锂电池环保正极材料磷酸铁锂的制备工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着移动电子设备的迅速发展,要求电池具有高比容量,这就促进了锂电池和锂离子电池的迅速发展。相对负极而言,作为锂离子电池锂源的正极材料研究较为滞后,成为制约锂离子电池整体性能进一步提高的关键因素。而目前研究最多的几种正极材料LiCoO2、LiNiO2、LiMn2O4等均存在着不同的缺点而难以满足动力电池的需要。
     橄榄石结构LiFePO4材料具有对环境友善、资源丰富、价格便宜和安全性能好等优点,被认为是非常具有发展前景的锂离子电池正极材料。磷酸铁锂的电导率低,高倍率充放电性能较差和批次稳定性较差是限制其商业化的瓶颈。本论文以制备高电导率,高倍率充放电性能和批次稳定的磷酸铁锂为主要目的,对LiFePO4材料的合成条件、形貌、金属掺杂、碳包覆、电性能等展开了深入系统的研究。
     本课题首次采用草酸铁作为铁源,以磷酸和氢氧化锂作为磷源和锂源,采用液相共结晶+机械合金化+高温烧结合成制备得到锂离子电池正极材料LiFePO4。利用X射线衍射仪、扫描电镜、能量分散谱仪、热重分析和电化学性能测试等方法对磷酸铁锂材料的物相结构、表面形貌、含碳量以及电性能进行分析研究。讨论了不同的烧结温度、不同的烧结时间、不同分散剂添加量和机械合金化对材料形貌的影响。实验确定的最佳合成工艺为:锂铁比为1:1,碳在前驱体中包覆量为3.2wt%,预烧结温度为350℃,烧结时间为5h,高能球磨料球比为1:50,转速580r/min,球磨时间3h,高温烧结温度为650℃,合成时间为8h,合成过程在惰性气氛下完成。
     在上述工艺条件下合成的LiFePO4材料,结晶性能良好、物相较纯,一次粒径在50~100nm之间,比表面积为28.9m2/g,一次颗粒球型度好,粒径分布均匀。
     以Mn、Ti、Mg为掺杂元素,按照摩尔比制得成品为Li0.99Mg0.01Fe0.99Mn0.006 Ti0.004PO4,在2.5~4.2V、0.1C倍率下的首次放电比容量为133.2mAh/g;1C倍率下的首次放电比容量为102.2mAh/g,循环50次容量保持率为99%。
With the development of mobile electronic equipments, the demand to high capacity of lithium ion batteries increases. Comparing with the anode of lithium ion battery, the cathode material obviously lags. To improve the performance of the cathode is a key method for lithium ions batteries. So far,the conventional cathode materials such as LiCoO2, LiNiO2 and LiMn2O4 etc. are the mainstream materials and they have different short comings not to meet the demand of the power battery.
     Olivine-struetured LiFePO4 is considered as a promising cathode material for lithium-ion batteries due to its advantages such as environmentally friendliness, abundant raw materials, inexpensive price and high safety. However, it suffers from low conductivity, poor rate Performance and low batch stability, which prevents it from commercial use. To improve the conductivity, electrochemical performances and batch stability of LiFePO4 material, the synthesis condition, morphology, metal doping, carbon coating and electrochemieal behavior of LiFePO4 as cathode materials were studied in detail in this dissertation.
     The study introduce iron oxalate as iron source for the first time, phosphoric acid and lithium hydroxide as the phosphorus sources and lithium source respectively, and use co-crystallization + mechanical alloying + high-temperature sintering to prepare LiFePO4. The crystalline structure, morphology, carbon contents and electrochemical performances were investigated by XRD, SEM, EDS, thermogravimetric analysis and electrochemical tests. The effects of synthesis time, temperature, the different amount of dispersant and mechanical alloying on electrochemical performances of LiFePO4 material were discussed. In this experiment, the optimized synthesis condition was obtained, the ration of Li/Fe was 1, the amount of carbon in precursor was 3.2%, the pre-sintering temperature was 350℃, the time of sintering was 5h. In high-energy ball milling, the ration of material/ball was 1:50, the rotating speed was 580r/min, the time of ball milling was 3h, the sintering temperature was 650℃, the sintering time was 8h in inert atmosphere.
     LiFePO4 synthesized by the above-mentioned process has good and pure crystal, and the diameter is between 50~100nm, the specific surface area is 28.9m2/g, has good degree of spherical particles, uniform particle size distribution.
     LiFePO4 was doped by Mn, Ti and Mg, and the Doped LiFePO4 exhibited the initial discharge capacity of 133.2mAh/g in 2.5~4.2V and at 0.1C rate, 102.2mAh/g at 1C rate, and retaining 99% after 50 cycles.
引文
1吕鸣祥,黄长保,宋玉谨.化学电源.天津大学出版社, 1996
    2李国欣,新型化学电源导论.上海复旦大学出版社, 1992
    3 K. Mizushima, P. C. Jones, P. J. Wiseman and J. B. Goodenough. Mat. Res. Bull. Lithium Cobalt Oxide(LiCoO2)(0    4 T Nagaura, K Tozawak. Lithium Ion Rechargeable Battery. Prog. BaRs. Sol Cells. 1990,9: 209~210
    5 Y. Nishi. Lithium Ion Secondary Batteries: Past 10 Years and the Future. J. Power Sources. 2001,100: 101~106
    6 T. Ohzuku, A. Veds and M. Nagayama. Electrochemistry and Structural Chemistry of LiNiO2(R3m) for 4 Volt Secondary Lithium Cells. Journal of Electrochemical Society. 1996,140(7): 1862~1869
    7 C. Delma, J. Peres, A. Rougier. On the Behavior of the LiXNiO2 System: an Electrochemical and Structural Overview. Journal of Power Sources. 1997,68: 120~125
    8 G. X. Wang, S. Zhong, and D. H. Bradhurst. LiAldNi1-dO2 Solid Solutions as Cathodic Materials for Rechargeable Lithium Batteries. Solid State Ionics. 1999,116: 271~277
    9 Y. Gao, M. V. Yakovlerra and W. B. Ebner, Novel LiNi1-xTix/2Mgx/2O2 compounds as cathode materials for safer lithium-ion batteries.J.Electrochem Solid State lett, 1998,1: 117~119
    10 J. M. Paulsen, J. R. Dahn.Studies of the layered manganese bronzes, Na2/3[Mn1-x Mx]O2 with M=Co, Ni, Li, and Li2/3[Mn1-xMx]O2 prepared by ion-exchange. Solid State Ionics, 1999,126(1~2): 3~24
    11 P. S. Whitfielda, I. J. Davidsona, L. M. D. Cranswickb. Investigation of Possible Superstructure and Cation Disorder in The Lithium Battery Cathode Material LiN1/3Co1/3Mn1/3O2 Using Neutron and Nomalous Dispersion Powder Diffraction. Solid State Ionics. 2005,176: 463~471.
    12 Z. L. Liu, A. S. Yu and J. Y. Lee. Synthesis and characterization of LiNil-x-y CoxMnyO2 as the cathode materials of secondary lithium batteries. Power Sources. 1999,81~82: 416~419
    13 Z. H. Lu, D. D. MacNeil and J. R. Dahn. Layered cathode materials Li[NixLi (1/3-2x/3) Mn(2/3-x/3)]O2 for lithium-ion batteries. J Electrochem. Solid State Lett. 2001,4(11): A191~A194
    14 S. Jouanneau, D. D. MacNeil and Z. Lu. Morphology and Safety of Li[NixCol-2x Mnx]O2 (0≤x≤1/2). J. Electrochem. Soc. 2003,150(10): A1299~A1304
    15 T. Mmsumura, R. Kanno, Y Inab, Y. Kawamoto, M. Takano. Synthesis, Structure, and Electrochemical Properties of a New Cathode Material, LiFeO2, with a Tunnel Structure. J. Electrochemical Soc. 2002,149(12): A1509~A1513
    16 A. yamada, S. C. Chung, K. Hinokuma. Optimized LiFePO4 for lithium battery cathodes. J. Electrchem. Soc. 2001,148(3): A224~A229
    17 J. Barker, M. Y. Saidi, J. L. Swoyer. Lithium iron phosphor-olivines prepared by a novel carbothermal reduction method Electrochem. Solid State Lett. 2003,6(3): A53~A55
    18 P. S. Herle, B. Ellis and N. Coombs. Nano-network electronic conduction in iron and nickel olive phosphates. Nature Mater. 2004,3: 147~152
    19吴仕明.锂离子电池正极材料LiFePO4的合成和改性研究.哈尔滨工业大学硕士论文. 2007
    20 A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough. Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries. J. Electrochem. Soc. 1997,144(4): 1188~1194
    21 S. F. Yang, P. Y. Zavalij, M. S. Whittingham. Hydrothermal Synthesis of Lithium Iron Phosphate Cathodes. Electrochem. Commun. 2001,3(9): 505~508
    22 A. S. Anderson, J. O. thomas. The Source of First-Cycle Capacity Loss in LiFePO4. J. Power Sources. 2001,97~98: 498~502
    23于春洋.锂离子电池正极材料高功率磷酸亚铁锂的研究.北京工业大学博士论文. 2008
    24 Y. N. Xu, S. Y. Chung, J. T. Bloking, Y. M. Chiang and W. Y. Ching. Electronic Structure and Electrical Conductivity of Undoped LiFePO4. Electrochem. and Solid State Lett. 2004,7(6): A131~A134
    25 D. Morgan, A. Vanderven, and G. Ceder. Li Conductivity in LixMPO4(M=Mn, Fe, Co, Ni) Olivine Materials. And Solid State Lett. 2004,7(2): A30~A32
    26 C. M. Burba and R. Frech. A Raman and FTIR Spectroscopic Study of LixFePO4 (0≤X≤l). J. Electrochem. Soc. 2004,151(7): A1032~A1038
    27 J. Jiang, J. R. Dahn. ARC Studies of the Reaction Between LixFePO4 and LiPF6 or LiBOB EC/DEC Electrolytes. Electrochem. Commun. 2004,6: 724~728
    28 N. Ravet, J. B. Goodenough and S. Besner.The Electrochemical Society and the Electrochemical Society of Japan Meeting Abstracts. Honolulu, HI: Internat- ional Society of Electrochemistry. 1999, 99(10): 17~22
    29 Z. H. Chen, J. R. Dahn. Reducing Carbon in LiFePO4/C Composite Electrodes toMaximize and Tap Density. J. Electrochem Soc. 2002, 149(9): A1184~A1189
    30 P. P. Prosini, D. Zane, M. Pasquali. Improved Electrochemical Performance of a LiFePO4-based Composite Cathode. Electrochimica Acta. 2001, 46: 3517~3523
    31 H. Huang, S. C. Yin and L. F. Nazar. Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochem. Solid-State Lett. 2001,4(10): A170A~A172
    32罗绍华.锂离子电池正极材料磷酸铁锂的固相合成及其改性研究.清华大学博士论文.2007
    33 M. M. Doeff, Y Hu, F. McLarnon and R. Kostecki. Effect of Surface Carbon Structure on the Electrochemical Performance of LiFePO4. Electrochem. Solid-State Lett. 2003, 6(10): A207~A209
    34 Z. P. Guo, H. Liu and S. Bewlay. Fine-particle Li0.98Mg0.02FePO4 Synthesized by a Novel Modified Solid-statereaction. The 204th Electrochemical Society Meeting, Orlando, Florida,Oct. 2003: 12~17
    35 F. Croce, A. D. Epifanio, J. Hassoun, A. Deptula, T. Olczac, B. Scrosati. A Novel Concept for the Synthesis of an Improved LiFePO4 Lithium Battery Cathode. Electrochem. and Solid-State Lett. 2002, 5(3): A47~A50
    36 S. Y. Chung, J. T. Bloking and Y. M. Chiang. Electronically Conductive Phospho -olivines as Lithium Storage Electrodes. Nature. Mater. 2002, 2: 123~128
    37 S. Q. Shi, L. J. Liu and C. Y. Ouyang. Enhancement of Electronic Conductivity of LiFePO4 by Cr Doping and its Identification by First-principles. Calculations. Physical Review B. 2003, 68(19), 195~208
    38 C. Y. Ouyang, S. Q. SM, Z. X. Wang, H. Li, X. J. Huang and L. Q. Chen. The Effect of Cr Doping on Li Ion Diffusion in LiFePO4 from First Principles Investigations and Monte Carlo Simulations. Journal of Physics-Condensed Matter. 2004, 16(13): 2265~2272
    39 P. S. Herle, B. Ellis, N. Coombs and L. F. Nazar. Nano-network Electronic Conduction in Iron and Nickel Olivine Phosphates. Nature Mater. 2004, 3(3): 147~152
    40 H. Huang, S. C. Yin, L. F. Nazar. Approaching Theoretical Capacity of LiFePO4 at Room Temperature at High Rates. Electrochem. Solid-State Lett. 2001, 4(10): A170~A172
    41 P. P. Prosini, M. Carewska, S. Scaccia, P. Wisniewski, S. Passerini, and M. Pasquali. A New Synthetic Route for Preparing LiFePO4 with Enhanced Electrochemical Performance. J. Electrochem. Soc. 2002, 149(7): A886~A890
    42 M. Takahashi, S. Tobishima and K. Takei. Characterization of LiFePO4 as the Cathode Material for Rechargeable Lithium Batteries. J. Power Sources. 2001, 97~98: 508~511
    43 S. Yang, Y. Song, and Peter. Reactivity, Stability and Electrochemical Behavior of Lithium Iron Phosphates. Electrochemistry Communications. 2002, 4(3): 239~224
    44 S. Tajimi, Y. Ikeda and K. Uematsu. Enhanced electrochemical performance of LiFePO4 prepared by hydrothermal reaction. Solid State Ion. 2004,175(1~4): 287 ~290
    45 G. Arnold, J. Garche and R. Hemmer. Fine-particle Lithium Iron Phosphate LiFePO4 Synthesized by a New Low-Cost Aqueous Precipitation Technique. J. Power, Sources. 2003, 119~121: 247~251
    46 K. S. Park, J. T. Son and H. T. Chung. Synthesis of LiFePO4 by Co- precipitation and Microwave Heating. Electrochem. Commu. 2003, 5: 839~842.
    47 J. Barker, M. Y. Saidi, J. L. Swoyer. Lithium Iron(II)Phospho-Olivines Prepared by a Novel Carbothermal Reduction Method. Electrochem Solid-State Lett. 2003, 6(3): A53~A55
    48 J. S. Yang, J. J. Xu. Nonaqueous sol-gel synthesis of high-performance LiFePO4. Electrochem. Solid State Lett. 2004,7(12): A515~A518
    49 M. Higuchi, K. Katayama and Y. Azuma. Synthesis of LiFePO4 Cathode Material by Microwave Processing. J. Power Source. 2003, 119~121: 258~261
    50 S. T. Myung, S. Komaba and N. Hirosaki. Emulsion Drying Synthesis of Olivine LiFePO4/C Composite and its Electrochemical Properties as Lithium Intercalation Material. Electrochimca Acta. 2004, 49: 4213~4222
    51 C. R. Sides, F. Croee and V. Y. Young. A High-rate, Nanocomposite LiFePO4 carbon Cathode. Electrochem. Solid. State Lett. 2005, 8(9): A484~A487
    52 J. Lu, Z. Tang, Z. Zhang, W. Shen. Preparation of LiFePO4 with Inverse OpalStructure and itsSatisfactory Electrochemical Properties, Mater. Res. Bull. 2005, 40: 2039~2046
    53 Z. Iriyama, M. Yokoyama and C. Yada. Preparation of LiFePO4 Thin Films by Pulsed Laser Deposition and their Electrochemical Properties, Electrochem. Solid-State Left. 2004, 7(10): A340~A342
    54 F. Sauvage, E. Baudrin. Efiect of Texture on the Electro- chemical Properties of LiFePO4 Thin Films, Solid State Ionics. 2005, 176: 1869~ 1876
    55 S. J. Kwon,C. W. Kim and W. T Jeong. Synthesis and Electrochemical Properties of Olivine LiFePO4 as a Cathode Material Prepared by Mechanical Alloying. J. Power Souses. 2004, 137: 93~99
    56 S. L. Bewlay, K. Konstantinov and G. X. Wang. Conductivity Improvements to Spray-produced LiFePO4 by Addition of a Carbon Source. Materials Letters. 2004, 58(11): 1788~1791
    57 I. Belharouak, C. Johnson. Synthesis and electrochemical analysis vapor deposited carbon-coated LiFePO4. Electrochem. Commun. 2005, 7(10): 983~988
    58卢俊彪.锂离子电池正极材料LiFePO4的合成、结构与与性能研究.清华大学博士学位论文. 2005
    59 A. J.巴德, L. R.福克纳著,谷林瑛,宋诗哲,许淳淳译.电化学测定方法原理及应用.化学工业出版社. 1988
    60任志国. Sol-Gel结合微波法制备LiFePO4正极材料工艺及性能研究.武汉理工大学硕士论文. 2008
    61 A. Yamda, S. C. Chung and K. Hinokuma. Optimized LiFePO4 for lithium battery cathodes[J]. J Electrochem Soc. 2001, 148(3): A224~A229
    62 J. Y. Nan, W. H. Hyung and H. J. Kyung. Synthesis and electrochemical properties of olivine-type LiFePO4/C composite cathode mamfial prepared from apoly(vinyl alcohol)containing precursor. Journal of Power Sources. 2006, 160: 1361~1368

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700