分裂导线的微风振动与次档距振荡研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国电力输送容量的迅速增长,选择多分裂、大容量、远距离的输电线路已成为必然。而微风振动与次档距振荡对电力会具和导线的安全运行有着极大的威胁,且两种振动危害的发生频率在我国又非常高。作为重要生命线工程,输电系统的破坏会引起巨大的社会经济损失和其它次生灾害。但是目前工程界对分裂导线的设计主要采用的是依赖经验的折减系数法,该方法在我国尚缺乏理论研究的技术支撑,因此急需在此领域进行深入的理论与试验研究以确保大容量输电线路安全运行。
     本文利用计算流体动力学(CFD)对分裂导线绕流的数值仿真,研究分裂导线的微风振动特性、分裂导线的风能输入功率以及分裂导线平均气动力特性;通过对能量平衡法改进研究,提高分裂导线微风振动的计算分析的精度;通过对导线振动试验研究,弄清间隔棒、防振锤等金具的消能减振特性;利用分裂导线平均气动特性的仿真结果,结合稳定性理论、非线性振动理论以及非线性有限元法,研究次档距振荡的机理与计算方法。具体研究内容如下:
     (1)首先利用计算流体动力学对固定单导线与分裂导线的绕流现象进行了数值仿真,验证了计算模型与求解模式的可靠性,并考虑了三维效应的影响。其次利用动网格技术研究了单导线与分裂导线的微风振动特性,分析了两者的异同点。再次在验证了单导线风能输入功率有效的基础上,通过对分裂导线中振动子导线绕流的数值模拟,得到了分裂导线中各子导线的风能输入功率Pw,并研究了子导线间的水平间距L、分裂导线倾角β以及湍流强度Iw等因素对Pw的影响。最后拟合得到了风能输入功率Pw的解析表达式,为分裂导线的微风振动响应的求解提供基础。
     (2)依据IEEE微风振动试验标准,分别进行了单导线的振动试验与分裂导线的微风振动试验。通过单导线微风振动试验研究了导线的自阻尼特性与防振锤的耗能特性。通过双分裂导线、四分裂导线微风振动试验研究了分裂导线的振动特性,以及防振锤、阻尼线、间隔棒等防振会具对分裂导线的消振性能。
     (3)利用传递矩阵法计算得到了分裂导线的振动频率与振型,并结合导线自阻尼功率、防振锤耗能功率计算方法以及数值仿真得到的多分裂导线风能输入功率,建立了精细计算分裂导线微风振动的改进能量平衡法。
     (4)通过对分裂导线的CFD数值仿真获得了分裂导线的平均气动力系数曲线。基于准定常理论,分别建立了分裂导线次档距振荡的二自由度与四自由度的振子模型,对两种振子模型进行了稳定性分析,得到了次档距振荡发生的临界条件,分析了临界条件的各种影响因素。利用数值求解与平均法对两种振子模型的振动方程进行求解,得到了导线次档距振动响应,并两种振子模型的计算结果进行了比较,讨论了上游子导线振动自由度对次档距振荡的影响。
     (5)建立了次档距振荡仿真分析的有限元模型,运用Newton-Raphson迭代法确定其动力分析的初始静力构形。根据分裂导线平均气动力系数曲线建立了分裂导线的气动力模型,利用Runge-Kutta显示积分法对动力方程的求解实现了对分裂导线次档距振荡的有限元仿真分析。最后计算研究了分裂导线倾角、间隔棒布置、风速等因素对次档距振荡响应的影响。
     分裂导线的微风振动与次档距振荡研究的既有其重要的理论意义,又有其重要的经济价值。本文的研究能为分裂导线两种振动的防振设计提供有效的理论依据与合理的建议,为以后更深入研究提供基础。
With the rapid growth of electricity transmission capacity, the adoption of bundle conductor, high-capacity and long-distance transmission lines have become inevitable. Aeolian vibration and subspan oscillation can easily cause damage of the bundle conductor and electric power fittings, which have a serious threat to the safe and reliable operation of transmission lines. As an important lifeline facility, the damage of transmission line system can lead to the paralysis of power supply system and cause huge economic losses and other secondary disasters. However, the existing methods are difficult to meet the design requirements. In order to ensure the safe operation of transmission line system, it is necessary to make further research in this field.
     In this dissertation, the numerical simulation on bundle conductor in a cross-flow is implemented by using computational fluid dynamic (CFD) method to study the aeolian vibration mechanism, wind power input, and the average aerodynamic characteristics of bundle conductor. The calculation precision of bundle conductor's aeolian vibration is improved through the modified study of energy balance pricinple. The conductor vibration test is adopted to study the energy dissipation characteristics of stockbridge damper, wire damper, spacer damper. Using the numerical simulation results of average aerodynamic characteristics of bundle conductor and combined with stability theory, nonlinear oscillation theory and nonlinear finite element method, the mechanism of subspan oscillation is studied and the calculation methods are presented. The specific contents are as follows:
     (1) Firstly, CFD numerical simulation of the flow around the fixed single conductor and bundle conductor is carried out to verify the reliability of solution method. The three-dimensional effect is also considered. By means of the dynamic mesh method, the aeolian vibration mechanism and properties of single conductor and bundle conductor are studied. Moreover, the differences of the two cases are analysised and discussed. The wind power input of single conductor is numerically obtained through the simulation of the flow around a vibrating conductor. The numerical value of wind power input has a good agreement with the experimental value by the researches in wind tunnel tests. It's confirmed that the numerical method is feasible. The subconductors of the bundle conductor are also obtained throuth the CFD numerical simulation. Meanwhile, the influences of subconductor horizontal spacing, inclination angle, turbulence intensity were discussed. And the analytical expressions of wind power input for bundle conductor are gained through the curve-fitting of numerical results. This can provide a basis for the solving the aeolian vibration response of bundle conductor.
     (2) According to IEEE standards, the vibration test of single and bundle conductor are designed and carried out. Through the single conductor test, the self-damping characteristic of conductor and the anti-vibration property of stockbridge dampers are investigated. Based on the theory of wave propagation, the calculation method for the energy dissipation of stockbridge damper, considering the damper's installation posisiton, is established. And the method is validated by the corresponding vibration test. The vibration characteristic of the bundle conductor and the energy dissipation characteristics of spacer damper, wire damper, stockbridge damper are studied through the bundle conductor vibration test.
     (3) The modified energy balanced method is established to analysis the aeolian vibration of bundle conductor, which is different from the traditional reduction factor method. The transfer matrix method is used to calculate the vibration frequency and mode of the bundle conductor. Combined with the wind power input of bundle conductor by means of CFD simulation and the energy dissipation calculation method for conductor self-damping and stockbridge damper, the modified energy balanced method is established to calculate the response of the aeolian vibration of bundle conductor. Compared with the reduction factor, the modified energy balanced method is more reasonable and effective.
     (4) The average aerodynamic characteristics of bundle conductor is obtained by the CFD numerical simulation. Moreover, the influences of the conductor spacing, turbulence intensity, Reynold number effect are discussed. On the basis of the quasi-static aerodynamic theory, the oscillator models of two-degree-of-freedom motion and four-degree-of-freedom motion are built. Through the instability analysis of the two oscillator models, the critical conditions for the occurrence of subspan oscillation are investigated. By means of numerical solution and the average method, the dynamic response of subspan oscillation is calculated. Meanwhile, the investigation is made to study the influence of wind velocity, the damp of bundle conductor system, the frequency ratio on the subspan oscillation. The results of the two oscillator models are compared and analysed to discuss the influence of the windward's oscillation freedom.
     (5) The finite element model of bundle for subspan oscillation analysis is established. In addition, the aerodynamic coefficients of bundle conductor with different conductor spacing and inclination angle are obtained through computational fluid dynamics method. The Newton-Raphson iteration method is employed to determine the initial configuration of the bundle conductor and the Runge-Kutta method is applied to carry out nonlinear numerical simulation. Through that, the subspan oscillation response is obtained. Finally, the impact of conductor spacing, inclination angle and spacer arrangement on subspan oscillation are investigated with the FEM simulation.
     The studies of aeolian vibration and subspan oscillation of bundle conductor have important theoretical significance and economic value. This dissertation provides an effective theoretical basis and reasonable references for the anti-vibration design and further study of the two kinds of wind-induced vibration.
引文
[1]RawlinsCB. Transmission line Reference Book:Wind-induced Conductor Motion. EPRI:Palo Alto, CA,1979.
    [2]郑玉珙.架空输电线微风振动.北京:水利出版社,1987.
    [3]Ervik, M., Berg, A., Boelle. Report on aeolian vibration.1989.
    [4]Hartlen R.T., Currienl.G. Lift-oscillator model of vortex induced vibration. Journal of Engineering Mechanics,1970,96(5):577-591.
    [5]Skop, R. A., Griffin, O. M. A model for the vortex-excited resonant response of bluff cylinders. Journal of Sound and Vibration,1973,27(2):225-233.
    [6]Griffin, O. M., Koopmann G.H. The Vortex-excited lift and reaction forces on resonantly vibrating cylinders. Journal of Sound and Vibration,1977,54:435-448.
    [7]Griffin, O. M., Koopmann G.H. Vortex-excited cross-flow vibrations of a single cylindrical tube. ASME, Journal of Pressure Vessel Technology,1980,102: 158-166.
    [8]Iwan.W.D. The vortex induced oscillation of elastic structure elements. ASME, Journal of Engineering for Industry,1975,97:1378-1382.
    [9]Tsui, Y. T. Recent advances in engineering science as applied to aeolian vibration-an alternative approach. Electric Power Systems Research,1982,5(1):73-85.
    [10]Tsui,Y. T. Modern developments in aeolian vibration. Electric Power Systems Research,1988,15(3):173-179.
    [11]Laneville, A., Brika, D. Vortex-induced vibrations of a long flexible circular cylinder. Journal of Fluid Mechanics 1993,250:481-508.
    [12]Sarpkaya, T. A critical review of the intrinsic nature of vortex-induced vibrations. Journal of Fluids and Structures,2004,19:389-447.
    [13]Y.Ohya, A. O., M. Hayashi. Wake interference and vortex shedding. N Cheremisinoff(Ed) Encyclopedia of Fluid Mechanics, vol8, ch 10, Gulph Publishing Co, pp 322-3898(10):322-389.
    [14]Zdravkovich, M. M. Review of flow interference between two circular cylinders in various arrangements. Journal of Fluids Engineering,1977,99:618-633.
    [15]Bearmna PW, W. A. The interaction between a pair of circular cylinders normal to a stream. Journal of Fluid Mechanics,1973,61:499-511.
    [16]Zdravkovich, M. M. Flow induced oscillations of two interfering circular cylinders. Journal of Sound and Vibration,1985,101(4):511-521.
    [17]Zdravkovich, M. M. The effects of interference between circular cylinders in cross flow. Journal of Fluids and Structures,1987,1(2):239-261.
    [18]A. Bokaianf, F. G. Wake-induced galloping of two interfering circular cylinders J Fluid Mech,1984,146:383-415.
    [19]King, R., Johns, D. J. Wake interaction experiments with two flexible circular cylinders in flowing water. Journal of Sound and Vibration,1976,45(2):259-283.
    [20]Brika, D., Laneville, A. Vortex-induced oscillations of two flexible circular cylinders coupled mechanically. Journal of Wind Engineering and Industrial Aerodynamics,1997,69-71:293-302.
    [21]Laneville, A., Brika, D. The fluid and mechanical coupling between two circular cylinders in tandem arrangement. Journal of Fluids and Structures,1999,13(7-8): 967-986.
    [22]Zhou Y, W. Z., So RMC,Xu SJ and Jin W. Free vibration of two side-by-side cylinders in a cross-flow. Journal of Fluid Mechanics,2001,443:197-229.
    [23]Sayers, A. T. Flow interference between four equi-spaced cylinders when subjected to a cross flow. Journal of Wind Engineering and Industrial Aerodynamics,1988, 31:9-28.
    [24]Sayers, A. T. Vortex shedding from groups of three and four equispaced cylinders situated in cross-flow.. Journal of Wind Engineering and Industrial Aerodynamics, 1990,34(213-221).
    [25]陈文礼,李惠.基于RANS的圆柱风致振动的CFD数值模拟.西安建筑科技大学学报,2006,38(4):509-513.
    [26]Lee, D. S., Ha, M. Y., Yoon, H. S. A numerical study on the flow patterns of two oscillating cylinders. Journal of Fluids and Structures,2009,25(2):263-283.
    [27]Kim, S., Alam, M. M., Sakamoto, H. Flow-induced vibrations of two circular cylinders in tandem arrangement. Part 1:Characteristics of vibration. Journal of Wind Engineering and Industrial Aerodynamics,2009,97(5-6):304-311.
    [28]Kim, S., Alam, M. M., Sakamoto, H. Flow-induced vibration of two circular cylinders in tandem arrangement. Part 2:Suppression of vibrations. Journal of Wind Engineering and Industrial Aerodynamics,2009,97(5-6):312-319.
    [29]Cramo, B. S., Meneghini,J.R. Numerical investigation of the flow around two circular cylinders in tandem. Journal of Fluids and Structures,2006,22:978-988.
    [30]Braza M., C. P., Minh H.H. Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder. Journal of Fluid Mechanics,1986,165:79-130.
    [31]Zhou, C. Y., So, R. M. C., Lam, K. Vortex-induced vibrations of an elastic circular cylinder. Journal of Fluids and Structures,1999,13(2):165-189.
    [32]徐枫,欧进萍,肖仪清.不同截面形状柱体流致振动的CFD数值模拟.工程力学,2009,26(4):7-15.
    [33]Liu Y, S. R., Lau YL and Zhou Y. Numerical studies of two side-by-side elastic cylinders in a cross-flow. Journal of Fluid and Structures 2001,15:1009-1030.
    [34]Zou J.F, R. A. L., Deng J. Study on a forced system of two cylinders with various spacings. China Ocean Engineering,2004,18(3):391-402.
    [35]Mittal, S. Computation of three-dimensional flows past circular cylinder of low aspect ratio. Physics of Fluids,2001,13:177-191.
    [36]Moulinec, C., Hunt,J.C.R.,Nieuwstadt,F.T.M. Disappearing wakes and dispersion in numerically simulated flows through tube bundles. Flow,Turbulence and Combustion 2004,73:95-116.
    [37]K.Lam, L. Z. Three-dimensional numerical simulation of cross-flow around four cylinders in an in-line square configuration. Journal of Fluid and Structure,2010, 26:482-502.
    [38]Farrant, T., Tan,M.,Price,W.G. A cell boundary element method applied to laminar vortex-shedding from arrays of cylinders in various arrangements. Journal of Fluids and Structures,2000,14:375-402.
    [39]Lam, K., Zou,L. Experimental and numerical study for the cross-flow around four cylinders in an in-line square configuration. Journal of Mechanical Science and Technology,2007,21:1338-1343.
    [40]张爱社,张陵.等边布置三圆柱绕流的数值分析.应用力学学报,2003,20(1):31-36.
    [41]陈文曲.二维串并列圆柱绕流与涡致振动研究[硕士学位论文].杭州:浙江大学,2005.
    [42]贾晓荷,刘桦.双圆柱绕流的大涡模拟.水动力学研究与进展,2008,23(6).
    [43]Diana, G, Falco, M., Cigada, A. On the measurement of over head transmission lines conductor self-damping. IEEE Transactions on Power Delivery,2000,15(1): 285-292.
    [44]Rodolfo Claren, Member, I., Diana, G. Mathematical analysis of transmission line vibration. IEEE Transactions On Power Apparatus And Systems,1969, PAS-88(12):1741-1770.
    [45]Dhotarad MS, G. N., Rao Bva. Transmission line vibrations. Journal of Sound and Vibration,1978,60(2):217-237.
    [46]Papailiou, K. O. On the bending stiffness of transmission line conductors. Power Delivery, IEEE Transactions on Power Delivery,1997,12(4):1576-1588.
    [47]DastousJB. Nonlinear finite-element analysis of stranded conductors with variable bending stiffness using the tangent stiffness method. IEEE Transactions on Power Delivery,2005,20(1):328-338.
    [48]Hagedorn, P. On the computation of damped wind-excited vibrations of overhead transmission lines. Journal of Sound and Vibration,1982,83(2):253-271.
    [49]Verma, H., Hagedorn, P. Wind induced vibration of long electrical overhead transmission line spans:a modified approach. Wind and Structure,2005,8: 89-106.
    [50]Oliveira, A. R. E., Freire, D. G. Dynamical modelling and analysis of aeolian vibrations of single conductors. IEEE Transactions on Power Delivery,1994,9(3): 1685-1693.
    [51]Vecchiarelli, J., Currie, I. G., Havard, D. G. Computational analysis of aeolian conductor vibration with a stockbridge-type damper. Journal of Fluids and Structures,2000,14(4):489-509.
    [52]孔德怡.基于动力学方法的特高压输电线微风振动研究[博士学位论文].武汉:华中科技大学,2009.
    [53]孔德怡,李黎,龙晓鸿,梁政平.特高压架空输电线微风振动有限元分析.振动与冲击,2007,26(8):64-67.
    [54]SchaferB. Dynamical modelling of wind-induced vibrations of overhead lines. International Journal of Nonlinear Mechanics,1984,19(5):455-467.
    [55]Simpson, A., Sembi, P. S. On the use of exact modal-analysis techniques in the design of damping devices for multi-conductor overhead power-lines part1:the control of aeolian vibration. Journal of Sound and Vibration,1984,97(3):357-385.
    [56]Simpson.A. Determination of the inplane natural frequencies of multispan transmission line by a transfer matrix method. Proceedings of the Institute of Electrical Enginneers,1966, (113):870-878.
    [57]Wang, H. Q., Miao, J. C., Luo, J. H. The free vibration of long-span transmission line conductors with dampers. Journal of Sound and Vibration,1997,208(4): 501-516.
    [58]Carlos Frederico Trotta, M. On the application of generalized integral transform technique to wind-induced vibrations on overhead conductors. J Numer Meth Engng,2009,78:901-930.
    [59]叶志雄.输电线微风振动及次档距振荡控制研究[博士学位论文].武汉:华中科技大学,2009.
    [60]Bate, E. The vibration of transmission line conductors.1930, Ⅺ:277-290.
    [61]GDiana, M.Falco. On the forces transmitted to a vibrating cylinder by a flowing fluid. Meccanica,1971,6(1):9-22.
    [62]Rawlins, C. Model of power imparted to a vibrating conductor by turbulent wind. Technical Report, Alcoa Conductor Products Company, Technical Note No 31, 1983.
    [63]Rawlins, C. B. Model of power imparted to a vibrating conductor by turbulent wind. Alcoa Conductor Products Company, Technical Note NO31,1998.
    [64]Brika, D., Laneville, A. A laboratory investigation of the aeolian power imparted to a conductor using a flexible circular cylinder. IEEE Transactions on Power Delivery,1996,11(2):1145-1152.
    [65]Kraus, M., Hagedorn, P. Aeolian vibrations:Wind energy input evaluated from measurements on an energized transmission line. IEEE Transactions on Power Delivery,1991,6(3):1264-1270.
    [66]Meynen, S., Verma, H., Hagedorn, P. On the numerical simulation of vortex-induced vibrations of oscillating conductors. Journal of Fluids and Structures,2005,21(1 SPEC ISS):41-48.
    [67]D.Brika, A. L. The power imparted by wind to a flexible circular cylinder in the wake of another stationary cylinder. IEEE transactions on power delivery,1997, 12(1):398-405.
    [68]Institute of Electrical and Electronics Engineers. IEEE guide on conductor self-damping measurements.. IEEE Std 563-1978 1978.
    [69]Noiseux, D. U. (1991). Similarity laws of the internal damping of stranded cables in transverse vibrations. Paper presented at:Transmission and Distribution Conference,1991, Proceedings of the 1991 TEEE Power Engineering Society.
    [70]孔祥志.架空线自阻尼的测试方法.中国民航大学学报,1992,3:34-41.
    [71]徐乃管,王景朝.导线自阻尼的测量及实用归算方法.中国电力,1995,28(2):17-20.
    [72]Rawlins, C. B. Flexural self-damping in overhead electrical transmission conductors. Journal of Sound and Vibration,2009,323(1-2):232-256.
    [73]李黎,叶志雄,孔德怡.输电线微分振动分析方法能量平卜衡法的改进研究.工程力学,2009,26(S1),176-180.
    [74]卢明良,徐乃管.架空输电线路导线-防振锤系统的实用防振计算.电力建设,1996,8:2-6.
    [75]Wagner, H., Ramamurti, V., Sastry, R. V. Dynamics of Stockbridge dampers. Journal of Sound and Vibration,1973,30(2):207-220.
    [76]Institute of Electrical and Electronics Engineers. Guide on the measurement of the performance of aeolian vibration dampers for single conductors. IEEE Standard 664-1993,1993.
    [77]Schmidt, J. T., Biedenbach, G., Krispin, H. J. Laboratory measurement of the power dissipation characteristics of aeolian vibration dampers.IEEE Transactions on Power Delivery,1997,12(4):1614-1621.
    [78]Diana, G, Cigada, A., Belloli, M. Stockbridge-type damper effectiveness evaluation:Part Ⅰ-Comparison between tests on span and on the shaker. IEEE Transactions on Power Delivery,2003,18(4):1462-1469.
    [79]Diana, G., Manenti, A., Pirotta, C. Stockbridge-type damper effectiveness evaluation:Part Ⅱ-The influence of the impedance matrix terms on the energy dissipated. IEEETransactions on Power Delivery,2003,18(4):1470-1477.
    [80]Sauter, D., Hagedorn, P. On the hysteresis of wire cables in Stockbridge dampers.International Journal of Nonlinear Mechanics,2002,37(8):1453-1459.
    [81]Krispin, H. J., Fuchs, S., Hagedorn, P. (2007). Optimization of the efficiency of aeolian vibration dampers (Johannesburg, South Africa, Institute of Electrical and Electronics Engineers Computer Society, Piscataway, NJ 08855-1331, United States).
    [82]Markiewicz, M. Optimum dynamic characteristics of Stockbridge dampers for dead-end spans. Journal of Sound and Vibration,1995,188(2):243-256.
    [83]ErvikM. Vibration damping on long fjord crossings:theoretical investigations. IEEE Transactions on Power Apparatus and Systems,1981,100(4):2149-2158.
    [84]Diana, G., Falco, M., Curami, A. Method to define the efficiency of damping devices for single and bundled conductors of ehv and uhv lines. IEEE Transactions on Power Delivery,1987, PWRD-2(2):464-476.
    [85]Houle, S., Hardy, C., Lapointe, A.(1987). Experimental assessment of spacer-damper system performance with regard to control of wind-induced vibrations of high-voltage transmission lines (Beijing, China, IEEE, New York, NY, USA).
    [86]Simpson, A., Salmon, N. J., Taylor, C. N. Computational Comparison of Efficacies of Aeolian Vibration Damping Devices for Multiconductor Overhead Power-Lines. IEEE Proceedings-C Generation Transmission and Distribution,1990,137(3): 225-232.
    [87]Anderson, K., Hagedorn, P. On the energy dissipation in spacer dampers in bundled conductors of overhead transmission lines. Journal of Sound and Vibration, 1995,180(4):539-556.
    [88]Hagedorn, P., Mitra, N., Hadulla, T. Vortex-excited vibrations in bundled conductors a mathematical model. Journal of Fluids and Structures,2002,16(7): 843-854.
    [89]陈建华,陈景彦,杨湘江.500 kV阻尼间隔棒阻尼性能测试技术的开发研究与应用.中国电力,1999,32(7):41-43.
    [90]陈建华,陈景彦,杨湘江.阻尼间隔棒阻尼性能测试技术的研究与应用.电力建设,1999,(9):6-7.
    [91]王旭锋,王景朝,万建成.阻尼间隔棒抑制微风振动的机理分析.电力建设,2003,24(7):33-34.
    [92]刘胜春,王景朝,吴建生.500kV大跨越四分裂导线及地线防振试验研究.振动、测试与诊断,2007,27(4):332-336.
    [93]Chen, S. S. A review of flow-induced vibration of two circular cylinders in crossflow. Journal of pressure vessel technology,1986,100:382-393.
    [94]Brika, D., Laneville, A. Wake interference between two circular cylinders. Journal of Wind Engineering and Industrial Aerodynamics,1997,72:61-70.
    [95]P. W. Bearman, A. J. W. The interaction between a pair of circular cylinders normal to a stream. J Fluid Mech,1973,61(3):499-511.
    [96]Brika, D., Laneville, A. The flow interaction between a stationary cylinder and a downstream flexible cylinder. Journal of Fluids and Structures,1999,13(5): 579-606.
    [97]Price, S. J., Paidoussis, M. P. The aerodynamic forces acting on groups of two and three circular cylinders when subject to a cross-flow. Journal of Wind Engineering and Industrial Aerodynamics,1984,17(3):329-347.
    [98]顾志福,孙天风.三圆柱绕流的实验研究.空气动力学学报,2000,18(4):441-446.
    [99]Wardlaw, R. L., Cooper, K. R., Ko, R. G. Wind tunnel and analytical investigations into the aeroelastic behaviour of bundled conductors. Power Apparatus and Systems, IEEE Transactions on Power Delivery,1975,94(2):642-654.
    [100]Cooper, K. R. A wind tunnel investigation of twin bundled power conductors. Journal of sound and vibration,1972,38(3),101-116.
    [101]Simpson, A. On the flutter of a smooth cylinder in a wake. Aeronautical Quarterly, 1971 feb:25-41.
    [102]Simpson, A. Wake induced flutter of circular cylinders:mechanical aspects. Aeronautical Quarterly,1971 may.
    [103]K.R.Cooper. Wind tunnel and theoretical investigations into the aerodynamic stability of smooth and stranded twin-bundled power conductors. National Research Council of Canada Technical Report LTR-LA-115,1973.
    [104]K.R.Cooper. A wind tunnel investigation for Alcan International into the effects of stranding on the aerodynamic stability of twin-bundle power conductors. National Research Council of Canada Technical Report LTR-LA-115,1973.
    [105]Brzozowski, V. J., Hawks, R. J. Waked-induced full-span instability of bundle conductor transmission lines. AIAA Journal,1976,14(2):179-184.
    [106]Tsui, Y. T. On wake-induced flutter of a circular cylinder in the wake of another Journal of Applied Mechanics,1977,44:194-200.
    [107]Tsui, Y. T., Tsui, C. C. Two dimensional stability analysis of two coupled conductors with one in the wake of the other. Journal of Sound and Vibration,1980, 69(3):361-394.
    [108]Price, S. J. Wake induced flutter of power transmission conductors. Journal of Sound and Vibration,1975,38(1):125-147.
    [109]Rawlins, C. B. Fundamental Concepts in the Analysis of Wake induced Oscillation of Bundled Conductors. Ieee Transactions on Power Apparatus and Systems,1976, PAS-95(4):1377-1393.
    [110]Howitt, W. B. Wake-induced Oscillation of Bundled Conductors. Minutes of the Meeting-Pennsylvania Electric Association, Engineering Section,1977:27.
    [111]JG Allnutt, S. P., MJ Tunstall. The control of sub-span oscillation of multi-conductor bundled transmission lines. CIGRE International Conference on Large High Voltage Electric Systems, Paper No22-01,1980.
    [112]Tsui, Y. T. On wake-induced vibration of a conductor in the wake of another via a 3-D finite element method. Journal of Sound and Vibration,1986,107(1):39-58.
    [113]Price, S. J., Piperni, P. An investigation of the effect of mechanical damping to alleviate wake-induced flutter of overhead power conductors. Journal of Fluids and Structures,1988,2:53-71.
    [114]Price, S. J., Maciel, Y. Solution of the nonlinear equations for wake-induced flutter via the Krylov and Bogoliubov method of averaging. Journal of Fluids and Structures,1990,4(5):519-540.
    [115]Lilien, J.-L., Snegovski, D. Wake-Induced Vibration in Power Transmission Line. Parametric study. Flow Induced Vibration, de Langre & Axisa ed,2004.
    [116]苏铭德,黄素逸.计算流体力学基础.北京:清华大学出版社,1997.
    [117]王福军.计算流体动力学-CFD软件原理与应用.2004.
    [118]Schlichting, H. Boundary Layer Theory (seventh ed.),. McGraw-Hill, New York 1979.
    [119]Tritton, D. J. Experiments on the flow past a circular cylinder at low Reynolds numbers. Journal of Fluid Mechanics,1959,6:547-567
    [120]Kawamura, T., Takami, H., Kuwahara, K. Computation of high Reynolds number flow around a circular cylinder with surface roughness. Fluid Dynamics Research, 1986,1(2):145-162.
    [121]Govardhan R., W. C. H. K. Mean and fluctuating velocity fields in the wake of a freely-vibrating cylinde. Journal of Fluids and Structures,2001,15:489-501.
    [122]Guilmineau, E., Queutey, P. A. Numerical simulation of vortex shedding from an oscillating circular cylinder. Journal of Fluids and Structures,2002,16(6): 773-794.
    [123]王志东,周林慧.均匀流中横向振荡圆柱绕流场的数值分析.水动力学研究与进展,2005,20(2):146-151.
    [124]蔡丹宙,李春锋.架空输电导线的风振功率曲线.电力建设,2010,31(8):13-16.
    [125]蔡丹宙.大跨越导线的自阻尼性能和消振方案.电力建设,1989,10(14):69-72.
    [126]Mittal, S., Kumar, V., Raghuvanshi, A. Unsteady incompressible flows past two cylinders in tandem and staggered arrangements. International Journal for Numerical Methods in Fluids,1997,25(11):1315-1344.
    [127]Papaioannou, G. V., Yue, D. K. P., Triantafyllou, M. S. Three-dimensionality effects in flow around two tandem cylinders. Journal of Fluid Mechanics,2006, 558:387-413.
    [128]Palau-Salvador, G., Stoesser, T., Rodi, W. LES of the flow around two cylinders in tandem. Journal of Fluids and Structures,2008,24(8):1304-1312.
    [129]Zou, L., Lin, Y.-f., Lam, K. Large-eddy simulation of flow around cylinder arrays at a subcritical reynolds number. Journal of Hydrodynamics, Ser B,2008,20(4): 403-413.
    [130]Liang, C., Papadakis, G. Large eddy simulation of pulsating flow over a circular cylinder at subcritical Reynolds number. Computers & Fluids,2007,36(2): 299-312.
    [131]姚熊亮,方媛媛,戴绍仕,王领.基于LES方法圆柱绕流三维数值模拟.水动力学研究与进展,2007,22(5):564-572.
    [132]苏铭德,康钦军.亚临界雷诺数下圆柱绕流的大涡模拟.力学学报,1999,31(1):31-39.
    [133]Anonymous. IEEE guide on conductor self-damping measurements. IEEE Std 563-1978,1978:1.
    [134]Collaboration. IEEE guide for laboratory measurement of the power dissipation characteristics of aeolian vibration dampers for single conductors[R]. Inst. Electr. & Electron. Eng., New York, NY, USA,2007.
    [135]W. G. o. S. C. Electra paper Report on aeolian vibration. Electra,1989,124:43-59.
    [136]邵天晓.架空输电线路的电线力学计算(第二版).中国电力出版社,2003.
    [137]国际大电网会议报告.架空线路的微风振动CIGRE.No22-11,1970.
    [138]Anonymous. IEEE guide on conductor self-damping measurements.1978.
    [139]孔祥志,陈俊.防振锤功率特性的测试.中国电力,1981,14(04):45-48.
    [140]Carlos Frederico Trotta, M. On the application of generalized integral transform technique to wind-induced vibrations on overhead conductors, Int. J. Numer. Meth. Engng 2009; 78:901-930
    [141]A.Simpson. Determination of the Natural Frequencies of Multiconductor Overhead Transmission Lines. Journal of Sound and Vibration,1972,20(4):417-449.
    [142]潘忠华.线夹出口处导线动弯应变值计算系数论析.电力建设,1993,10:4-8.
    [143]徐乃管,王景朝.500KV线路大跨越分裂导线防振试验研究.电力建设,1994,15(11):2-5.
    [144]T.V.Gopalan. Fatigue failure of insulator string of overhead transmission line. Journal of Engineering Mechanics,1991,117:88-99.
    [145]Claren, R., Diana, G, Giordana, F. Vibrations of transmission line conductor bundles.1971, PAS-90(4):1796-1814.
    [146]王旭峰,王景朝,万建成.阻尼间隔棒抑制微风振动的机理分析.电力建设,2003,24(7):33-37.
    [147]刘延柱,陈立群.非线性振动.高等教育出版社,2001.
    [148]Tsui, Y. T. Two-dimensional stability analyses of a circular conductor in the wake of another. Electric Power Systems Research,1978,1(2):87-95.
    [149]Sumner, D., Richards, M. D., Akosile, O. O. Two staggered circular cylinders of equal diameter in cross-flow. Journal of Fluids and Structures,2005,20(2): 255-276.
    [150]何学军,张琪昌,张翠英,张文德.一类驰振问题的非线性动力学研究.振动与冲击,2008,27(6):41-44.
    [151]黄伟峰,李勇,刘秋生,王波.桥梁吊杆索尾流驰振问题的数值研究.清华大学学报(自然科学版),2008,48(11):1755-1758.
    [152]Blevins, R. D. Forces on and Stability of a Cylinder in a Wake. Journal of Offshore Mechanics and Arctic Engineering,2005,127(1):39-45.
    [153]Agamenon R.E. Oliveira, W. M. M. Nonlinear analysis of wake induced oscillations. IEEE Transactions on Power Apparatus and Systems,1985, PAS-104(3):727-733.
    [154]A.Bokaian. Galloping of a circular cylinder in the wake of another. Journal of Sound and Vibration,1989,128(1):71-85.
    [155]Simpson. A. On the Flutter of a Smooth Circular Cylinder in a Wake. Aeronaut Q, 1971,22:25-41.
    [156]E.S. Doocy, A. R. H., C.B. Rawlins and R.Ikegai. Transmission Line Reference Book:Wind Induced Conductor Motion. Electric Power Research Institute,Palo Alto, California,1979.
    [157]Simiu E., S. R. H.风对结构的作用-风工程导论.上海:同济大学出版社,1992.
    [158]Maull, W. A. M. a. D. J. Aerodynamic behaviour of bodies in the wake of other bodies. Philosophical Tranctions of the Royal Society of London A269,1971: 425-437.
    [159]S.J.Price. The origin and nature of the lift force on the leeward of two bluff bodies.. Aeronautical Quarterly ⅩⅩⅦ,1976:154-168.
    [160]Simpson, A. Determination of the natural frequencies of multiconductor overhead transmission lines. Journal of Sound and Vibration,1972,20(4):417-449.
    [161]Desai, Y. M., Yu, P., Popplewell, N. Finite element modelling of transmission line galloping. Computers & Structures,1995,57(3):407-420.
    [162]Zhang, Q., Popplewell, N., Shah, A. H. Galloping of bundle conductor. Journal of Sound and Vibration,2000,234(1):115-134.
    [163]严波,李文蕴,张宏雁.一种模拟覆冰双分裂导线舞动的数值方法.重庆大学学报,2009,32(7):777-792.
    [164]Knudson, C., W. Static and dynamic analysis of cable-net structures. California:Doctoral disseration University Of California, Berkely,1971.
    [165]杨孟刚,陈政清.两节点曲线索单元精细分析的非线性有限元法.工程力学,2003,20(1):42-47.
    [166]武建华,苏文章.四节点索单元的悬索结构非线性有限元分析.重庆建筑大学学报,2005,27(6):55-58.
    [167]唐建民,董明,钱若军.张拉结构非线性分析的五节点等参单元.计算力学学报,1997,14(1):108-113.
    [168]R. W. Clough and J. Penzien. Dynamics of Structures. McGraw-Hill, New York, 1975.
    [169]王勖成.有限单元法.清华大学出版社,2003.
    [170]杨孟刚,陈政清.基于UL列式的两节点悬链线索元非线性有限元分析.土木工程学报,2003,36(8):63-68.
    [171]罗喜恒,肖汝诚,项海帆.基于精确解析解的索单元.同济大学学报(自然科学版),2005,33(4):445-450.
    [172]Irvine, H. Cable Structures. MIT Press, Cambridge, MA,1981.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700