基于节流—遮断功能分离的真空失效遮断器结构及试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在气动自动化系统中,气动真空吸取系统通常都采用真空发生器作为局部真空产生装置。在系统结构上,如果一个真空发生器配备多个真空吸盘,当一个或者几个吸盘在接触表面出现漏气,就会使整个真空吸取系统失效。目前,针对此问题正在研发膜片型真空失效遮断器的原型装置。但是,目前该装置在结构上还存在若干问题,同时膜片的动态位移难以实测,不能认识结构参数与膜片动态响应的关系,这些问题影响了结构的进一步改善和实际产品化。针对这些问题,在论文中从节流孔道和流动遮断功能的分离、膜片形状改进并采用非接触式位移测量技术等方面入手致力于解决上述问题。研究所完成的主要工作和取得的成果有:
     (1)针对原真空失效遮断器膜片既要实现节流又要实现遮断这两种功能,从而导致膜片结构参数难以匹配和由于开孔使膜片容易疲劳损坏的问题,提出了节流、遮断功能分离的基座孔节流-膜片遮断结构,可以分别设计节流孔和膜片的功能参数,也使膜片不易疲劳损坏;(2)针对原结构中平膜片在刚度和灵敏度上难以兼顾而影响动态响应特性的问题,提出采用波纹膜片代替平膜片的技术方案;为此采用有限元法并通过试验深入研究了波纹膜片的结构参数对膜片性能的影响,设计了灵敏度和刚度特性均较好的波纹膜片;(3)为了进行系统性能分析和结构参数的优化,建立了真空失效吸取系统的数学模型,并通过仿真分析了系统的工作特性,为真空失效遮断器结构参数的优选和后续的试验打下了基础;(4)针对真空失效遮断器膜片位移动态响应难以直接测量而导致的对结构参数与动态响应的关系认识不清的问题,提出采用激光非接触式测量方法来实现膜片动态位移响应测量。为此,设计了透明玻璃作盖子的模拟容器,通过激光位移传感器实现了膜片位移动态测量,为进一步改进和参数优化提供了试验基础。
     总体性能试验结果表明,使用波纹膜片的真空失效遮断器可以可靠地遮断泄漏支路,遮断极限真空度可达95kPa,比ISV原理性样机的91~93kPa有所提高;遮断时间小于0.62s,比ISV原理性样机的1.8s减小了65.6%;响应时间延迟率小于10.45%,比ISV原理性样机的17.3%减小了6.85%;临界遮断流量小于6.42L/min,比ISV原理性样机的21.5L/min减小了70.1%;这说明所做研究和改进的成效是明显的。
In pneumatic automatic vacuum adsorption system, vacuum ejector is used as local vacuum generation device. Usually, a single vacuum generator is used with multiple vacuum suckers. When one or several suckers have air leakage on contact surfaces, the whole vacuum system will work abnormally. At present, the prototype facility of membrane isolating valve is being researched. But there are some problems with the structure. And the dynamic displacement of the membrane is difficult to measure, so that the relationship between the structure parameters and the dynamic response of the isolating valve can't be recognized. These problems have influenced the structure further improvement and product forming. This paper solve these problems starting with the separation of the throttle channel and the flow isolating function, the membrane structure improvement and the displacement measurement by using non-contact method. The main work and achievements are as follows:
     (1)The membrane of the original isolating valve has two functions-throttle and isolating, so the structure parameters of the membrane are hard to match and the fatigue failure is occurred because of the hole-opening. Therefore, the throttle of the base opening and isolating of the membrane structure, which has separated functions, is put forward. In this way, the throttle opening and the structure parameters of the membrane can be designed respectively. Also, the fatigue failure of the membrane is hardly occurred. (2)The stiffness and sensitivity of the flat diaphragm can't simultaneously satisfy and this has influenced the dynamic characteristics of the isolating valve. So the technical scheme using corrugated diaphragm instead of the flat diaphragm is proposed. The influence of flow structure parameters on the performance of the membrane is studied by using finite element method and the experiments. The membrane, which both has good stiffness and sensitivity is designed. (3)To analyze the performance and optimize the structure parameters of the system, the mathematical model of the vacuum adsorption system is founded. Then, the working characteristics of the system are analyzed by simulation. And this lays a foundation for the parameter optimization and the further experiments. (4)The dynamic displacement of the membrane of the isolating valve is hardly to obtain with the direct measurement method, so the relationship between structure parameters and the dynamic response of the isolating valve can't be recognized. To solve this problem, it's put forward to measure the dynamic displacement with laser non-contact method. A simulation vessel is designed with the clear glass as cover. Then the dynamic displacement of the membrane is measured by the laser displacement sensor. This provides the experimental basis on the further improvement and parameter optimization of the isolating valve.
     The performance experiments show that the isolating valve with corrugated diaphragm can reliably isolate the leakage branch circuit. The final vacuum can reach 95kPa. Compared with the 93kPa of the principle prototype, it has slightly improvement. The isolating time is less than 0.62s. Compared with the 1.8s of the principle prototype, it decreases by 65.6%. The response time delay rata is less than 10.45%. Compared with the 17.3% of the principle prototype, it decreases by 6.85%. The critical isolating flow is about 6.42L/min, less than the 21.5L/min of the principle prototype, it decreases by 70.1%. These show that the study and improvement have obvious effect.
引文
[1]SMC(中国)有限公司.现代实用气动技术[M].北京:机械工业出版社,1998
    [2](德)德泊特,斯托尔著,李宝仁译.气动技术--低成本综合自动化[M].北京:机械工业出版社,1999
    [3]李小宁.气动技术发展的趋势[J].机械制造与自动化,2003(2):1-4
    [4]赵彤.SMC气动技术发展及在新领域中的应用[J].现代零部件,2004(1):122-124
    [5]Schneider RT.Automate with air[J].Hvdraulics& Pneumatics.1995.48(5):4
    [6]陈启复.气动技术现状与展望[J].液压气动与密封,1992(1):12-18
    [7]http://www.schmalz.net.cn.真空搬运系统
    [8]吴振顺.气压传动与控制[M].哈尔滨:哈尔滨工业大学出版社,1995
    [9]林主税.21世纪真空科学技术的展望[J].真空科学与技术,2003(2):96-100
    [10]王晓方.液压与气动技术[M].北京:中国轻工业出版社,2006
    [11]孟繁华,李天贵.气动技术在自动化中的应用[M].北京:国防工业出版社,1988
    [12]Anon.Vacuum technology[J].Research and development,2001,43(4):27
    [13]Fink.Future trends in vacuum technology applications[J].International Symposium on Discharges Electrical,2002:25-29
    [14]张永林.散粒料全自动包装机气动系统的研究与设计[J].液压与气动,2004(11):33-35
    [15]杨敏.单真空发生器吸取系统多吸头间失效遮断技术研究[D].南京:南京理工大学硕士学位论文,2005
    [16]张利平,M.R.Horgan.真空吸附技术[J].轻工机械,1998(4):41-43
    [17]N.G Koryt'ko,V.I Basmanov.Vacuum system for the pneumatic transport of samples[J].Metallurgist,2003,47(3):108-109
    [18]杨培广.浅析大片玻璃吸盘装置设计与应用[J].中国玻璃,2001(6):32-35
    [19]何雪明,丁毅,朱明波.真空吸附式爬壁机器人设计[J].西北轻工业学院学报,1997,15(4):18-22
    [20]Hage.Consider all the factors when selecting a vacuum system[J].Hydrocarbon Processing,1999,78(3):173-177
    [21]田玲.气动组合台真空吸附机械手系统设计[J].真空,2001(5):37-40
    [22]齐峻岭.搬运机真空吸头不报警故障的分析及解决方法[J].真空,2001(5):44-45
    [23]薄如平.真空报警装置的研制[J].仪表技术与传感器,1994:27-29
    [24]张珍,薄如平.一种锡青铜波纹管的典型应用[J].机械,2002(29):57-58
    [25]昌先国.自适应式多真空室吸盘的研究[J].哈尔滨工业大学学报,1998,30(1):28-31
    [26]http://www.festo.com.真空安全阀
    [27]安晨霞,官腾.印制电路板的吸附抓取研究[J].通信与广播电视,2004(2):61-67
    [28]Axinte.Finite element analysis of the deformation of a rubber diaphragm[D].Virginia:Virginia Polytechnic Institute and State University,2001
    [29]宁士夏.滚动膜片的特性及其应用[J].特种橡胶制品,1994(3):33-35
    [30]K.Legorju-jago,C Bathias.Fatigue initiation and propagation in natural and synthetic rubbers[J].International Journal of Fatigue,2002(24):85-92
    [31]Ying Wan,Chuanxi Xiong.Effect of processing parameters on electrical resistivity and thermo-sensitive properties of carbon-black/styrene-butadiene-rubber composite membranes[J].Composites Science and Technology,2005(65):1769-1779
    [32]李居泽,金晶立.缩短真空吸附动作时间的途径[J].沈阳工业大学学报,1994,16(1).38-42
    [33]姚朝晖,何枫,陈远.真空发生器系统吸附响应时间的确定[J].真空科学与技术,2002,22(3):198-201
    [34]李维.SolidWorks精彩实例[M].北京:清华大学出版社,2004
    [35]Solidworks.Solidworks工程图[M].北京:清华大学出版社,2003
    [36]蔡春源,严隽琪,汪恺.机械设计手册[M].北京:机械工业出版社,2000
    [37]徐灏.机械设计手册[M].北京:机械工业出版社,1991
    [38]陆培文.实用阀门设计手册[M].北京:机械工业出版社,2002
    [39]国家质量技术监督局.中华人民共和国国家标准-机械制图[M].北京:中国标准出版社,2001
    [40]SMC(中国)有限公司.SMC气动元件产品样本[M],2002
    [41]贺小峰,张铁华,李壮云.高压大流量气动减压阀中橡胶波纹膜片的研究[J].液压与气动,2000(2):46-48
    [42]郭万泉.橡胶膜片有效面积的测定及其影响因素[J].航空制造技术,2003(10):53-56
    [43]舒同林.气动膜片执行元件有效面积的分析及在造纸工业上的应用[J].中国造纸,1989(4):50-54
    [44]朱梅骝.弹性O型圈密封技术概述[J].自动驾驶仪与红外技术,2000(4):35-40
    [45]日本液压气动协会.液压气动手册[M].北京:机械工业出版社,1984
    [46]杨震.快速响应低耗气真空集成元件的研究[D].南京:南京理工大学硕士学位论文.2007
    [47]杨潭.仪器仪表零件及机构[M].哈尔滨:哈尔滨船舶工程学院出版社,1989
    [48]刘广玉,庄肇康.仪表弹性元件[M].北京:国防工业出版社,1981
    [49]《气动调节仪表》编写组.气动调节仪表[M].上海:上海科学技术出版社,1979
    [50]竺培国.精密仪器结构设计基础[M].哈尔滨:哈尔滨工业大学出版社,1988
    [51]彭建.三位三通电气控海水液压换向阀的研制[D].武汉:华中科技大学硕士学位论文,2002
    [52]黄志强,李琴,刘德明.气动刹车橡胶活塞膜ANSYS分析及设计[J].西南石油学院学报,2003(5):74-77
    [53]刘登祥.化工产品手册[M].北京:化学工业出版社,2005
    [54]史守峡,刘建白.近于不可压缩非线性橡胶材料的有限元分析[J].哈尔滨工程大学学报,1998(6):53-59
    [55]祝效华.ANSYS高级工程有限元分析范例精选[M].北京:电子工业出版社,2004
    [56]S.Reese,T.Raible,P.Wriggers.Finite element modeling of orthotropic material behavior in pneumatic membranes[J].Solids and Structures,2001(38):9525-9544
    [57]Jiang,Xi-Hu.Non-liner analysis of air-supported membrane model by Ansys[J].Joural of University of Shanghai for Science and Technology,2006(28):213-217
    [58]张洪信.有限元基础理论与ANSYS应用[M].北京:机械工业出版社,2006
    [59]D.J.Charlton,J.Yang.Review of methods to rubber elastic behavior for use in finite element analysis[J].Rubber Chemistry and Technology,1994(67):481-503
    [60]张朝晖.ANSYS 8.0结构分析及实例解析[M].北京:机械工业出版社,2005
    [61]樊大钧,刘广玉.新型弹性敏感元件设计[M].北京:国防工业出版社,1995
    [62]郑明军.橡胶件的静、动态特性及有限元分析[D].北京:北方交通大学硕士学位论文,2002
    [63]王勇.高精度压力膜片光学测量系统设计[J].测量与设备,2005(12):21-23
    [64]吴沛宜,马元.变质量系统热力学及其应用[M].北京:高等教育出版社,1983
    [65]李宝仁,杜经民.负压伺服控制系统的建模与仿真[J].华中理工大学学报,1999,27(11):61-63
    [66]李建藩.气压传动系统动力学[M].广州:华南理工大学出版社,1991
    [67]张英会,刘辉航,王德成.弹簧手册[M].北京:机械工业出版社,1997
    [68]薛定宇,陈阳泉.基于MATLAB_Simulink的系统仿真技术与应用[M].北京:清华大学出版社,2002
    [69]施阳.MATLAB语言精要及动态仿真工具SIMULINK[M].西安:西北工业大学出版社,1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700