纵浪和斜浪中船舶非线性运动特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
船舶航行遭遇到风急浪高的恶劣天气时,为了避免横向大面积承受风浪载荷,普遍都会选择调整航向,保持在纵浪或斜浪航行状态;系泊船舶和顺应式海洋结构物在波浪作用下也会最终稳定在纵浪状态。但是,目前的大量实验资料和海难事故的统计发现,在纵浪和斜浪中航行的船舶会发生大幅横摇运动,存在倾覆危险;系泊船舶和顺应式海洋结构物在纵浪中也会发生多种不同形式的运动,极有可能导致结构的失效和系缆的断裂。
     本文旨在研究纵浪和斜浪中航行船舶的参激横摇运动问题以及系泊油轮在纵浪中的动力特性和系缆张力的变化特性。主要研究内容和结论如下:
     考虑波面形状引起的船舶初稳性高的变化,假设升沉和纵摇满足准静力平衡,提出了纵浪和斜浪中初稳性高波动项的计算方法。建立了船舶纵浪中的参数激励和斜浪中的参强激励横摇运动微分方程。
     应用多尺度方法求出了规则纵浪和斜浪中船舶横摇主参数共振的近似解析解,并分析了运动稳定性。采用摄动法和Floquet理论,求出了不同参数激励幅值和强迫激励幅值下的分岔曲面,确定了发生参数激励大幅横摇和船舶倾覆的航行参数。应用随机平均法和FPK方程,求出了随机纵浪中船舶的随机横摇幅值的概率密度函数。进行了随机和规则海浪中船舶运动的仿真研究。
     数值仿真和解析分析结果表明:在纵浪和斜浪中,当遭遇频率接近船舶横摇固有频率的两倍,波长和船长接近,波高超过某一阈值的时候,船舶会发生主参数共振,产生大幅横摇甚至倾覆;在斜浪中,船舶发生的是参强激励横摇运动,遭遇频率接近横摇固有频率时,还会激起横摇主共振,同样会产生大幅横摇甚至倾覆。为了避免海难事故的发生,可以通过改变航速和航向,改变船波遭遇频率和参、强激励幅值,使其远离共振区域。
     考虑系缆张力的分段非线性特性,建立了系泊铰接塔-油轮系统在纵浪中两自由度分析模型。采用莫里森方程和势流理论分别计算了铰接塔和油轮的波浪载荷。采用数值仿真的方法求解了高度为88.4m的铰接塔和10万吨级油轮的运动响应和系缆动张力,得到了以波浪频率与铰接塔摆动固有频率之比为分岔参数的分岔图,分析了不同系统和环境参数对系统运动和缆绳张力的影响。
     数值仿真结果表明:系统在某些波浪频率范围内出现亚谐运动,发生倍周期分岔;在规则波激励下,非线性系泊系统仍可能发生低频慢漂运动,对应的缆绳张力较大;增大波浪激励幅值或者减小系统阻尼,都可能使低频慢漂区域变大;增大风流力会使亚谐运动和低频慢漂区域向高频的方向移动并逐渐消失。
Sailing ships must be adjusted to longitudinal or oblique sea condition when encounter severe sea state, for the sake of avoid wave and wind loads acting on large area; and the ultimate stable state of mooring ship and compliant marine structure in wave is oscillation in longitudinal wave position. But large rolling and capsizing of ship sailing in longitudinal and oblique waves can be seen both in experiments and real navigations; and many different oscillation forms of mooring ship and compliant marine structure exist, some of which may lead to structural failure and cable broken.
     This paper aims at studying the parametrically excited ship rolling in longitudinal and oblique sea states, discussing dynamic characteristics of mooring ship and dynamic tension of mooring cable in longitudinal wave position. Main contents and conclusions obtained in this paper are as follows:
     The method for the calculation of metacentric height fluctuation is derived for ship sailing in longitudinal and oblique seas, considering the impact of wave profile and assuming quasi-static equilibrium of heave and pitch motions. The parametrically excited and forcedly-parametrically excited equations of ship rolling in longitudinal and oblique seas are established.
     The approximate analytical solutions are obtained for the primary parametric resonance of ship rolling in regular longitudinal and oblique seas, by using multiple scales method. The bifurcation surface is obtained by using perturbation method and Floquet theory,in different parametric excitation amplitudes and forcedly excitation amplitudes. The real navigation condition for primary parametric rolling and capsizing is found. Probability density function of random roll amplitudes is derived in random longitudinal sea state, by using stochastic averaging method and FPK equation. Ship rolling time histories in regular and random seas are gained by using numerical simulation method.
     Numerical simulations and analytical results show: in longitudinal and oblique seas, ship may be subjected to primary parametric resonance with large roll amplitude and even capsizing, when encounter frequency is near the twice of roll natural frequency, wave length and ship length are of the same order and the wave height is larger than a certain value; in oblique seas, ship roll motion is a forcedly-parametrically excited oscillation, primary resonance occur as the encounter frequency is near the roll natural frequency, which may lead to large rolling and capsizing too. To avoid the occurrence of sea accidents, sailing speed and heading angle may be changed to modify the encounter frequency and excitation amplitudes, in order to keep them away from resonance areas.
     The two degree freedom analysis model for articulated tower-tanker system is established, considering the piecewise-nonlinear characteristic of cable tension. Wave loads on articulated tower and tanker are calculated by using Morison equation and potential flow theory. The motion and dynamic cable tension of the mooring system are calculated using numerical simulation method. The mooring system in this paper is composed of an articulated tower with 88.4m height, a 100000-tonnage tanker and a mooring cable. The bifurcation diagram of this system is obtained with the frequency ratio as the bifurcation parameter. Influences of different system and environmental parameters are discussed.
     Numerical simulation results show: sub-harmonic resonance exist in some range of wave frequency, and period-doubling bifurcation is observed; low frequency drift of nonlinear mooring system also exist in regular waves, and the cable tension corresponded to this motion is larger than other motion; the range of wave frequency corresponding to low frequency drift will increase when increase the wave force amplitude or reduce the system damping; as wind and current force increases, the range of wave frequency corresponding to subharmonic resonance and low frequency drift motion will move to the direction of higher frequency and disappear gradually.
引文
[1]王凤武,吴兆麟,随浪航行中的船舶危险性分析,世界海运,2003,26(6):1~3.
    [2]董艳秋,深海采油平台波浪载荷及响应,天津:天津大学出版社,2005,1~3
    [3]咸培林(译),施内克鲁特(著),船舶水动力学,上海:上海交通大学出版社,1997,30~31
    [4]严似松,海洋工程导论,上海:上海交通大学出版社,1987,100~114
    [5] H. S. Choi, Jack Y. K. Lou, Nonlinear mooring line induced slow drift motion of an ALP-tanker [J], Ocean Engineering, 1993, 29(3):233~246.
    [6] Bishop, S. R., Virgin, L. N., Complex dynamics and chaotic responses in the time domain simulations of a floating structures [J], Ocean Engineering, 1988,15:71~90
    [7]谢文会,铰接塔平台非线性动力特性研究:[博士学位论文],天津;天津大学,2006
    [8] Kevin, J.E., Notes on rolling in longitudinal waves, Int. Shipbuild. Progr., Vol. 2, No.16(1959).
    [9]Paulling, J.R. and Rosenberg, R.M., On unstable ship motion resulting from nonlinear coupling, Jour. Ship Res., Vol. 3, No. 1(1959).
    [10]Nayfeh, A.H. et al., Nonlinear coupling of pitch and roll modes in ship motion, Jour. Hydron., No.4(1973)
    [11]N. E. Sanchez,and A.H. Nayfeh,Nonlinear rolling motions of ships in longitudinal waves,International Shipbuilding Progress,1990,37(411): 247~272
    [12]M.R. Haddara,On the parametric excitation of nonlinear rolling motion in random seas,International Shipbuilding Progress,1980,27(315):290~293
    [13] J.B. Roberts,Effect of parametric excitation on ship rolling motion in random waves,Journal of Ship Research,1982,26(4):246~253
    [14]A. Bruce Dunwoody,Roll of a ship in astern seas-metacentric height spectra,Journal of Ship Research,1989,33(3):221~228
    [15]A. Bruce Dunwoody,“Roll of a Ship in Astern Seas-Response to GM Fluctuations”, Journal of Ship Research, 1989, 33(4): 284-290.
    [16]张文斌,第七届船舶与海洋运载器稳性国际会议(STAB’2000)简介,中外船舶科技,2000,3:11~16.
    [17] Neves M and Valerio L., Parametric Resonance in Waves of Arbitrary Heading,7th International Conference on Stability of Ships and Ocean Vehicles, Tasmania, Australia, 2000
    [18] Matusiak J. Parametric Resonance of the Conical Buoy in Regular Waves, 7th International Conference on Stability of Ships and Ocean Vehicles, Tasmania, Australia, 2000
    [19] Boukhanovsky A and Degtyarev A, Peculiarities of Motion of Ship with Low Buoyancy on Asymmetrical Random Waves, 7th International Conference on Stability of Ships and Ocean Vehicles, Tasmania, Australia, 2000
    [20]Jianbo Hua, A Study of The Parametrically Exceited Roll Motion of A RoRo-Ship in Following and Heading Waves, Int.Shipbuild.Progr., 1992,39(420):345~366
    [21]HUA Jian-bo, Claes G. K llstr m, Semi-captive Model Tests- a Tool for Validation of Calculated Wave Forces in Following and Quartering Waves, Journal of Ship Mechanics, 7(3):1~15 a&& o&&
    [22]HUA Jian-bo, Fast Simulation of Nonlinear GM-Variation of a Ship in Irregular Waves, Journal of Ship Mechanics, 2000, 4(3):25~35
    [23] S.Ribeiro e Silva, Parametrically Excited Roll in Regular and Irregular Head Seas, Int. Shipbuild. Progr., 2005, 52(1):29~56
    [24] Akthiko Matsuda,Hirotada Hashimoto and Naoya Umeda, Capsizing Sue to Bow-Diving in Following Waves, Int. Shipbuild. Progr., 2004,51:121~133
    [25] Gabriele Bulian, Alberto Francesentto, Claudio Lugni,On the Nonlinear Modeling of Parametric Rolling in Regular and Irregular Waves,Int. Shipbuild. Progr., 2004, 51:173~203
    [26]Silva S and Soares C. Time Domain Simulation of Parametrically Excited Roll in Head Seas, Int Shipbuild Prog, 2005, 52(1): 29~56
    [27]S. Ribeiro e Silva, T.A. Santos, Guedes Soares, Parametrically Excited Roll in Regular and Irregular Head Seas, International Shipbuilding Progress, 2005, 52(1):29~56
    [28]Hirotada Hashimoto, Naoya Umeda, Nonlinear analysis of parametric rolling in longitudinal and quartering seas with realistic modeling of roll-restoring moment, Marine Science and Technology, 2004, 9:117~126
    [29]闵美松,丁勇,赵晓东,随浪中船舶横甩试验研究,哈尔滨船舶工程学院学报,1993,14(3):12~18
    [30]丁勇,闵美松,赵晓东,随浪中船舶舵效损失试验研究,中国造船,1997,138:23~27
    [31]林焰,邢殿录,纪卓尚,等,船舶随浪运动稳性仿真计算,1994,12(3):30~41
    [32]阳名盛,黄鼎良,船在随浪航行时的稳性检验计算,中国造船,1992(1): 31~39
    [33]於健,船舶在随浪和尾斜浪中的安全操纵,青岛远洋船员学院学报,1996,2:10~14
    [34]王敏厚,船舶在随浪及斜随浪中倾覆的原因分析(编译),1996,(3):65~80
    [35]蔡烽,张永胜,周波,等,风浪中舰船横浪及随浪稳性计算,航海技术,2004,(4):8~10
    [36]陶醉,张纬康,操纵性方程在船舶横甩研究中的应用,船海工程,2002,(3):23~27
    [37]陶醉,张纬康,随浪中骑浪现象数值研究,武汉理工大学学报,2001,25(4):447~450
    [38]Fan Sheming, The Prediction of Motion and Broaching-to of a Ship in Following seas, Ship and Boat, 2001, 2(1):38~42
    [39]Wang Fengwu, WU Zhanolin, The Analaysis on the Ship’s Dangers in the Following Waves, World Shipping, 2003, 26(6):1~3
    [40]孔祥金,曹振海,尾斜浪中船舶复原力计算,中国造船,1994, 4(3): 32~41.
    [41]董艳秋,纪凯,黄衍顺,波浪中船舶横摇稳性的研究,船舶力学,1999,3(2):13~22
    [42]黄衍顺,王震,李红涛,船舶在横风横浪中的概率统计计算,天津大学学报,2001,34(5):651~654
    [43]黄衍顺,徐慧,胡云昌,随浪中船舶参数共振倾覆的临界状态,船舶力学,1999,3(5):27~32
    [44]董艳秋,张延峰,唐友刚等,纵浪上船舶的动稳性研究,中国造船,1998,143(4):27~37
    [45]唐友刚,郑俊武,董艳秋等,船舶内共振力学行为的研究,中国造船,1998,143(4):19~26
    [46]You-Gang Tang, Hong-Yu Zheng, Jia-Yang Gu,Study on the Vibration Reduction of the Double Piston Hydraulic Engine Mount, Journal of Marine Science and Technology, 2003,11(1): 48~52
    [47]Tang You-Gang, Gu Jia-Yang, Zheng Hong-Yu, Li Hong-Xia, Study on the Ship Capsize in random beam seas using Melnikov method, Ship Mechanics,2004, 8(5): 27~34
    [48]Tang Yougang, Lin Weixue, Dong Yanqiu, Nonlinear Motion Response of Ship under Parametric Excitation and Forced Excitation, Shipbuilding of China, 2001, 42(2):34~39.
    [49] Subratra K. Chakrabarti, Dennis C. Cotter, Analysis of a tower-tanker system [C], OTC 3202, 1978:1301~1310
    [50] S. K. Chakrabarti, D. C. Cotter, Motions of articulated towers and moored floating structures [J], Journal of Offshore Mechanics and Arctic Engineering, 1989, 111: 233~241
    [51] J. M. T. Thompson, A. R. Bokaian, R. Ghaffari, Subharmonic resonances and chaotic motions of a bilinear oscillator [J], Journal of Applied Mathematics, 1983, 31:207~234
    [52] J. M. T. Thompson, A. R. Bokaian, R. Ghaffari, Subharmonic and chaotic motions of compliant offshore structures and articulated mooring towers [J], Journal of Energy Resources Technology, 1984, 106:191~198
    [53] Bruce Joseph Gernon , Jack Y. K. Lou, Dynamic response of a tanker moored to an articulated loading platform [J], Ocean Engineering , 1987,14(6) : 489~512.
    [54] Arvid Naess, Loads and motions of an articulated loading platform with moored tanker [C], OTC 3841,1980:409~417
    [55] Christian Dumazy, Behavior of a floating vessel/articulated column system [C],OTC 4547,1983, 2:295~308
    [56] J. Chantrel, P. Marol, Subharmonic response of articulated loading platform [J], Proceedings of the international offshore mechanics and arctic engineering symposium, 1987, 1:35~43
    [57]Han S. Choi,Jack Y. K. Lou, Nonlinear behavior of an articulated offshore loading platform [J], Applied Ocean Research, 1991, 13(2):63~74
    [58] Han S. Choi,Jack Y. K. Lou, Non-linear behavior and chaotic motions of an SDOF system with piecewise-non-linear stiffness [J], International Journal of Non-Linear Mechanics, 1991, 26(5):461~473
    [59]Young B. Kim, Sherif T. Noah, Periodic response and crisis behavior for a system with piecewise-smooth non-linearities [J], International Journal of Non-Linear Mechanics,1992,27(5):833~843
    [60]A. K. Jain, Dynamic behavior of articulated single mooring system [C], Proceedings of the International Offshore and Polar Engineering Conference, 1995, 1:119~124
    [61] A. Raghothama, S. Narayanan, Bifurcation and chaos of an articulated loading platform with piecewise non-linear stiffness using the incremental harmonic balance method [J], Ocean Engineering, 2000, 27:1087~1107
    [62] A. P. Shashikala, Route to chaos of an articulated offshore loading platform[C], Proceedings of OMAE04, 2004:309~319
    [63]温宝贵,单点系泊系统的运动和受力[J],中国海上油气(工程),1989,1(6):51~58
    [64]温宝贵,SZ 36-1油田单点系泊力的确定[J],中国海上油气(工程),1992,4(2):1~9
    [65]马汝建,铰接装油塔的非线性动力分析[J],中国海上油气(工程),1994,6(2):22~25
    [66]徐兴平,单点系泊系统动力响应分析[J],石油大学学报(自然科学版),1994,18(5):74~78
    [67]徐兴平,单点系泊油轮动力响应试验研究[J],石油大学学报(自然科学版),2002,26(4):53~55
    [68]徐福敏,单点系泊系统低频纵荡二阶力的频域计算[J],河海大学学报,1997,25(1):103~106
    [69]刘应中,缪国平,李谊乐等,系泊系统动力分析的时域方法[J],上海交通大学学报,1997,31(11):7~12
    [70]季春群,王磊,彭涛,单点系泊的系泊稳定性分析[J],中国海洋平台,1998,13(5、6):12~14
    [71]季春群,各种参数对单点系泊运动及载荷的影响[J],中国海洋平台,2000,15(1):19~23
    [72]黄祥鹿,陈小红,范菊,锚泊浮式结构波浪上运动的频域算法[J],上海交通大学学报,2001,35(10):1470~1476
    [73]毕毅,杜度,张纬康,单点系泊系统的静态分岔特性研究[J],船舶力学,2003,7(2):45~50
    [74]聂孟喜,王旭升,张琳,单锚腿系泊系统动力响应的时域计算方法[J],海洋工程,2004,22(2):58~61
    [75]周满红,唐友刚,胡楠,深水顺应式铰接塔平台的非线性运动特性分析[J],中国海洋平台,2004,19(6):15~19
    [76]谢文会,唐友刚,陈予恕,波流联合作用下深水铰接塔平台的组合共振[J],海洋技术,2005,24(4):89~93
    [77]唐友刚,左建立,易丛,规则波中铰接塔-油轮系统的动力响应分析[J],海洋技术,2006,25(2):48~51
    [78]韩丽娜,铰接塔-油轮系统运动及系泊张力分析:[硕士学位论文],天津,天津大学,2007
    [79]王献孚,熊鳌魁,高等流体力学,武汉:华中科技大学出版社,2003,1~3
    [80]夏国泽,马乾初,船舶流体力学,武汉:华中科技大学出版社,2003,1~3
    [81] J.盖斯维特,海洋环境与结构设计[M],北京:海洋出版社,1992,22~121
    [82]黄祥鹿,船舶与海洋结构运动的随机理论,上海:上海交通大学出版社,1994,1~2
    [83]马汝建,非线性谱分析理论及其在海洋工程中的应用,山东省东营市:石油大学出版社,1994,1~2
    [84]褚亦清,李翠英,非线性振动分析,北京:北京理工大学出版社,1996,872~962
    [85]王洪礼,张琪昌,非线性动力学理论及应用,天津:天津科学技术出版社,2002,1~3
    [86]陈树辉,强非线性系统的定量分析方法,北京:科学出版社,2007,1~3
    [87]陈予恕,非线性振动系统的分岔和混沌理论,北京:高等教育出版社,84~87
    [88]何成慧,周监如,陈文良等,随机振动概论,上海:上海交通大学出版社,158~159
    [89]甘幼琛,谢世浩,随机振动的基本理论与应用,长沙:湖南科学技术出版社,330~335
    [90]朱位秋,非线性随机动力学与控制,北京:科学出版社,55~66
    [91]Fuller A T, Analysis of nonlinear stochastic systems by means of the Fokker-Planck equation, International Journal of Control, 1969, 9:603~655
    [92]Andronov A A, Pontryagin A A, Vitt L S, On the statistical investigation of dynamical systems. Zh. Exp. Teor. Fiz. 1993, 3:165~180 (in Russian)
    [93]Kramers H A. Brownian motion in a field of force and diffusion model of chemical reactions. Physica, 1940, 7:284~304
    [94]Caughey T K, Payne H J. On the response of a class of self excited oscillators to stochastic excitation. International Journal of Non-linear Mechanics. 1967, 2:125~151
    [95]Caughey T K, Ma F. The exact steady-state solution of a class of nonlinear stochastic systems. International Journal of Non-linear Mechanics. 1982, 17(3):137~142
    [96]Caughey T K, Ma F. The steady-state response of a class of dynamical systems to stochastic excitation. ASME Journal of Applied Mechanics, 1982, 49(3):629~632
    [97]Dimentberg M F. An exact solution to a certain nonlinear random vibration problem. International Journal of Non-linear Mechanics, 1982,17(4):231~236
    [98]朱位秋,几类非线性系统对白噪声参激与(或)外激平稳响应的精确解,应用数学和力学,1990,11(2):166~164
    [99]Soize C. Steady state solution of Fokker-Planck equation in higher dimension. Probabilistic Engineering Mechanics, 1988, 3(4):196~206
    [100]Soize C. Exact stationary response of multi-dimensional nonlinear Hamiltonian dynamical systems under parametric and stochastic excitations. Journal of Sound and Vibration, 1991, 149(1):1~24
    [101]Soize C. The Fokker-Planck Equation for Stochastic Dynamical Systems and Its Explicit Steady State Solution. Singapore:World Scientific, 1994.
    [102]Srtaronovich R L. Topics in the Theory of Random Noise, Vol. 1, New York: Gordon Breach, 1963
    [103]VanKampen N G. Derivation of phenomenological equations from the Master equation, II: even and odd variables. Physics, 1957, 23:816~829
    [104]Graham R, Haken H. Generalized thermodynamic potential for Markoff systems in detailed balance and far from thermal equilibrium. Zeitschrift fur Physik, 1971, 243:289~302
    [105]Yong Y, Lin Y K. Exzct stationary-response solution for second order nonlinear systems under parametric and external white-noise excitations. ASME Journal of Applied Mechanics, 1987, 54(2):414~418
    [106]董艳秋,船舶波浪外荷和水弹性[M],天津大学出版社,1991:24~28
    [107]李积德,船舶耐波性[M],哈尔滨:哈尔滨船舶工程学院出版社,1991.12~81
    [108]陶尧森,船舶耐波性,上海:上海交通大学出版社,1985,35~40
    [109]刘正江,船用缆绳强度的计算[J],大连海运学院学报,1992,18(3):255~259.
    [110]李玉成,滕斌,波浪对海上建筑物的作用,北京:海洋出版社,2002.253~284
    [111]British Ship Research Association, A critical evaluation of the data on wave force coefficient, OSFLAG Project 10, 1976, Report No. W278, 2 Vol
    [112] H.S. Chen, C. C. Mei, Wave forces on a stationary platform of elliptical shape[J], Journal of Ship Research, 1973, 17(2):61~71.
    [113]王竹溪,郭敦仁,特殊函数概论[M],北京:北京大学出版社,2004.90~92
    [114] J. A. Pinkster, G. Van Oortmerssen, Computation of the first and second order wave forces on oscillating bodies in regular waves[C], 2nd International Conference on Numerical Ship Hydrodynamics, 1977, 136~140

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700