical escape equation, Dynamics and Stability of Systems, 1989, 4(3): 138-149
    [19] Soliman M. S. and Thompson J.M.T., Transient and steady state analysis of capsize phenomena, Journal of Non-linear Mechanics, 1989, 24(6): 78-92
    [20] Soliman M.S., Fractal erosion of basins of attraction in coupled non-linear systems, Journal of Sound and Vibration, 1994, 182(5): 729-740
    [21] Thompson J.M.T., Bishop S. and Leung L., Fractal basins and chaotic bifurcations prior to escape from a potential well, Physics Letters A, 1987, 121(3):116-120
    [22] Falzarano J.M., Predicting complicated dynamics leading to vessel capsizing: [Phd dissertation], Michigan: the University of Michigan, 1990
    [23] Bikdash M., Balacpandran B. and Nayfeh A.H., Melnikov analysis for a ship with a general roll-damping model, Nonlinear Dynamics, 1994, 6(1): 101-124
    [24] Kan M. and Taguchi H., Capsizing of a ship in quartering seas, Journal of the society of naval architects of Janpan, 1991, 169:1-13
    [25] Thompson J.M.T., Designing against capsizing in beam seas: Recent advances and new insights, Applied Mechanics Rebiews, 1997, 50(5):307-325
    [26] Spyrou K.J., Cotton B. and Gurd B., Analytical expressions of capsize boundary for a ship in roll bias in beam waves, Journal of ship research, 2002, 46(3): 167-174
    [27] Francescutto A. and Contento G.., Bifurcations in ship rolling: experimental results and parameter identification technique, Ocean engineering, 1999, 26(11): 1095-1123
    [28] 林焰,纪卓尚,船舶在波浪中的横摇运动及其稳性,中国造船,1993,122 (3):37-46
    [29] 冯铁成,陶尧森,船舶横摇的参数激励及对安全性的影响,水动力学研究与进展,1995,10(1):42-47
    [30] 欧阳茹荃,朱继懋,船舶非线性横摇运动与混沌,中国造船,1999,144(1): 21- 28
    [31] 袁远,余音,金咸定,船舶在规则波中的奇异倾覆,上海交通大学学报,2003,37(7):995-998
    [32] 唐友刚,郑俊武,董艳秋等,船舶内共振力学行为的研究,中国造船,1998,143(4):19-26
    [33] 徐德嘉,洪伟宏,朱军等,船舶倾覆机理的新见解,中国造船,1997, 138(3):16-22
    [34] 董艳秋,张延峰,唐友刚等,纵浪上船舶的动稳性研究,中国造船,1998,143(4):27-37
    [35] 纪刚,张纬康,船舶横摇的安全池研究,中国造船,2002,159(4):25-31
    [36] 袁远,余音,金咸定,船舶在规则波中的奇异倾覆,上海交通大学学报,2003,37(7):995-998
    [37] 王冬娇,于玲,横向规则波作用下的船舶倾覆,船舶力学,2004,8(2):25-28
    [38] Goodman T.R. and Sargent T.P., Launching of airborne missiles underwater-part XI-effect of nonlinear submarine roll damping on missile response in confused seas, Applied research associates, inc., Document No. ARA-964, 1961
    [39] Gerasimov A.V., Energy-statistical theory of nonlinear irregular ship motion, Leningrad: Sudostroenie, 1979
    [40] Yamanouchi Y., On the effect of nonlinearity of response on calculation fo the spectrum, In: Proceedings of 11th Towing tank conference, Tokyo, Janpan, 1996, 387-390
    [41] Flower J.O., Perturbational approach to nonlinear rolling in stochastic sea, International shipbuilding progress, 1976, 23(263): 209-212
    [42] Nekrasov V.A., Probabilistic problems of seakeeping, Leningrad: Sudostroyeniye published, 1978
    [43] Haddara M.R., A modified approach to the application of the Fokker-Planck equation to nonlinear ship motions in random waves , International shipbuilding progress, 1974, 21(242):283-288
    [44] Robers J.B., The effect of parametric excitation on ship rolling motion in random waves, National maritime institute report R100, 1980
    [45] Robers J.B., Theory for nonlinear ship rolling in irregular seas, Journal of ship research, 1982, 26(4):229-245
    [46] Cai G..Q., Yu S.J. and Lin Y.K., Ship rolling in random sea, In: Proceeding of the stochastic dynamics and reliability of nonlinear ocean systems, Chicago, USA, 1994, 81-88
    [47] Roberts J. B., First-passage time for randomly excited non-linear oscillators, Journal of Sound and Vibration, 1986, 109(1):33-50
    [48] Roberts J. B., Dunne J. F. and Debonos A., Estimation of ship roll parameters in random waves, Journal of Offshore Mechanics and Arctic Engineering, 1992, 114(2): 114-121
    [49] Roberts J. B., Dunne J. F., and Debonos A., Stochastic estimation methods for non-linear ship roll motion, Probabilistic Engineering Mechanics, 1994, 9(1-2): 83-93
    [50] Roberts J. B., Dunne J. F. and Debonos A., Spectral method for estimation of non-linear system parameters from measured response, Probabilistic Engineering Mechanics, 1995, 10(4):199-207
    [51] Vasta, M. and Roberts, J.B., Stochastic parameter estimation of non-linear systems using only higher order spectra of the measured response, Journal of Sound and Vibration, 1998, 213(2): 201-219
    [52] Roberts, J.B. and Vasta M., Energy-based stochastic estimation for nonlinear oscillators with random excitation, Journal of Applied Mechanics, 2000, 67(4):763-71
    [53] Roberts J.B. and Vasta M., Parametric identification of systems with non- Gaussian excitation using measured response spectra, Probabilistic Engineering Mechanics, 2000, 15(1): 59-71
    [54] Lin H., and Yim S.C.S., Chaotic roll motion and capsize of ships under periodic excitation with random noise, Applied ocean research, 1995, 17(3): 185-204
    [55] Yim S.C.S., and Lin H., Unified analysis of complex nonlinear motions via densities, Nonlinear dynamics, 2001, 24(1): 103-127
    [56] Tongchate Nakata, Stability analysis of nonlinear coupled barge motionsz: [Phd dissertation], Oregon: Oregon state university, 2002
    [57] 朱位秋,随机振动,北京:国防工业出版社,1998
    [58] Francescutto A., On the nonlinear motions ships and structures and narrow band sea, In: Proceedings of the IUTAM symposium on dynamics of marine vehicles and structures in waves, London, UK, 1990
    [59] Francescutto A., Stochastic modeling of nonlinear motions in the presence of narrow band excitation, In: Proceedings of the second international offshore and polar engineering conference, San Francisco, USA, 1992, 554-558
    [60] Francescutto A. and Shigeru Naito, Large amplitude rolling in realistic sea, International shipbuilding progress, 2004, 51(2-3):221-235
    [61] Belenky V.L., Degtyarev A.B. and Boukhanovsky A. V., Probabilistic qualities of nonlinear stochastic rolling, Ocean engineering, 1998, 25(1):1-25
    [62] Belenky V.L., Suzuki S.H. and Yamakoshi Yu., Preliminary results of exp- erimental validation of practical non-ergodicity of large amplitude rolling motion, In: Proceedings of 5th international stability workshop, Trieste, Italy, 2001
    [63] Belenky V.L., On risk evaluation at extreme seas, In: Proc. of 7th international stability workshop, Shanghai, China, 2004, 118-202
    [64] McCue L. and Troesch A., Probabilistic determination of critical wave height for a multi-degree of freedom capsize model, Ocean engineering, 2005, 32(13):1608-1622
    [65] Kim Sung Hoon and Rhee Key-Pyo, Calculation of a capsizing rate of a ship in stochastic beam seas, Ocean engineering, 2006, 33(3-4): 425-438
    [66] Frey M. and Simiu E., Noise-induced chaos and phase space flux , Physica D,1993, 63(3-4):321-340
    [67] Hsieh S.R., Troesch A.H. and Shaw S.W., A nonlinear probabilistic method for predicting vessel capsizing in random beam seas, Proceedings of the Royal Society of London, Series A, 1994, 446(1926): 195-211
    [68] Jiang C.B., Troesch A.W., and Shaw S.W., Highly nonlinear Rolling motion of biased ships in random beam seas, Journal of Ship Research, 1996, 40(2): 125-135
    [69] Jiang C.B., Troesch A.W., and Shaw S.W., Capsize criteria for ship models with memory-dependent hydrodynamics and random excitation, Philosophical Transactions of the Royal Society of London, Series A, 2000, 358(1771): 1761-1791
    [70] Senjamovic I., Parunov J. and Cipric G.., Safety analysis of ship rolling in rough sea, Chaos solitons and Fractals, 1997, 8(4): 659-680
    [71] Senjanovic I., Cipric G. and Parunov J., Nonlinear ship rolling and capsizing in rough sea, Brodogradnja, 1996, 44(1): 19-24
    [72] Senjanovic I., Cipric G., and Parunov J., Survival analysis of fishing vessels rolling in rough seas[J] Philosophical Transactions of the Royal Society of London , Series A, 2000, 358(1771):1943-1965
    [73] David C.P. and James L.B., Approximate solution for nonlinear random vibration problems, Probabilistic Engineering Mechanics, 1996, 11(3): 179-185
    [74] 柳存根,姚震球,林杰人,矩函数在船舶非线性横摇稳定性判别中的应用,华东船舶工业学报,1996,10(4):7-13
    [75] 沈栋,黄祥鹿,随机波浪作用下的船舶倾覆,船舶力学,1999,3(5):7-14
    [76] 黄祥鹿,朱新颖,应用路径积分法解船舶倾覆概率问题,船舶力学,2001,5(4):7-16
    [77] 李远林,风暴中船舶安全池破损问题,中国造船,2004,45(1):14-18
    [78] 郑宏宇,随机海浪中船舶非线性横摇生存概率研究:[硕士论文],天津:天津大学,2003
    [79] Zheng H.Y., Tang Y.G. and Gu J.Y.,. The simulation of ship capsizing and the calculation of safe basin in random beam seas, In: Proceedings of 7th International ship stability workshop, Shanghai, China, 2004, 214-219
    [80] 唐友刚,谷家扬,郑宏宇等,用 Melnikov 方法研究船舶在随机横浪中的倾覆[J],船舶力学,2004,8(5):27-34
    [81] Spanos P.T.D., Stochastic linearization in structure dynamics, Applied Mechanic Review, 1981, 34 (1):1-8
    [82] ZhuW.Q., Soong, T.T. and LeiY., Equivalent nonlinear system method for stochastically excited Hamiltonian system, Journal of Applied Mechanics, 1994, 63 (3): 618-623
    [83] Elishakoff I. and Cai G..Q., Approximation solution for nonlinear random vibration problems by partial stochastic linearization, Probabilistic Engineering Mechanics, 1993, 8(3-4): 233-237
    [84] Crandall S.H., Non-Gaussian closure for random vibration excitation, Intern- ational Journal of Nonlinear Mechanics, 1980, 15(5): 303-313
    [85] Crandall S.H., Perturbation techniques for random vibration of nonlinear system, Journal of the Acoustical Society of America, 1963, 35(11): 1700-1705
    [86] Robberts J.B. and Spanos P.D., Stochastic average: an approximate method of solving random vibration problems, International Journal of Nonlinear Mechanics, 1986, 21(6): 11-134
    [87] Cai G..Q., Lin Y.K., A new approximate solution technique for random excited nonlinear oscillation, International Journal of Nonlinear Mechanics, 1992, 27(6): 969-979
    [88] Guo-Kang Er, A consistent method for the solution to reduced FPK equation in statistical mechanics , Physica A, 1999, 262(1-2): 118-128
    [89] Rong H.W., Meng G.G., ect, Approximation closure method of FPK equation, Chinese Journal of Applied Mechanics, 2003, 20 (3): 95-98
    [90] Dunne J.F., Ghanbari M., Extreme-value prediction for nonlinear stochastic oscillators via numerical solutions of the stationary FPK equation, Journal of sound and vibration, 1997, 206(5): 697-724
    [91] 谢文贤,路径积分法的推广及其在非线性随机动力学系统研究中的应用:[硕士论文],西安:西北工业大学,2005
    [92] Bhandari R.G. and Sherrer R.E., Random vibrations in discrete non-linear dynamic systems, Journal of Mechanical Engineering Science, 1968, 10(2): 168-174
    [93] Wen Y.K., Approximate method for nonlinear random vibration, ASCE, Journal of mechanical engineering division, 1975, 101(4): 389-401
    [94] Wen Y.K., Method for nonlinear random vibration of hysteretic systems, Journal of Mechanical Engineering Division, 1976, 56(5): 249-263
    [95] Soize C., Steady state solution of Fokker-Planck equation for higher dimensions, Probabilistic Engineering Mechanics, 1989, 3(4): 196-206
    [96] Liu Q., Davies H.G., The non-stationary response probability density junctions of non-linearly damped oscillators subjected to white noise excitations, Journal of Sound and Vibration, 1990, 139(3): 425-435
    [97] Kunert A., Efficient numerical solution of multidimensional Fokker-Planck equation associated with chaotic and nonlinear random vibration, In: ASME Design Technical conference presented at the 13th biennial conference on mechanical vibration and noise, New York, USA, 1991, 22-25
    [98] Willian S.M.C., Knappettand D.J. and Fox C.H.J., Numerical solution of the stationary FPK equation using Shannon Wavelets, Journal of Sound and Vibration 2000, 232(2): 405-430
    [99] Di Paola M. and Sofi, A., Approximate solution of the Fokker-Planck- Kolmogorov equation, Probability Engineering Mechanics 2002, 17(2): 369-384
    [100] Feng Z.Y., Duan Z.X. and Zeng Z.P., The application of finite element method of line to FPK equation, Journal of Nonlinear Mechanics in Science and Technoloty, 1998, 5(1), 1998: 23-27
    [101] Langley R.S., A finite element method for the statistics of nonlinear random vibration, Journal of Sound and Vibration, 1985, 101(1): 41-54
    [102] Spencer B.F. and Bergman L.A., On the numerical solution of the Fokker-Planck equation for nonlinear stochastic systems, Nonlinear Dynamic 1993, 4(4): 357-372
    [103] Wojtkiewizc S.F., Bergman L.A. and Spencer B.F., Robust numerical solution of Fokker-Planck-Kolmogorov equation for two dimensional stochastic dynamics systems, Technical Report, Aeronautical and astronautical engineering department, University of Illinois, 1994
    [104] Shiau L.C., Wu T.Y., A finite-element method for analysis of an nonlinear system under stochastic parametric and external excitation, International Journal of Non-Linear Mechanics 1996, 31(2): 193-201
    [105] Yi W., Bergman L.A. and Spencer B.F., Solution of Fokker-Planck equations in higher dimensions: application of concurrent finite element method, In: International conference on structural safety and reliability, Kyoto, Japan, 1998, 859-865
    [106] Roberts J.B., First passage time for randomly excited nonlinear oscillator, Journal of Sound and Vibration, 1986, 109(1): 33-50
    [107] Park B.T. and Petrosian V., Fokker-Planck equations of stochastic acceleration: a study of numerical method, The Astrophysical Journal Supplement Series 1996, 103(1):255-267
    [108] Zorzano M.P., Mais H. and Vazquez L., Numerical solution for Fokker-Planck equations in accelerators, Physica D, 1998, 113(2):379-381
    [109] Zorzano M.P., Mais H., Vazquez L., Numerical solution of two dimensional Fokker-Planck equations, Applied Mathematics and Computation, 1999, 98(2-3):109-117
    [110] Zorzano M.P. and Vazquez L., Emergence of synchronous oscillations in neural networks excited by noise, Physica D, 2003, 179(1):105-114
    [111] Ilin A.M., Khasminskii R.Z., On equations of Brownian motion, Theory of Probability and Application, 1964, 9(3): 421-444
    [112] Kushner H.J., Stability and existence of diffusions with discontinuous or rapidly growing drift terms, Journal of Differential Equations, 1972, 11(1):156-168
    [113] Mayfield W.W., A sequence solution to the Fokker-Planck equation, IEEE Transactions on Information Theory, 1973, 19(2):165-175
    [114] Wedig Walter V., Iterative schemes for stability problems with non-singular Fokker-Planck equations, International Journal of Non-Linear Mechanics 1996, 31(5): 707-715.
    [115] Atkinson J.D., Eigenfunction expansions for randomly excited nonlinear systems, Journal of Sound and Vibration, 1973, 30(2): 153-172.
    [116] Johnson J.P. and Scott R.A., Extension of eigenfunction-expansion solutions of a Fokker-Planck equation em dash 2 second order system, International Journal of Non-Linear Mechanics, 1980, 15(1): 41-56
    [117] Langley R.S., A variational formulation of the FPK equation with application to the passage problem in random vibration, Journal of Sound and Vibration 1988, 123(2):213-217.
    [118] Bertoluzza.S. and Naldi.G., A wavelet collocation method for the numerical solution of partial differential equation, Applied and Computational Harmonic analysis, 1996, 3(1):1-9
    [119] Mcwilliam S., Knappett D.J. and Fox C.H.J., Numerical solution of the stationary FPK equation using Shannon wavelets, Journal of Sound and Vibration, 2000, 232(2):405-443
    [120] Guo-Kang Er., A consistent method for the solution to reduced FPK equation in statistical mechanics, Physica A, 1999, 262(1-2):118-128
    [121] Wehner M.E. and Wolfer W.G., Numerical evaluation of path-integral solutions to Fokker-Planck equations, Physical Review A, 1983, 27(5): 2663-70
    [122] Yu J.S., Cai G.Q., Lin Y.K., A new path procedure based on Gauss-Legendre scheme, International Journal of Non-Linear Mechanics, 1997,32(4): 759-768.
    [123] Yu J.S. and Lin Y.K., Numerical path integration of a nonlinear oscillator subject to both sinusoidal and white noise excitations, In: Proceedings of the Fifth International Conference on Stochastic Structural Dynamics, Hangzhou, China, 2003, 525-533
    [124] Yu J.S., and Lin Y.K., Numerical path integration of a non-homogenous Markov process, Non-linear mechanics, 2004, 39(9):1493-1500
    [125] 纪青等,路径积分 Monte-Carlo 方法与非线性随机振动,计算物理,1995, 12 (4):505-510
    [126] Pradlwarter H.J., Schue¨ller G.I., On advanced Monte Carlo simulation procedures in stochastic structural dynamics, International Journal of Non-Linear Mechanics 1997, 32(4):735–44
    [127] Pradlwarter H.J., Schueller G.I., Assessment of low probability events of dynamical systems by controlled Monte Carlo simulation, Probabilistic Engineering Mechanics, 1999, 14(3):213–27
    [128] Bayer V., Bucher C., An importance sampling procedure for first passage problems, In: Proceedings of the 7th international conference on structural safety and reliability, Kyoto, Japan, 1997
    [129] Muscolino G., Ricciardi G., Cacciola P., Monte Carlo simulation in the stochastic analysis of non-linear systems under external stationary Poisson white noise input, International Journal of Non-Linear Mechanics, 2003, 38(8):1269 – 1283
    [130] Naess A., Johnsen J.M., Response statistics of nonlinear compliant structures by the path integral solution method, Probabilistic Engineering Mechanics 1993, 8(2):91-106
    [131] Naess A and Moe V., Stationary and non-stationary random vibration of oscillators with bilinear hysteresis, International Journal of Non-Linear Mechanics, 1996, 31(5): 553-562
    [132] Naess A. and Hoegh Krohn L.J., Alternative stochastic representation of drag forces on offshore structures for dynamic analyses , Journal of Offshore Mechanics and Arctic Engineering, Transactions of the ASME, 1997, 119(3):178-183
    [133] Naess A. and Moe V., Efficient path integration methods for nonlinear dynamic systems, Probabilistic Engineering Mechanics, 2000, 15(1): 221-231
    [134] Colet P., Horacio S.W. and Miguel M.S., colored noise: a Perspective from a path-integral formalism, Physical review A, 1989, 39(11):6094-9097
    [135] Horacio S.W., Colet.P. and Miguel M.S., Path-integral formulation for sto- chastic processes driven by colored noise, Physical review A, 1989, 40(2): 7312-7324
    [136] Kharchenko D.O., Path integral solution of the system with coloured multi- plicative noise, Physica A, 2002, 308 (1-4):113 – 124
    [137] Lianga G.Y., Cao L. and Wu D.J., Approximate Fokker–Planck equation of system driven by multiplicative colored noises with colored cross-correlation, Physica A, 2004, 335 (3-4):371 – 384
    [138] 朱位秋,非线性随机动力学与控制,北京:科学出版社,2003
    [139] Zhu W.Q, and Yu, J.S., The equivalent nonlinear system method, Journal of sound and vibration, 1989, 129(3):385-395
    [140] Zhu W.Q., Soong T.T. and Lei Y., Equivalent nonlinear system method for stochastically excited Hamiltonian system, Journal of Applied Mechanics, Transactions ASME, 1994, 61(3): 618-622
    [141] Zhu W.Q., Huang Z.L. and Suzuki Y., Equivalent nonlinear system method for stochastically excited and dissipated partially integrable Hamiltonian systems, International journal of non-linear mechanics, 2001, 36(5):773-786
    [142] Zhu W.Q., Stochastic averaging of quasi-Hamiltonian systems, Science in china, series A, 1996, 39(1):97-107
    [143] Zhu W.Q. and Yang Y.Q., Stochastic averaging of quasi-nonintegrable -Hamiltonian systems, Journal of Applied Mechanics, Transactions ASME, 1997, 64(1):157-164
    [144] Zhu W.Q., Huang, Z.L. and Yang Y.Q., Stochastic averaging of quasi–integrable -Hamiltonian systems, Journal of Applied Mechanics, Transactions ASME, 1997, 64(4): 975-984
    [145] Zhu W.Q., Huang Z.L. and Suzuki Y., Stochastic averaging and lyapunov exponent of quasi partially integrable-Hamiltonian systems, International journal of non-linear mechanics, 2002, 37(6):419-437
    [146] Zhu W.Q., Huang, Z.L. and Suzuki Y., Response and stability of strongly non-linear oscillators under wide-band random excitation, International journal of non-linear mechanics, 2001, 36(8):1235-1250
    [147] Huang Z.L., Zhu W.Q. and Suzuki Y., Stochastic averaging of strongly non-linear oscillators under combined harmonic and white-noise excitations, Journal of sound and vibration, 2000, 238(2):233-256
    [148] Huang Z.L, Zhu W.Q., Ni Y.Q. and Ko J.M., Stochastic averaging of strongly non-linear oscillators under bounded noise excitation, Journal of sound and vibration, 2002, 254(2):245-267
    [149] 朱位秋,非线性随机动力学与控制研究进展及展望,世界科技研究与发展, 2005,27(1):1-4
    [150] 朱位秋,非线性随机动力学与控制研究近期进展,强度与环境,2005,32(4):1-5
    [151] 谢楠,郜焕秋,金承仪,船舶甲板上浪压力的模型试验,船舶力学,1997,1(2):29-32
    [152] Dillingham J.T., Motion predictions for a vessel with shallow water on deck: [Phd dissertation], Berkeley: The University of California at Berkeley, 1979
    [153] Dillingham JT. and Falzarano J.M., A numerical method for three-dimensional sloshing, In: Proceedings of the Ship Technology and Research (STAR) Symposium, Portland, OR, USA, 1986, 75-85
    [154] 黄祥鹿,董祖伟,罗薇等,甲板上浪与船舶横摇计算,中国造船,1991, 1:15-23
    [155] 黄祥鹿,顾谢,船舶甲板上浪横摇的时域模拟,中国造船,1993,26(3):27- 36
    [156] Belenky V.L., Liut D., et al, Nonlinear ship roll simulation with water-on-deck, In: Proceedings of the stability workshop, New York, USA, 2002
    [157] Santos T.A. and Guedws S.C., Investigation into effect of shallow water on deck on ship motion, In: 7th Stability of ships and ocean vehicles conference, Launceston, Australia, 2000, 81-96
    [158] Caglayan I.H., and Storch R.L., Stability of fishing vessel with water on deck: a review, Journal of ship research, 1982, 26(2):106-116
    [159] Bikdash B., Balachandran B. and Nayfeh A.H., Melnikov analysis for a ship with general roll damping model, Nonlinear dynamics, 1994, 6(1): 101-124
    [160] Buchner B., On the impact of green water loading on ship and offshore unit design, In: The sixth international symposium on practical design of ships and mobile units (PRADS ’95), Seoul, Korea, 1995
    [161] Davidson R., Jones D., et al., Detection of adaptive inverse models in the human motor system, Human Movement Science, 2002, 19(5):761-795
    [162] Hamoudi B., and Varyani K.S., Significant load and green water on deck of offshore units/vessels, Ocean Engineering, 1998, 25(8):715–731
    [163] Mizoguchi S., Design of free board height with the numerical simulation on the shipping water, In: International Symposium on Practical Design of Ships and Mobile Units, Varna,Bulgaria, 1989, 1–8
    [164] Murashige S. and Aihara K., Experimental study on chaotic motion of a flooded ship in waves, Proceedings of the Royal Society of London, Series A, 1998, 454(1978):537-2553
    [165] Murashige S. and Aihara K., Bifurcation and resonance of a mathematical model for non-linear motion of a flooded ship in waves, Journal of sound and vibration, 1999, 220(1):155-170
    [166] Murashige S. and Aihara K., Nonlinear analyses of roll motion of a flooded ship in waves, Proceeding of the Royal Society of London, Series A, 2000, 358(1771):1793-1812
    [167] Murashige S. and Aihara K., Delayed-feedback control of chaotic roll motion of flooded ship in waves, In: Proceeding of the Royal Society of London, Series A, 2002, 458(2027):2801-2813
    [168] Morrall A., The Gaul disaster: A investigation into the loss of a large stern trawler, Naval Architect, 1981, (5):391-440
    [169] Oliman M.S. and Thompson J.M.T., Transient and steady state analysis of capsize phenomena, Applied ocean research, 1991, 13(2):82-92
    [170] Taylan M, Static and dynamic aspects of a capsize phenomenon, Ocean engineering, 2003, 30(3):331-350
    [171] Marine accident investigation branch, Report of the re-opened formal investi- gation into the loss of the FV Gaul, part 1: The loss of the GAUL in 1974, the OFI and the aftermath, Published by the Stationery Office, 1999
    [172] Marine accident investigation branch, Report of the re-opened formal investi- gation into the loss of the FV Gaul, part 2: The subsea surveys from 1997 and the new evidence, Published by the Stationery Office, 2004
    [173] Wiggins S., Global bifurcations and chaos: analytical methods, New York: Springer-Verlag, 1988

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700