BTH诱导橡胶树对白粉病的抗性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
橡胶白粉病是橡胶的重要病害之一,由橡胶粉孢属(Oidium heveae B. A. Steinm)侵染引起,严重影响橡胶树生长和产量。诱导植物抗性是用生物和非生物因子激发植物的自身免疫力,达到防病的效果。利用诱导植物抗性来防治病虫草害已成为植保技术的新途径。
     本研究通过盆栽试验,以橡胶品种热研7-33-97和白粉菌为试验材料,对BTH(苯并噻二唑)、PHDC(调环酸钙)、禾甲安和碧护4种诱导剂进行筛选,并选用有效诱导剂BTH对诱导间隔期、诱导次数和诱导抗性相关酶的活性进行了系列试验。同时利用SSH(抑制消减杂交)技术构建了BTH诱导的橡胶抗白粉病的叶片cDNA差减文库,分析BTH诱导后橡胶抗白粉病的基因表达情况,试图从分子水平揭示橡胶的抗病机制,为橡胶抗白粉病的防治和研究提供新方法。
     研究结果如下:
     1. BTH、PHDC、禾甲安和碧护4种诱导剂对橡胶白粉病均有一定的防治效果,其中BTH250mg/L和禾甲安500倍液的效果较好,分别为57.8%和51.4%,但BTH显著优于禾甲安和其它处理。
     2.用BTH 250mg/L处理橡胶芽接苗,不同接种时间间隔实验结果表明,最佳诱导间隔期为5-11天,防治效果在33-57%,持续期至少11d。诱导后,随着接种间隔期的延长,诱导抗病性的效果也在减弱。
     3. BTH 250mg/L处理并接种病原菌后,POD(过氧化物酶)和PAL(苯丙氨酸解氨酶)的活性比对照显著升高;当酶活性下降至与对照无差异时,进行第2次施药,POD、PAL的活性会再次升高,抗病性增强。
     4.通过试剂盒RNAiso Reagent法、改良SDS法和改良CTAB-PVP法3种方法对橡胶叶片总RNA的提取进行比较后发现,采用改良SDS法能去除叶片中含有的胶乳,有利于抑制消减杂交文库的构建。
     5.选用Clontech公司的PCR-select cDNA subtraction kit,构建了BTH诱导的橡胶抗白粉病叶片cDNA文库,并对SSH的各个关键步骤如接头连接效率、消减效率、转化效率等的检测结果显示,差减文库有较高的质量。
     6.从文库中随机挑取42个阳性克隆进行测序,并在Genbank上对核酸序列比较后发现,在已知功能的核酸序列中,有能量和基础代谢类、信号转导类、膜和转运类和次生代谢类共21条序列和2条重复序列,未知功能的有14条序列,数据库中无显著匹配的有2条序列。
     BTH通过诱导橡胶树叶片防御相关基因的表达,提高抗性相关酶的活性,有效控制橡胶树白粉病,为橡胶树白粉病防治提供了新的途径,也为进一步研究橡胶树防御基因的表达和信号转导等打下基础。
Rubber powdery mildew is one of the most important diseases on rubber trees, which is caused by Oidium heveae B.A.Steinm. It affects seriously the growth and yield of rubber trees. Induced resistance is the use of biotic or abiotic inducers to stimulate plant defense genes to achieve the effects of disease prevention. Induction of plant resistance has become a new way of plant protection to control plant diseases, pests and parasitic weeds.
     In this experiment, four inducers of BTH (benzothiadiazole), PHDC (Prohexadione calcium), Chitosan and Comcat(?) were screened with rubber clone Reyan 7-33-97 and Oidium in pot tests. The effective inducer BTH was used to conduct a series of tests on induction intervals, the numbers of induction and the activity of enzymes related. At the same time, the cDNA library induced by BTH to powdery mildew of rubber tree leaves was established using suppression subtractive hybridization (SSH) technology. Gene expression of induced resistance to powdery mildew was analysed. It tries to explain the mechanism of BTH-induced resistance to rubber tree powdery mildew in molecular level and provide a new control method for the disease. The results of the study included the following six aspects:
     1. Four inducers of BTH, PHDC, Chitosan and Comcat could induce rubber tree resistance to powdery mildew. BTH at 250mg/L and Chitosan at 500 times had better control of 57.8% and 51.4%, respectively. But BTH was significant better than Chitosan and other treatments.
     2. The optimal inoculation intervals were from 5 to 11 days after induction of BTH at 250mg/L, those had control efficacy of 33 to 57%. The duration was at least more than 11d. After induction, with the inoculation interval increasing, the effect of induced resistance was also reduced.
     3. Activities of POD (peroxidase) and PAL (phenylalanine ammonia lyase) were significantly higher than control after BTH at 250mg/L treatment and the pathogen inoculation. Activities of the enzymes were increased again after BTH twice treatment when the enzyme activities declined to control level.
     4. The modified SDS method was the best method for extraction of total rubber RNA, which could effectively remove the leaves latex and polysaccharides and conductively construct cDNA library with suppression subtractive hybridization (SSH), after comparison of RNAiso Reagent Kit, modified SDS and modified CTAB-PVP method.
     5. cDNA library of BTH induced rubber tree resistance to powdery mildew was constructed by Clontech's PCR-select cDNA subtraction kit. so in the case of small amount of RNA synthesis of cDNA has high efficiency, the smooth development of SSH basis. The subtractive library had high quality after detection of all key processes of SSH, such as joint connection efficiency, subtractive efficiency and conversion efficiency.
     6. There were 21 cDNA sequences and 2 repeats known of function as energy and basic metabolism, signal transduction, membrane and transport and secondary metabolism,14 sequences unknown of function and 2 sequence no significant match in nucleic acid sequences database after detection of sequences of 42 positive clones randomly selected from the cDNA library and comparison on nucleic acid sequences in Genbank.
     BTH could effectively induced rubber tree resistance to powdery mildew through increasing expresses of defense-related genes and activities of resistance-related enzymes in leaves of rubber tree. It provides a new approach for rubber tree powdery mildew control and lays a good foundation for further study on expresses of defense-related genes and signal translocation in rubber trees.
引文
[1]陈汉洲主编.橡胶树栽培技术[M].海南:海南出版社,2003
    [2]王作龄编译.橡胶百科(三)[J].世界橡胶工业,2008,35(6):45-48
    [3]黄循精,王强.世界天然橡胶的发展现状与未来展望.中国热带作物学会第七次全国会员代表大会论文集.2004.140-150;
    [4]吴春太,李维国,高新生,张晓飞,张伟算.我国橡胶树育种面临的问题与对策[J].江西农业学报2009,21(12):74-77
    [5]崔昌华.橡胶老叶炭疽病病原菌的生物学、对药物的敏感性及ITS序列分析[D].华南热带农业大学,2006,1-2
    [6]梁荫东,郝秉忠.加强科技创新.开拓我国天然橡胶发展的新里程.中国热带作物学会第七次全国会员代表大会论文集.2004.199-205;
    [7]A, De S. Liyanage等,张开明摘译.橡胶树白粉病菌的生物学[J].Proceedings of Internationa Rubber Conference 1985
    [8]谢联辉主编.普通植物病理学[M].北京:科学出版社,2006
    [9]刘先宝,高宏华,蔡吉苗等.橡胶树白粉病菌rDNA-ITS序列及其系统发育分析[J].热带作物学报,2008,29(2):215-219
    [10]范会雄,谭象生.橡胶树白粉病流行规律与防治技术植物保护 1997,23(3),28-30
    [11]谭伏美,王树明,陈积贤.河口地区橡胶白粉病防治技术研究[J].云南热作科技,2001,24(4):11-16
    [12]张丽萍,白建湘,邵志忠等.河口地区橡胶白粉病防治失败原因的研究[J].云南热作科技,2002,25(4):31-33
    [13]黄雪玲,黄丽丽,康振生等.BTH对小麦产生白粉病抗性的诱导作用[J].西北农林科技大学学报,2005,8:78-80
    [14]George N A. plant pathology.Acad prese,1989.97-114
    [15]米沙.琦.植物病原物相互作用的生理学和生物化学.王栓茂译.武汉:湖北科学技术出版社,1985.81
    [16]Young H E. National resistence to leaf mildew of Hevea brasilliensis clone LCB870 Ouart.cic. Ceylon Rubb. Res. Scheme 1949,26(1-4):6-12
    [17]单家林,余卓桐,肖倩珑,黄武仁.橡胶树抗白粉病组织学研究[J].热带作物学报,1999.20(2):17-22
    [18]Wijewantha.Some Breeding Problem in Hevea brasilliensis.RRIC,1965,41 (1-2):11-12
    [19]广东省农垦总局,海南省农垦总局.橡胶树良种选育与推广[M].广州:广东科技出版社,1994.54.
    [20]黄循精.我国天然橡胶市场需求预测与未来发展[J].中国橡胶,2006,22(2):10-1
    [21]董汉松.植物诱导抗病性原理和研究[M].北京:科学出版社,1995,190-191
    [22]宋凤鸣,葛秀春,郑重等.苯并噻二唑诱发水稻对白叶枯病的系统获得抗性[J].中国水稻科学,2001,15(4):323-326
    [23]陈捷.植物病理生理学[M].沈阳:辽宁科学技术出版社,1994
    [24]Ross AF. Systemic acquired resistance induced by localized virus infections in plants. Virology, 1961;14:340-358.
    [25]Bozarth RF and Ross AF (1964) Systemic acquired resistance induced by localized virus infection: extent of changes in uninfected plant parts. Virology 24:446-455
    [26]张元恩.植物诱导抗病性研究进展.生物防治通报,1987,3(2):88-90
    [27]Hammond-Kosack KE and Jones JDG (1996) Resistance gene-dependent plant defense responses.The Plant cell 8:1773-1791
    [28]. Sutherland MW and Deverall BJ (1990). The ubiquity of non-specific eliciting activity in intercellular washing fluids from rust-infected wheat leaves. Plant Pathology 39,50-57
    [29]Dean RA and Kuc J (1987) Rapid lignification in response to wounding and infection as a mechanism for induced systemic protection in cucumber. Physiological and Molecular Plant Pathology 31:69-81
    [30]Kuc J (1982) Induced immunity to plant disease. Bioscience 32:854-860
    [31]Hammerschmidt R and Kuc J (1995) Induced Resistance to Disease in Plants. Kluwer Academic Publishers, Dordrecht, The Netherlands
    [32]李振岐,商鸿生主编.中国农作物抗病性及其利用[M].北京:中国农业出版社,2005.
    [33]Rahe JE, Kuc J, Chuang CM,et al (1969). Induced resistance in Phaeseolus vulgaris to bean anthracnose. Phytopathology 59:1641-1645
    [34]Kuc J, Richmond S (1977). Aspects of protection of cucumber against Collectotrichum lagenarium by Collectotrichum lagenarium. Phytopathology 67:533-536
    [35]Kuc J, Schochley G, Keayney K.(1975). Protection of cucumber against Collectotrichum lagenarium by Collectotrichum lagenarium. Physiol Plant Pathology,195-199
    [36]Dean RA and Kuc J (1986a) Induced systemic protection in cucumber:the effect of inoculum density on symptom development caused by Colletotyichum lagenarium in previously infected and uninfected plants. Phytopathology 76:186-189
    [37]Tuzun S. and Kuc J. (1985) Movement of a factor in tobacco infected with Peronosproa tabacina Adam which systemically protects against blue mold. Plant Pathol.26:321-330
    [38]姚艳平.几丁寡糖结构类似物β-1,3-乙酞氨基葡聚糖的化学合成及其诱导植物抗病性的研究[D].浙 江大学,2006
    [39]Kessmann H et al. Induction of systemic acquired disease resistance in plant by chemicals. Annu Rev Phytopathol,1994,32:439-459
    [40]Cartwright, D.et al., Physiol. Pathol.,1980,17:259
    [41]Langcake, P., Phil. Trans R. Soc. London B,1981,285:83
    [42]翁启勇,李开本.诱导植物系统抗性研究进展[J].福建农业学报,1998,13(4):24-28
    [43]李洪连,王守正,袁红霞等.植物诱导抗病性研究的现状与展望[J].河南农业大学学报,1994,28(3):219-223
    [44]Halhbrock K., Scheel D., Innovative Approachs to Plant Diseases Control, John Wiley&Sons, Inc, New York, NY,1987, P229-254
    [45]Mansfield,J.W. Induced antimicrobial systems in plants.In:Natural Antimicrobial Systems,FEMS Symposium No.35 (Gould,M.E.et al.eds.).Bath:Bath University Press,1986,101-131.
    [46]Ryan,C.A. The reseach for the proteinase inhibitor inducing factor,PIIF.Plant Molecular Biology,1992,19:123-133
    [47]Van Loon,L.C.Pathogenesis-related proteins.Plant Mol.Biol.,1985,4:111-116
    [48]Gausing,K. Thionin genes specifically expressed in barley leaves.Planta,1987,171:241-246
    [49]陈晓梅.植物抗病性物质的研究进展[J].植物学通报,1999,16(6):658-664
    [50]王金生.分子植物病理学[M].北京:中国农业出版社,1999
    [51]李振歧.植物免疫学[M].北京:中国农业出版社,1995
    [52]杜良成,王钧.病原相关蛋白及其在植物抗病中的作用[J].植物生理学通讯,1990(4):
    [53]Copper,J.B.,Chen,J.A.,Van,Holst.G-J.et al Hydroxyproline-rich glycoproteins of plant cell walls. Trends Biochem. Sci.,1987,12:24-27
    [54]蔡新忠,郑重.植物系统性获得抗病性的产生机理和途径[J].1999,26(1):83-89
    [55]汪红,刘辉,袁红霞等.棉花黄萎病不同抗性品种接菌前后体内酶活性及酚类物质含量的变化[J].华北农学报,2001,16(3):46-51
    [56]李落叶.低聚糖诱导小麦抗病性的研究[D].西北农林大学,2002,36
    [57]Mauch F, Mauch-Main B, Boller T(1988). Antifungal hydrolases in peatissue. Ⅱ. Inhibition of fungal growth by combination of chitinase and β-1,3-glucanase. Plant Physio,188:936-942.
    [58]Narusaka Y, Narusaka M, Horio T, et al Induction of disease resistance in cucumber by acibenzolar-S-methyl and expression of resistance-related genes. Annals of the Phyto pathological Society of Japan,1999,65(2):116-122.
    [59]孙卓,郑服丛.BTH诱导橡胶抗炭疽病效果初探[J].广东农业科学,2008,3(7):76-77
    [60]郑成木主编.植物分子标记原理与方法[M].湖南:湖南科学技术出版社,2003
    [61]曾日中,段翠芳,黎瑜等.茉莉酸刺激的橡胶树胶乳cDNA消减文库的构建及其序列分析
    [62]邓柳红.巴西橡胶树胶乳特异表达基因分离与克隆[D].海南:华南热带农业大学,2005.
    [63]VERICA JA, MAXMOVA SN,STREM M D,et al Isolation of ESts from cacao (Theobrom a cacao L) leaves treated with inducers of the defense response [J]. Plant Cell Rep 2004 23(6):404-411
    [64]李茂,字学娟,蒋昌顺.抑制消减杂交在热带作物研究中的应用[J].热带作物学报,2008,4(2):151-153
    [65]孙群,胡景江主编,植物生理学研究技术[M].陕西:西北农林科技大学出版社,2006
    [66]单家林,肖倩莼,余卓桐等.低聚糖素诱导橡胶树抗白粉病作用机制初探[J].亚热带植物学,2005,34(1):31-32
    [67]杨云.橡胶树UBI基因的克隆与表达分析[D].华南热带农业大学,2007,39-40
    [68]苏红英.抑制性消减杂交技术研究进展[J].福建医科大学学报,2004,38(8):353-357
    [69]Sakamoto A, Minami M, Huh G H, et al. The putative zinc-forger protein WZF1 interacts with acis-acting element of wheat histone genes [J]. Eur J Biochem.,1993,217:1049-1056.
    [70]Shirasu K, Lahaye T, Tan M W. A novel class of eukaryotic zinc binding protein is required for disease resistance signaling in barley and development in C. elegans [J]. Cell,1999,99:355-366.
    [71]Muskett P R, Kahn K, Austin M J, et al. Arabidoposis RAR1 exerts rate limiting control of R gene-mediated defenses against multiple pathogens [J]. The Plant Cell,2002,14:979-992.
    [72]Azevedo C, Sadanandom A, Kitagawa K, et al. The RAR1 interactor SGT1:an essential component of R gene triggered disease resistance [J]. Science,2002,295:2073-2076.
    [73]朱美君,康蕴,陈珈,王学臣.植物水通道蛋白及其活性调节[J].植物学通报,1999,16(1)
    [74]Kammerloher W et al,1994. Plant J,6:187-199

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700